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Abstract 

Homogenous Charged Compression Ignition (HCCI) is one of the new combustion strategies 

developed recently for Internal Combustion (IC) engines to fulfill the stringent emissions 

regulations while it can keep the thermal efficiency of the engine as high as diesel engines. In 

this type of engines, the homogenous mixture of fuel and air is inducted to the cylinder and 

when the piston reached to the top dead center (TDC), the mixture will be ignited due to auto 

ignition of fuel and air mixture. In this study, a natural gas fueled HCCI engine is considered to 

study the effect of intake manifold temperature on engine outputs such as power and Indicated 

Mean Effective Pressure (IMEP), and Fuel Conversion Efficiency (FCE). On the other hand, 

exhaust characteristics such as pressure and temperature were reported as well as emissions 

such as carbon monoxide (CO) and oxides of nitrogen (NOx). The exhaust parameters can help 

to have a maximum efficiency from the engine considering a waste heat recovery system in the 

exhaust flow. The results showed that FCE is maximum when the intake temperature is 

minimum. Also, the power output reduced uniformly when the temperature increased. On the 

other hand, the amount of NOx production increased uniformly, at higher intake temperatures. 

Furthurmore, with increasing the intake temperature, the exhasut pressure and the exhasut 

temperature were reduced monotonically. 

 

Keyword: Internal Combustion Engine, Chemical Kinetics, HCCI, Natural Gas, Exhaust 

Properties, Emissions. 

 

1. Introduction 

Increasing concerns about emissions from internal combustion (IC) engines, as well as the 

permanent demand for higher thermal efficiency, motivated the researchers for applying the 

new methods in IC engines. One of this method is application of advanced combustion 

strategies inside the combustion chamber. Advanced combustion strategies such as lean burn 

spark ignition combustion [1-3] or Reactivity Controlled Compression Ignition (RCCI) [4-6] can 

produce low emissions of particulate matter and oxides of nitrogen (NOx). 
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Homogenous Charged Compression Ignition (HCCI) is one of the strategies which received 

attentions in the recent years. As it is known from its name, in this combustion strategy, the 

homogenous mixture of fuel and air is inducted to the cylinder at different temperatures and 

pressures. When the piston reached to the top dead center (TDC), the mixture will be ignited 

due to auto ignition of fuel and air mixture. Therefore, combustion of fuel and air in HCCI 

engines are controlled only with the chemical kinetic of the mixture. On the other hand, due to 

cumbersome essence of chemical kinetic, auto ignition prediction at different air and fuel 

mixtures is complicated. Beside high efficiency of HCCI engines and low NOx and PM 

emissions, however HCCI engines suffer from high unburned hydrocarbons and high cyclic 

variations [7-9].   

HCCI engines have been developed in different aspects [10-12]. Fuel property changes on 

heavy-duty HCCI combustion has been studied by Bessonette et al. [10]. To cover range of 

volatility, fuel chemistry, and ignition quality, they considered fuels in the gasoline and diesel 

boiling range. The results showed that heavy-duty HCCI operation over a broad load range can 

be achieved by the suitable combination of fuel quality and engine conditions. Thus, gasoline 

low reactivity made the combustion difficult to occur at low load but it could be used to extend 

the pre-combustion mixing time. In another research effort, Vuilleumier et. al. [12] used the 

blends of ethanol and n-heptane to study intermediate temperature heat release in HCCI 

engines over the range of intake pressures and equivalence ratios. They reported that 

intermediate temperature heat release increased with increasing the portion of highly reactive 

fuel.  

Another method to increase efficiency of IC engines is application of a waste heat recovery 

system in the exhaust flow such as Organic Rankine Cycle [13-14]. In this method, a device 

installs downstream of exhaust pipe to produce work directly or indirectly from the high energy 

exhaust flow. Recently, Mahabadipour et. al. [15] developed a method to predict crank angle 

resolved exergy of exhaust flow at different operating conditions. They found that the exhaust 

energy is higher when engine runs at low boost pressures which we used it to confirm our 

results.  

In the present work, a natural gas fueled HCCI engine is considered to study the effect of intake 

manifold temperature on combustion phenomena as well as exhaust characteristics such as 

thermodynamic properties and emissions. These results can help to predict what conditions 

should be considered for the engine to maximize the work output of waste heat recovery 

system. Therefore, the total thermal efficiency of the engine will be maximized. In this regard, 

the intake manifold temperature was swept from 437 K to 477 K and the engine speed was 

constant at 1000 rpm. Also, the engine was considered at naturally aspirated condition. 

 

2. Engine Specifications and Operating Conditions 

This simulation was used to determine the effects of intake manifold temperature on 

characteristics of advanced low temperature combustion engines. In this regard, a natural gas 

fueled HCCI engine is considered to study the effect of intake manifold temperature on 

combustion phenomena as well as exhaust characteristics such as thermodynamic properties 
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and emissions. Therefore, the intake manifold temperature was swept from 437 K to 477 K with 

increment of 10 K in a naturally aspirated single cylinder engine with the compression ratio of 

16.5 running at constant speed of 1000 rpm. The variables considered in the parametric study, 

such as compression ratio, intake temperature, boost pressure, engine speed and other 

operating conditions were given in Table 1. 

Table1. engine specifications and operating conditions 

Engine parameters Value 

Type 4 stroke, single cylinder 

Bore (mm) 110 

Stroke (mm) 110 

Displacement (L) 1.05 

No. of cylinders 1 

Engine Speed (rpm) 1000 

Boost Pressure (atm) 1  

Intake Temperature (K) 437-477 

Compression ratio 16.5 

Connecting rod length (mm) 250 

Intake Valve Open (CAD) 5 

Intake Valve Close (CAD) 220 

Exhaust Valve Open (CAD) 500 

Exhaust Valve Close (CAD) 715 

 

3. Kinetic Model 

Chemical kinetics can be utilized for the auto-ignition and combustion phasing in HCCI engines.  

Therefore, the detailed reaction mechanism including various species and chemical reactions is 

required describe with a high accuracy the auto-ignition and combustion of natural gas in HCCI 

engines. The complexity of the detailed mechanisms of natural gas oxidation is one of their 

characteristics which includes hundreds of species and thousands of reactions [16-17]. Thus, 

reduced and skeletal oxidation mechanisms of different fuels have been developed for the 

usage in computational modeling which needs less cumbersome calculations. 

To describe the natural gas oxidation chemistry, in the present work, the GRI-mech 3.0 [18] 

chemical kinetic mechanism was used.  It includes 51 species (H2, H, O, O2, OH, H2O, HO2, 

H2O2, CH, CH2, CH2(S), CH3, CH4, CO, CO2, HCO, CH2O, CH2OH, CH3O, CH3OH, C2H, 

C2H2, C2H3, C2H4, C2H5, C2H6, HCCO, CH2CO, HCCOH, N, NH, NH2, NH3, NNH, NO, 

https://www.sciencedirect.com/science/article/pii/S0016236110006861#b0095
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NO2, N2O, HNO, CN, HCN, H2CN, HCNN, HCNO, HOCN, HNCO, NCO, N2, AR, C3H7, C3H8, 

CH2CHO, and CH3CHO) and 309 chemical reactions. 

In the combustion of fuels that contain no nitrogen such as natural gas, Nitric Oxide is formed by 

four chemical mechanisms that involve nitrogen from the air, i.e., the Zeldovich mechanism (or 

thermal mechanism), the Fenimore mechanism (or prompt mechanism), the N2O-intermediate 

mechanism, and the NNH mechanism. The Zeldovich mechanism dominates in high-

temperature combustion over a fairly wide range of equivalence ratios, whereas the prompt 

mechanism is particularly important in rich combustion [19]. In the present work, the detailed 

nitrogen chemistry involved in the combustion of natural gas was considered to evaluate the 

emission of NO and other N-containing species.  

 

4. Governing Equations 

To look for the evolution of species within the combustion chamber, conservation of species is 

employed which is the result of chemical reactions. The rate of change of the mass fraction of 

species i is given by below equation [20] 

 (1) 

    

where Yi is the inlet mass fraction and ωi is the mass reaction rate of the species i. 

The instantaneous cylinder volume at any crank angle is calculated by below equation [21]: 

 (2) 

 

where V is for instantaneous volume, Vc is the clearance volume, R is the ratio of connecting 

rod length to crank radius and Rc is the compression ratio. 

Rate of change of cylinder volume was calculated as follows: 

 (3) 

 

 

In the present study, Woschni correlation [22] was chosen to model the heat transfer from 

cylinder walls. Heat release rate was calculated by considering the cylinder pressure and 

volume as well as heat transfer rate of the engines, which is expressed as follows: 
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 (4) 

 
 
 

where, dQ is the heat release dependent on the variation of crank angle dθ and ɤ is the ratio of 

specific heat values. 

Indicated mean effective pressure was calculated by the following equation: 

 (5) 

 
 

Where Vd is the cylinder swept volume and Wnet is the net work done which can be calculated 

by considering pressure and change of volume as mentioned above. 

  

5. Results and Discussion 

The following equations show the important reaction during the combustion of natural gas and 

air mixture combustion in a single cylinder HCCI engine. These reactions are extracted in the 

middle of combustion while some of elementary species were consumed and still there are 

other intermediate species that can be seen in the chain reactions. As you can see, OH and 

CH3 are among the important radicals in the chain reactions. 
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Figure 1 shows the variation of combustion phasing at different intake temperatures in the 

natural gas fueled HCCI combustion engine. As it is shown, with increasing the intake 

temperature from 437 K to 477 K, Combustion phasing advanced from expansion stroke to the 

compression stroke.  It is worth to mention that CA50 is corresponded to the crank angle which 

50 percent of fuel is burned. In other words, CA50 is corresponded to the 50 percent fuel mass 

fraction.  If combustion phasing occurs at compression stroke, a vast amount of produced 

energy due to combustion will be wasted by the compression of hot gas during the compression 

stroke. Therefore, as expected, advancing combustion phasing from expansion stroke to the 

compression stroke should lead to reduction of thermal efficiency. The reduction of thermal 

efficiency was shown in figure 2. 
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Figure 1. Combustion phasing at different intake temperatures 

 

Figure 2 shows the variation of fuel conversion efficiency at different intake temperatures in the 

natural gas fueled HCCI combustion engine. It is evident that with increasing the intake 

temperature from 437 K to 477 K, the fuel conversion efficiency reduced from more than 45 

percent to less than 39 percent. As it was mentioned before, change of combustion phasing 

from expansion stroke to the compression stroke with increasing the intake temperature is the 

main reason for reduction of fuel conversion efficiency. 
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Figure 2. Fuel conversion efficiency at different intake temperatures 

 

Figure 3 shows the variation of indicated mean effective pressure (IMEP) at different intake 

temperatures in the natural gas fueled HCCI combustion engine. Since the amount of fuel was 

constant at different intake temperature, it is obvious that with increasing the intake 

temperature, IMEP should be reduced. Because based on definition of IMEP, it is related to the 

amount of output work from the engine as well as the displacement volume. Since the 

displacement volume is constant, IMEP has a direct relation with output work from the engine.  

Since at higher intake temperatures, combustion phasing occurs at compression stroke, some 

portion of produced work due to combustion was wasted by compression of gases with piston.  

Thus, the work output was reduced with increasing the intake temperature from 437 K to 477 K 

and in the same trend IMEP reduced uniformly. 

 

Figure 3. IMEP variation at different intake temperatures 

 

Figure 3 shows the variation of power output at different intake temperatures in the natural gas 

fueled HCCI combustion engine. As you can see, the trend of power, IMEP are similar which 

with increasin the intake temperature, power reduced monotonically. Also, the reson is similar to 

IMEP which is change of combustion phasing from expansion stroke to the compression stroke. 
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Figure 4. Power output at different intake temperatures 

In the following figures, the exhaust characteristics of natural gas fueled HCCI combustion 

engine simulation are provided. They are the emissions and thermodynamic properties of gases 

at the exhaust valve opening (EVO). These results are important for design of after treatment 

and waste heat recovery systems. Figure 5 shows the variation of CO production rate at 

different intake temperatures in the natural gas fueled HCCI combustion engine.  It is evident 

that with increasing the intake temperature from 437 K to 477 K, CO production rate decreased, 

especially after 347 K. It shows that the combustion inside the chamber is closer to a complete 

combustion. 
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Figure 5. CO production rate at different intake temperatures 

 

Figure 6 shows the variation of NO production at different intake temperatures in the natural gas 

fueled HCCI combustion engine.  It is shown that with increasing the intake temperature from 

437 K to 477 K, the amount of NOx production increased uniformly. In the other words, with 

increasing the intake temperature from 437 K to 477 K, the maximum cylinder temperature 

increased monotically which led to increase of NOx. 

 

Figure 6. NOx production at different intake temperatures 

 

Figure 7 shows the variation of exhaust pressure at different intake temperatures in the natural 

gas fueled HCCI combustion engine.  This figure shows that with increasing the intake 

temperature, the exhasut pressure reduced uniformly for higher intake temperature. Therefore, 

for a direct wast energy recovery system which extracts the exhasut pressure, its is better that 

the engine runs at lower intake temperature.  



11 
 

 

Figure 7. Exhaust pressure at different intake temperatures 

Figure 8 shows the variation of exhaust temperature at different intake temperatures in the 

natural gas fueled HCCI combustion engine. It is evident that with increasing the intake 

temperature, the exhasut temperature was reduced. It might be due to misadjustment of 

combustion phasing at higher intake temperature which waste a lot of energy and finally the 

exhasut temperature will be colder than lower intake temperatures. Therefore, if a oraganic 

rankine cycle is going to be used as the waste energy recovery system, it is better than the 

engine run at lower intake temperatures.  

 



12 
 

 

Figure 8. Exhaust temperature at different intake temperatures 

 

Conclusions 

In this study, a natural gas fueled HCCI engine is considered to study the effect of intake 

manifold temperature on combustion phenomena as well as exhaust characteristics such as 

thermodynamic properties and emissions. In this regard, the intake manifold temperature was 

swept from 437 K to 477 K and the engine output parameters were studied.  

It is found that OH and CH3 are among the important radicals in the chain reactions. Also, with 

increasing the intake temperature from 437 K to 477 K, Combustion phasing advanced from 

expansion stroke to the compression stroke. It led to reduction of output power and IMEP from 

the engine at higher intake temperatures. Therefore, Since the amount of fuel was constant at 

different intake temperature, FCE reduced at higher intake temperatures. 

Regarding to the engine exhaust characteristics, it is found that with increasing the intake 

temperature from 437 K to 477 K, CO production rate decreased significantly, especially after 

347 K. On the other hand, the amount of NOx production increased uniformly, at higher intake 

temperatures. Furthurmore, with increasing the intake temperature from 437 K to 477 K, the 

exhasut pressure reduced uniformly for higher intake temperature and the exhasut temperature 

was reduced monotonically. 
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