M. Ahsanullah and R. C. Newell, Factors affecting the heart rate of the shore crab Carcinus maenas (L.), Comparative Biochemistry and Physiology Part A: Physiology, vol.39, issue.2, pp.277-2870300, 1971.
DOI : 10.1016/0300-9629(71)90084-3

A. Burnovicz, D. Oliva, and G. Hermitte, The cardiac response of the crab Chasmagnathus granulatus as an index of sensory perception, Journal of Experimental Biology, vol.212, issue.2, pp.313-324, 2009.
DOI : 10.1242/jeb.022459

N. Carey, J. D. Sigwart, and J. G. Richards, Economies of scaling: More evidence that allometry of metabolism is linked to activity, metabolic rate and habitat, Journal of Experimental Marine Biology and Ecology, vol.439, 2013.
DOI : 10.1016/j.jembe.2012.10.013

F. Chausson, S. Sanglier, E. Leize, N. Hagège, C. R. Bridges et al., Respiratory adaptations to the deep-sea hydrothermal vent environment: the case of Segonzacia mesatlantica, a crab from the Mid-Atlantic Ridge, Micron, vol.35, issue.1-2, pp.31-41, 2004.
DOI : 10.1016/j.micron.2003.10.010

J. J. Childress and T. J. Mickel, Metabolic rates of animals from hydrothermal vents and other deep-sea habitats, Biol. Soc. Wash. Bull, vol.6, pp.249-260, 1985.

J. Decelle, A. C. Andersen, and S. Hourdez, Morphological adaptations to chronic hypoxia in deep-sea decapod crustaceans from hydrothermal vents and cold seeps, Marine Biology, vol.284, issue.6, 2010.
DOI : 10.1007/BF00738415

URL : https://hal.archives-ouvertes.fr/hal-01250931

P. L. Defur and C. P. Mangum, The effects of environmental variables on the heart rates of invertebrates, Comparative Biochemistry and Physiology Part A: Physiology, vol.62, issue.2, pp.283-2940300, 1979.
DOI : 10.1016/0300-9629(79)90058-6

M. H. Depledge and B. B. Andersen, A computer-aided physiological monitoring system for continuous, long-term recording of cardiac activity in selected invertebrates, Comparative Biochemistry and Physiology Part A: Physiology, vol.96, issue.4, pp.473-4770300, 1990.
DOI : 10.1016/0300-9629(90)90664-E

E. Florey and M. E. Kriebel, The effects of temperature, anoxia and sensory stimulation on the heart rate of unrestrained crabs, Comparative Biochemistry and Physiology Part A: Physiology, vol.48, issue.2, pp.285-3000300, 1974.
DOI : 10.1016/0300-9629(74)90709-9

F. Giomi, H. O. Pörtner, L. A. Gorodezky, and J. J. Childress, A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs Effects of sulfide exposure history and hemolymph thiosulfate on oxygen-consumption rates and regulation in the hydrothermal vent crab Bythograea thermydron, Frontiers Physiol. Mar. Biol, vol.4, issue.120, pp.123-131, 1994.

S. Hourdez, Hypoxic environments In Life at Extremes: Environments, Organisms and Strategies for Survival, Oxfordshire: CAB International, pp.438-453, 2012.

S. Hourdez and F. H. Lallier, Adaptations to hypoxia in hydrothermal-vent and cold-seep invertebrates, Reviews in Environmental Science and Bio/Technology, vol.41, issue.4, pp.143-159, 2007.
DOI : 10.1086/physzool.60.1.30158634

B. R. Mcmahon, Intrinsic and extrinsic influences on cardiac rhythms in crustaceans, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol.124, issue.4, pp.539-547, 1999.
DOI : 10.1016/S1095-6433(99)00147-6

B. R. Mcmahon, Respiratory and circulatory compensation to hypoxia in crustaceans, Respiration Physiology, vol.128, issue.3, pp.349-364, 2001.
DOI : 10.1016/S0034-5687(01)00311-5

T. J. Mickel and J. J. Childress, Effects of pressure and temperature on the EKG and heart rate of the hydrothermal vent crab Bythograea thermydron (Brachyura), 1982.

T. J. Mickel and J. J. Childress, Effects of Temperature, Pressure, and Oxygen Concentration on the Oxygen Consumption Rate of the Hydrothermal Vent Crab Bythograea thermydron (Brachyura), Physiological Zoology, vol.55, issue.2, pp.199-207, 1982.
DOI : 10.1086/physzool.55.2.30155856

H. O. Pörtner, Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals, Naturwissenschaften, vol.88, pp.137-146, 2001.

N. J. @bullet-robinson, S. Thatje, and C. Oseforth, Heartbeat sensors under pressure: a new method for assessing hyperbaric physiology, High Pres. Res. iFirst, pp.1-9, 2009.

D. F. Stiffler and A. W. Pritchard, RESPONSES OF CRUSTACEAN HEARTS TO HYPOXIA, The Biological Bulletin, vol.143, issue.1, pp.247-255, 1972.
DOI : 10.2307/1540344

A. C. Taylor, The respiratory responses of Carcinus maenas to declining oxygen tension, J. Exp. Biol, vol.65, pp.309-322, 1976.

J. Vidal and T. E. Whiteledge, Rates of metabolism of planktonic crustaceans as related to body weight and temperature of habitat, Journal of Plankton Research, vol.4, issue.1, pp.77-84, 1982.
DOI : 10.1093/plankt/4.1.77

J. C. Wallace, Activity and metabolic rate in the shore crab, Carcinus maenas (L.), Comparative Biochemistry and Physiology Part A: Physiology, vol.41, issue.3, pp.523-5330300, 1972.
DOI : 10.1016/0300-9629(72)90010-2

N. M. Whiteley and E. W. Taylor, Responses to environmental stresses: oxygen, temperature, and pH. Chapter 10 In: The Natural History of Crustaceans, Growth, Moulting and Physiology, vol.10, pp.320-358, 2015.

J. L. Wilkens, Re-evaluation of the stretch sensitivity hypothesis of crustacean hearts: hypoxia, not lack of stretch, causes reduction in the heart rate of isolated, 1993.