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Abstract  

Friction reduction, lower oil consumption, and limitation of greenhouse gases emissions are 

the chief objectives of the automotive industry in order to improve the environmental 

efficiency of vehicle engines. 

In this paper, a strategy for ring-pack friction reduction through cylinder liner finish 

optimization based on coupling instrumented honing experiments and numerical prediction of 

elastohydrodynamic friction is proposed.  

The results show that honed surfaces produced by fine abrasion by honing stones yield the 

optimal elastohydrodynamic friction. They also demonstrate the limitations of ISO 13565 

standard roughness parameters in giving a complete description of the functional 

performances of cylinder surface finishes.   
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Nomenclature 

 

a Hertzian contact radius (m) 

 Pressure-viscosity coefficient (Gpa
-1

) 

 Elastic deflection of the contacting bodies (m) 

 Dimensionless elastic deflection of the contacting bodies 

D, d  Cylinder diameter before and after the finish honing operation, respectively (mm) 

Eeq, eqEquivalent Young’s modulus (Pa) and Poisson’s coefficient, respectively 



Ei, i  Young’s modulus (Pa) and Poisson’s coefficient of component i, respectively 

Er Reduced modulus of elasticity   

Esp Specific honing energy (J/mm
3
) 

FN External applied load (N) 

h Film thickness (m) 

h0 Rigid body displacement (m)   

H Dimensionless film thickness (H = h Rx/a
2
) 

Hc Cylinder height (m) 

H0 Dimensionless rigid body displacement  

N Dimensionless parameter  

η Viscosity (Pa.s) 

 Dimensionless viscosity (=η/ η0) 

η0 Ambient temperature zero-pressure viscosity (Pa.s) 

  Effective viscosities in the X and Y directions  

µ Friction coefficient 

p Pressure (Pa) 

ph Hertzian pressure (Pa) 

Pm Average power absorbed by the honing process (J) 

pr  Constant, pr = 1.96.10
8 

(Pa) 

P Dimensionless pressure (=p/ ph) 

P
-
 Negative part of pressure profile 

Qw  Volumetric removal (mm
3
) 

Rx Radius of curvature in x direction (m) 

Rg height of the liner surface topography at each position (m) 

 Lubricant density (kg.m
-3

) 

 Dimensionless lubricant density (= / 0) 

0 Lubricant’s density under ambient condition (kg.m
-3

) 

S Slide to roll ratio: S = 2(u1 – u2)/(u1 + u2) 

σn Normal stress component 

honingt
 

Effective honing time (s) 

       Dimensionless mean shear stress  

τ0 Eyring stress (Pa) 



U Elastic displacement vector (m) 

ui Surface velocity of body I in x-direction (m.s
-1

) 

um Mean entrainment velocity (m.s
-1

) 

x,y,z Space coordinates (m) 

X,Y Dimensionless space coordinates (=x/a, y/a) 

w Value of Z-component of the displacement vector (m) 

 Penalty term parameter 

zr Pressure viscosity index (Roelands), zr = pr /(ln(η0) + 9.67)   

 

 

1. Introduction 

The surface features of a cylinder liner engine are the fingerprint of the successive processes 

the surface has undergone, and they influence the functional performance of the combustible 

engine [1–5]. Therefore, surfaces and their measurement provide a link between the 

manufacture of cylinder bores and their functional performances [6]. Hence, the quantitative 

characterization of surface texture can be applied to production process control and design for 

functionality [7]. The optimum surface texture of an engine cylinder liner should ensure quick 

running-in, minimum friction during sliding, low oil consumption, and good motor engine 

operating parameters in terms of effective power and unitary fuel consumption. Increasingly 

stringent engine emissions standards and power requirements are driving an evolution in 

cylinder liner surface finish [8]. Unfortunately, the full effect of different cylinder liner 

finishes on ring-pack performance is not well understood [7].  

In mass production of internal combustion engine cylinder liners, the final surface 

finish on a cylinder bore is created by an interrupted multistage abrasive finishing process, 

known as the plateau-honing process. In honing, abrasive stones are loaded against the bore 

and simultaneously rotated and oscillated. Characteristically, the resulting texture consists of a 

flat smooth surface with two or more bands of parallel deep valleys with stochastic angular 

position. Figure 1 shows a typical plateau-honed surface texture from an engine cylinder.  

To guarantee efficient production at industrial level of a cylinder liner of specific shape with 

acceptable dimensional accuracy and surface quality, three honing stages are usually required: 

rough honing, finish honing, and plateau honing. The surface texture is presumably provided 

by the ″finish honing″ [9, 10]. Thus careful control of this operation is central to the 

production of the structured surface so that the cylinder liner will fulfil its mechanical contact 



functionalities in piston ring/cylinder liner assemblies (i.e. running-in performance, wear 

resistance, load-carrying capacity, oil consumption, etc.) [9, 11]. 

 

 

Figure 1 Typical plateau-honed surface texture 

 

Nevertheless, successful application of honing has long been dependent on the 

empirical optimization of setup and operation variables such as cutting speed, honing 

expansion pressure, and grit size. For this reason, in the development of strategies for piston 

ring-pack friction reduction through cylinder liner finish optimization it is necessary to be 

able to distinguish the effect of each process variable on the roughness of these honed 

surfaces [7].  

In this work, strategies for piston ring-pack friction reduction through cylinder liner 

finish optimization were analyzed with the goal of improving the efficiency of selection of the 

honing process variable. The fundamental aim was to find a relation between the honing 

operating variables and the hydrodynamic friction at the piston rings/cylinder interface. An 

additional aim was to determine how the cylinder surface micro-geometry of plateau-honed 

cylinders affects the predicted friction. Thus, an experimental test rig consisting of an 

industrial honing machine instrumented with sensors to measure spindle power, expansion 

pressure, and honing head displacement was developed. Honing experiments were carried out 

using honing stones with varying sizes of abrasive grits and varying expansion speeds, that is, 

the indentation pulse of the honing stone’s surface against the liner wall. Furthermore, a 

numerical model of lubricated elastohydrodynamic contact was developed to predict the 

friction performances and lubricant flow of the various liner surface finishes. It uses the real 

topography of the liner surface as input. In fact previous studies have found that the detailed 

nature of the surface finish plays an important role in ring friction and oil film thickness 

predictions [12]. An appreciation of the limitations of the surface roughness parameters 



commonly used in automotive industries in providing a link between the honing process and 

the generated surface performance in the hydrodynamic regime is presented. 

 

2. Experimental procedure 

In this work, honing experiments were carried out on a vertical honing machine with an 

expansible tool (NAGEL no. 28-8470) (Figure 2). The workpiece consists of four cylinder 

liners of a lamellar gray cast iron engine crankcase. 

The steps involved in the fabrication of the cylinder liners before the finish-honing 

operation are boring and rough honing, respectively (Table 1). Each cylinder has a diameter 

equal to 75.937 mm and a height of 141 mm. Instrumented finish honing tests were performed 

with a Vitrified Bonded Silicon Carbide (VBSC) stick, where the average grit size was varied 

from 30 µm to 180 µm. It is in fact an IAS65/100I8S conventional stone with an initial 

mixture of 65 vol.% aluminum oxide and 35 vol.% green silicon carbide, which corresponds 

to a soft grade, a large openness of the structure, and a vitrified bond resulting from a special 

treatment by impregnation with sulfur. Another interesting variation in the feed system is the 

expansion mechanism in the honing head, where three expansion velocities “Ve” (1.5µm/s, 

4µm/s and 8µm/s) were considered. All the other working variables were kept constant (Table 

1). Note that the rough and finish honing operations use a mechanical expansion system and 

the plateau honing uses a hydraulic system. 

 

      

Figure 2 (a) Vertical honing machine with expansible tool; (b) Schematic representation of 

the honing head in continuous balanced movement. 

a 
b 



 

For each combination of grit size and expansion velocity, tests were repeated five 

times. Thus, the sensitivity of the produced surface finish to its generation process was 

considered. 

Negative surface replicas made of a silicon rubber material (Struers, Repliset F5) were 

used to assess the texture of honed surfaces after the plateau-honing stage at the mid-height of 

the cylinder bore specimen. Topographical features of replica surfaces were measured in three 

locations by a three-dimensional white light interferometer, WYKO 3300 NT (WLI). The 

surface was sampled at 640 × 480 points with the same step scale of 1.94 μm in the x and y 

directions. Form component is removed from acquired 3D data using least square method 

based on cubic Spline function.   

We can assume that the initial roughness of the cylinder bore has no influence on the obtained 

surface texture in this study. It affects only the honing cycle and the stone life, that is, the 

wear of the abrasive grits. In fact, the thickness of the removed material after finish honing 

(32.17 ± 2.21 µm) is greater than the total height of the original surface, which was about 

24.56 ± 6.75 µm. This means that the finish honing operation completely penetrates the 

original surface topography and generates a new surface texture. 

Table 1 Honing working conditions 

Honing process variables Rough honing Finish honing Plateau honing 

Va: Axial speed (m/min)   28 28 28 

Vr: Rotation speed (rpm)  230 230 230 

Honing time (sec) 20 15 2 

Expansion type Mechanical Mechanical Hydraulic 

Ve: Expansion velocity (µm/s) 5 1.5, 4, and 8  

Number of stones 6 6 6 

Abrasive grit type Diamond Silicon carbide Silicon carbide 

Grain size (µm) 125 30–180 30 

Bond type Metal Vitrified Vitrified 

Abrasive stone dimensions 

(mm × mm × mm) 

2 × 5 × 70 6 × 6 × 70 6 × 6 × 70 

 

3. Numerical model for hydrodynamic friction simulation in piston ring-

pack system 

A numerical model was developed to estimate friction at the ring-liner–piston contact. It takes 

into account the real topography of the cylinder liner. The scope of this model is to predict 

qualitatively the friction coefficient obtained to optimize the performances when the groove 

characteristics of cylinder liner surfaces are variables.  



 

3.1 Geometry definition 

An incompressible viscous fluid occupying, at a given moment, a field limited by a smooth 

plane surface P and by a rough surface R is considered. This field is represented on figure 3 

(we did not represent the profile in the x2 direction). It extends from 0 to l1, 0 to l2 and h (x1, 

x2) respectively according to x1, x2 and x3. h (x1, x2) represents the fluid thickness. The 

smooth body is animated by a movement at the constant velocity “u1” along Ox1 axis 

whereas rough surface is static. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 The separation field between a smooth surface and a rough one 

 

 

3.2 EHL Equations 

To estimate the pressure distribution, film thickness, and friction coefficient, a full system 

approach for elastohydrodynamic lubrication (EHL) was developed. The Reynolds equations 

have been written in dimensionless form using the Hertzian dry contact parameters and the 

lubricant properties at ambient temperature. To account for the effects of non-Newtonian 

lubricant behaviour effectives viscosities are introduced.     

 

  With the boundary condition P = 0 and the cavitation condition (or free boundary condition) 

P ≥ 0 are used everywhere Special treatment is used for cavitation condition as explained 

below. In this equation,  is equal to .  and   are the effective viscosities in the X 

and Y directions, respectively. For point contact, it is not possible to derive these effective 



viscosities analytically. The perturbational approach described by Ehret et al. [13] is used. 

This analysis is based on the assumption that the shear stresses are only partially coupled and 

that the mean shear stress is negligible in the y direction [13, 14].  

In our model, the Eyring model is used. The perturbational approach leads to the 

following dimensionless effective viscosities:      

 

where the dimensionless mean shear stress is written as:   

 

where S is the slide to roll ratio (2(u1 – u2)/(u1 + u2)) and N is given by :  

 

The constant parameters of Equation (5) are given in the nomenclature.  

The lubricant’s viscosity and density are considered to depend on the pressure according to 

the Dowson and Higginson relation [15] (Eq. 6) and Roelands equation [16] (Eq. 7):  

 

where 0 is the density at ambient pressure.  

                     

where η0 is the viscosity at ambient pressure, pr is a constant equal to 1.96 x 10
8
, and zr is the 

pressure viscosity index (zr = 0.65).  

The film thickness equation is given in dimensionless form by the following equation:    

 

 is the height of the liner surface topography at each position (X,Y). H0 is a constant 

determined by the force balance condition:  

 

 The normal elastic displacement  of contacting bodies is obtained by solving 

the linear elasticity equations in three-dimensional geometry with appropriate boundary 

conditions [17, 18]. The geometry (Ω) used (figure 4) is large enough compared to contact 



size (Ωc) to be considered as semi-infinite structures.  The linear elastic equations consist of 

finding the displacement vector U in the computational domain  with the following 

boundary conditions: 

 

In order to simplify the model, the equivalent problem defined by [18] is used to replace the 

elastic deformation computation for both contacting bodies. One of the bodies is assumed to 

be rigid while the other accommodates the total elastic deformation. The following material 

properties of the bodies are used in order to have  (w is the 

dimensionless absolute value of the Z-component of the displacement vector):  

 

 

where Ei and i are the Young’s modulus and Poisson’s coefficient, respectively, of the 

material for contacting bodies (i = 1, 2). 

 Finally, the friction coefficient is evaluated by the following formula:  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Scheme of geometric model for computations of the elastic deformation (1) and of 

the Reynolds equation (2). 

 

3.3 Cavitation problem 

x

y z

60a

6a

(1)

(2)



C

at the bottom boundary 

at the contact area boundary C 

elsewhere  



Usually, negative pressure appears in the resolution of the Reynolds equation. Physically, 

these negative pressures are not relevant. In such cases, the fluid will evaporate and the 

pressure is limited by the vapor pressure of the fluid. This process is the cavitation. This 

problem is usually solved by setting the negative pressure to zero. This ensures that there will 

be zero pressure and gradient pressure on the free boundary. In the full system approach, this 

solution is not possible and the penalty method is used as an alternative, as explained in [18]. 

This method was introduced in EHL by Wu [19]. An additional penalty term was introduced 

in the Reynolds equation:  

 

where  is a large positive number and  is the negative part of the pressure 

distribution. This penalty term constrains the system to P  0 and forces the negative pressure 

to zero. 

 

3.4 Numerical procedure  

The Reynolds equation, linear elastic equations, and load balance equation are simultaneously 

solved using a Newton-Raphson resolution procedure. The dimensionless viscosity , density 

, and film thickness H in the Reynolds equation are replaced by the expression given above. 

Except for the load balance equation, a standard Galerkin formulation is used. For the load 

balance equation, an ordinary integral equation is added directly with the introduction of an 

unknown H0. Unstructured variable tetrahedral meshing is used for both Reynolds and linear 

elastic equations. A total number of 100000 degrees of freedom are used in the simulation. An 

iterative process is repeated until the maximum relative difference between two consecutive 

iterations reaches 10
-6

. Table 2 summarizes the fluid properties and contact parameters used in 

our simulation.  

Table 2 Parameters for our simulation used with rough surfaces 

Parameter Value Parameter Value 

FN (N)  500  (GPa
-1

)  22.00 

um (m.s
-1

)  10.0 Rx (m)  0.04 

η0 (Pa.s)  0.04 Ei (GPa)  210 

i  0.3 τ0 (MPa) 0.5 

 

Table 3 gives dimensionless central and minimum oil film thickness for the following 

dimensionless Moes and Venner parameters M=200 and L=10.   



The difference between our model and Venner and Lubrecht work [20] is less than 1%. 

This test confirms the validity of the model presented in this paper. Figure 5 show an example 

of a pressure distribution and film thickness profiles along the central line in the X direction 

for rough surface like one presented in Figure 6. 

 

Table 3 Comparison of the current model with the Venner & Lubrecht model [20] 

 Venner and Lubrecht [20] Curent model 

Central oil film thickness Hc 0.08093 0.08150 

Minimum oil film thickness Hm 0.03876 0.03905 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Pressure (P) and film thickness (H) profiles along the central line in the X 

direction. 

 

4. Results and discussion  

The numerical model presented in Section 3 was used to predict friction in the ring-liner–

piston contact and to analyze possible friction reduction strategies in the piston ring-pack. 

Table 4 regroups all the experimental and numerical results. As a result of simulation of the 

cylinder ring-pack contact, only the average friction coefficients were compared. 

Cylinder liner surface roughness distribution can differ between surfaces with the 

same root mean square roughness. This difference can have a significant effect on the 

performance and behavior of the surface within the piston ring-pack system. 

 

4.1. Influence of abrasive grit size and expansion velocity on the impregnated surface 

texture and its friction performance within the piston ring-pack system 
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The surface finish created by the honing process is controlled by the size and dispersion of 

abrasive particles adhering to the surface of the honing sticks. Figure 6 shows the effect of 

varying the grit size of abrasive honing stones used in the finish honing stage on the three-

dimensional topographical features of the produced surface. As shown in Figure 6, coarse 

abrasive grits yield deeper and larger lubrication valleys and consequently rougher surfaces.  

 

Table 4 Honing process variables, roughness parameters of honed surfaces and theirs 

predicted coefficient of friction 

Ve Grit size Rpk Rk Rvk µ (%) 

1.5 180 0.663 1.859 1.960 2.495 

1.5 145 0.777 1.798 2.429 2.466 

1.5 110 0.679 1.813 2.025 2.474 

1.5 90 0.564 1.954 1.825 2.459 

1.5 80 0.566 1.628 1.678 2.426 

1.5 50 0.253 0.625 0.598 2.441 

1.5 40 0.217 0.659 0.426 2.446 

4 180 1.091 2.680 3.650 2.543 

4 145 1.091 2.418 3.455 2.468 

4 110 0.979 2.521 2.969 2.465 

4 90 0.913 2.045 2.720 2.447 

4 80 0.838 2.016 2.800 2.434 

4 50 0.353 0.622 0.748 2.459 

4 40 0.287 0.931 0.530 2.450 

8 180 1.292 3.403 4.276 2.462 

8 145 1.308 2.922 4.057 2.487 

8 110 1.135 2.828 3.469 2.462 

8 90 1.096 2.534 3.213 2.488 

8 50 0.521 1.007 1.263 2.461 

8 40 0.359 0.510 0.644 2.442 
 

   

Figure 6 Three-dimensional topographies of plateau-honed surfaces produced using different 

abrasive grit sizes in the finish honing stage: (a) 40 µm, (b) 110 µm, and (c) 180 µm. (Process 

a b c 



working variables: Ve in finish honing stage = 4 µm/s; all others parameters are kept constant 

and are given in Table 1.) 

 

As a result of these honing experiments carried out with various sizes of abrasive grits, 

Figure 7 presents predicted values of the coefficient of friction and mean oil film thickness as 

a function of abrasive grit size of honing stone used at the finish honing stage.  

 

 

 

Figure 7 Evolution of friction coefficient of the cylinder ring-pack as a function of the 

abrasive grit size in the honing finish stage. 

 

It demonstrates clearly that the surface texture achieved with finer abrasive grits yields a 

lower hydrodynamic friction coefficient in a cylinder ring-pack system than that obtained by 

coarse abrasive grits. Since the generated honed surfaces have the same honing cross-hatch 

angle, the differences in predicted hydrodynamic friction observed between these different 

finishes are mainly a result of surface peak and valley characteristics. Hence, the increase in 

valleys volume may increase the oil supply through the valleys of the surface, yielding a 

decrease in the oil film thickness, which will in turn induce an increase in hydrodynamic 

friction. 

A reduction of the expansion speed operating condition leads to lower valley depth on the 

surface texture impregnated during coarse honing as observed in Figure 8. This figure also 

shows that the expansion velocity has no effect on the spatial morphology of the generated 

surface texture and hence the roughness scale, as demonstrated by multiscale surface analysis 

in [8].  

 



   

Figure 8 Three-dimensional topographies of plateau-honed surfaces produced using three 

different expansion velocities in the finish honing stage: (a) 1.5 µm/s, (b) 4 µm/s, and (c) 8 

µm/s. (Process working variables: Abrasive grit size in the finish honing stage equal to 110 

µm; all other parameters are kept constant and are given in Table 1). 

 

4.2. Relationship between liner surface friction performance and honing process 

efficiency 

The specific energy is used as a fundamental parameter for characterizing the honing process. 

It is defined as the energy expended per unit volume of material removed. The specific honing 

energy defines the mechanisms of removal of material from the operated workpiece. It is 

calculated from the following relationships: 

* honingPm t
Esp

Qw
     (12) 

where honingt is the effective honing time, Pm  is the average power absorbed by the honing 

process, calculated as the difference between on-load power recorded during the finishing and 

average off-load power recorded before and after the test, and Qw  is the volumetric removal 

given by the following equation: 

2 2

cQw H D d      (13) 

where cH is the cylinder height, and D and d are the cylinder diameter before and after the 

finish honing operation, respectively. 

Figure 9, which presents a plot of the friction coefficient versus specific energy, 

highlights the link between honing process operating conditions and the functional behavior 

of plateau-honed surfaces in the hydrodynamic lubrication regime.  

 

c b a 



 

 

Figure 9 Predicted coefficient of friction of surface texture generated with different 

honing grit sizes and indentation pulse as a function of consumed specific energy 

during finish honing. (The size of circles is proportional to the size of the honing 

abrasives which varies from 30 µm to 180 µm.)  

 

It suggests that the optimum coefficient of friction with a good honing efficiency is 

reached by using a grit size of 80–100 µm and an expansion velocity equal to 4 µm/s. 

Furthermore, significant smooth surfaces are produced by plateau-honing with fine abrasive 

grit sizes due to the low indentation capacity of the fine abrasive grain. This generated surface 

texture also yields a low predicted coefficient of friction in the piston-ring–liner interface. 

However, the use of fine abrasives has the lowest efficiency. In fact, it presents lower material 

removal and consumes a large specific energy due to the predominance of the plowing 

abrasion mechanism [9, 10]. This yields a lower stone life and generates undue tool wear. 

Thus, to ameliorate the honing efficiency, conventional abrasives can be replaced by 

superabrasive crystals which do not wear or break rapidly. 

 

4.3. Roughness characteristics of optimal plateau-honed surface texture  

To give a rough estimate of the potential side effects of the surface optimization, surface 

roughness has been evaluated using the functional roughness parameters Rk (height of the 

roughness core profile), Rpk (reduced peak height), and Rvk (reduced valley height) given by 

the ISO 13565-2 standard [9, 12]. These parameters are obtained based on the analysis of a 

bearing curve (the Abott-Firestone curve), which is simply a plot of the cumulative 

probability distribution of surface roughness height [9]. The peak height is an estimate of the 
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typical height, which will likely wear down over the life of the surface. The valley height is an 

estimate of the typical depth of valley available to retain lubricant. 

Figures 10, 11, and 12 display, for different abrasive grit sizes and at various 

expansion velocities, the existing correlation between the predicted friction coefficient within 

the cylinder ring-pack system and the functional roughness parameters of the plateau-honed 

surfaces of the cylinder bore, Rpk, Rk, and Rvk, respectively. 

 

 

Figure 10 Predicted coefficient of friction vs. functional roughness parameter Rpk. (The size 

of circles is proportional to the size of the honing abrasives which varies from 30 µm to 180 

µm.) 

 

Figure 11 Predicted coefficient of friction vs. functional roughness parameter Rk. (The size of 

circles is proportional to the size of the honing abrasives which varies from 30 µm to 180 

µm.) 



 

Figure 12 Predicted coefficient of friction vs. functional roughness parameter Rvk. (The size 

of circles is proportional to the size of the honing abrasives which varies from 30 µm to 180 

µm.) 

 

These bubble plots show that all optimal surfaces in the hydrodynamic lubrication regime 

belong to the domain defined by: 

 Rpk < 1 µm 

 Rk < 3 µm 

 Rvk < 2.5 µm  

However, this critical domain does not guarantee the optimal behavior of the honed surface 

finish. For example, in Figure 12, the criterion Rvk < 2.5 µm cannot exclude honed surfaces 

that induce a high friction coefficient. For the Rpk and Rk criteria, the same observation can be 

expressed.  This suggests that the standard functional roughness parameters commonly used 

in the automotive industry cannot give a good classification of plateau-honed surfaces 

according to their functional performance. Table 5 shows linear correlation coefficients 

between roughness parameters and predicted coefficients of friction.  

 

Table 5 The linear correlation coefficient between roughness parameters and the coefficient 

of friction 

Correlation coefficient between Rpk and µ 0.666 

Correlation coefficient between Rk and µ 0.664 

Correlation coefficient between Rvk and µ 0.658 

 



Hence, these standard functional parameters are not sufficient to give a precise and complete 

functional description of “ideal” honed surfaces. This can be attributed to the fact that bearing 

curve analysis is one-dimensional and provides no information about the spatial 

characteristics and scale of surface roughness.  

 

5. Conclusion 

 

This work focused on developing ring-pack friction reduction strategies within the limitations 

of current production honing processes. First, three-dimensional honed surface topographies 

were generated under different operating conditions using an instrumented industrial honing 

machine. Then, the three-dimensional surface topography of each honed cylinder bore is input 

into a numerical model which allows the friction performance of a cylinder ring-pack system 

in an EHL regime to be predicted. The strategy developed allows manufacturing to be related 

to the functional performance of cylinder bores through characterization. The results show 

that an increase in grit size will lead to an increase in surface roughness, with deeper valleys 

leading to an increase in hydrodynamic friction. They also show that the standard functional 

surface roughness parameters which are commonly used in the automotive industries do not 

provide a link between the honing process and the generated surface performance in the 

hydrodynamic regime. 

Note that the analysis presented in this study does not take into consideration the 

effects of cylinder surface topography on its ability to maintain oil, that is, the oil 

consumption level. Experimental studies using a reciprocating bench tester will be carried out 

to evaluate the effect of honing operating conditions and cylinder surface topography on 

scuffing and oil consumption. 
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