Lipschitz-Killing curvatures of excursion sets for two dimensional random fields

Abstract : In the present paper we study three geometric characteristics for the excursion sets of a two dimensional stationary random field. First, we show that these characteristics can be estimated without bias if the considered field satisfies a kinematic formula, this is for instance the case for fields that are given by a function of smooth Gaussian fields or for some shot noise fields. By using the proposed estimators of these geometric characteristics, we describe some inference procedures for the estimation of the parameters of the considered field. An extensive simulation study illustrates the performances of each estimator. Then, we use one of the previous estimators to build a test to determine whether a given field is Gaussian or not when compared to various alternatives. The test is based on a sparse information, i.e., the excursion sets for two different levels of the considered field. Finally, this test is adapted and applied in a real-data case: synthesized 2D digital mammograms.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01763060
Contributeur : Elena Di Bernardino <>
Soumis le : mardi 10 avril 2018 - 16:36:30
Dernière modification le : jeudi 31 mai 2018 - 09:12:02

Fichier

Minkovski_functionals_10Avril2...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01763060, version 1

Collections

Citation

Hermine Biermé, Elena Bernardino, Céline Duval, Anne Estrade. Lipschitz-Killing curvatures of excursion sets for two dimensional random fields. 2018. 〈hal-01763060〉

Partager

Métriques

Consultations de la notice

348

Téléchargements de fichiers

43