L. Amar, C. Benoit, G. Beaumont, C. M. Vacher, D. Crepin et al., MicroRNA expression profiling of hypothalamic arcuate and paraventricular nuclei from single rats using Illumina sequencing technology, Journal of Neuroscience Methods, vol.209, issue.1, pp.134-143, 2012.
DOI : 10.1016/j.jneumeth.2012.05.033

Y. Aponte, D. Atasoy, and S. M. Sternson, AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training, Nature Neuroscience, vol.6, issue.3, pp.351-355, 2011.
DOI : 10.1002/ar.1090940210

T. Babak, W. Zhang, Q. Morris, B. J. Blencowe, and T. R. Hughes, Probing microRNAs with microarrays: Tissue specificity and functional inference, RNA, vol.10, issue.11, pp.1813-1819, 2004.
DOI : 10.1261/rna.7119904

M. Bak, A. Silahtaroglu, M. Møller, M. Christensen, M. F. Rath et al., MicroRNA expression in the adult mouse central nervous system, RNA, vol.14, issue.3, pp.432-444, 2008.
DOI : 10.1261/rna.783108

N. Balthasar, R. Coppari, J. Mcminn, S. M. Liu, C. E. Lee et al., Leptin Receptor Signaling in POMC Neurons Is Required for Normal Body Weight Homeostasis, Neuron, vol.42, issue.6, pp.983-991, 2004.
DOI : 10.1016/j.neuron.2004.06.004

B. Bariohay, J. A. Roux, M. S. Bonnet, M. Dallaporta, and J. D. Troadec, An Update in the Management of Obesity: The Weight of CNS Targets, Recent Patents on CNS Drug Discovery, vol.6, issue.3, pp.164-180, 2011.
DOI : 10.2174/157488911796958048

D. P. Bartel, MicroRNAs, Cell, vol.116, issue.2, pp.281-297, 2004.
DOI : 10.1016/S0092-8674(04)00045-5

URL : https://hal.archives-ouvertes.fr/hal-00369966

C. Benoit, H. Ould-hamouda, D. Crepin, A. Gertler, L. Amar et al., Early leptin blockade predisposes fat-fed rats to overweight and modifies hypothalamic microRNAs, Journal of Endocrinology, vol.20, issue.8, pp.35-47, 2013.
DOI : 10.1007/s00335-009-9217-2

URL : https://hal.archives-ouvertes.fr/hal-01179309

H. R. Berthoud, Multiple neural systems controlling food intake and body weight, Neuroscience & Biobehavioral Reviews, vol.26, issue.4, pp.393-428, 2002.
DOI : 10.1016/S0149-7634(02)00014-3

H. Berthoud, The caudal brainstem and the control of food intake and energy balance, " in Neurobiology of Food and Fluid Intake Handbook of Behavioral Neurobiology Available online at, pp.195-2400, 1007.

S. G. Bouret, S. J. Draper, and R. B. Simerly, Trophic Action of Leptin on Hypothalamic Neurons That Regulate Feeding, Science, vol.304, issue.5667, pp.108-110, 2004.
DOI : 10.1126/science.1095004

C. Cansell and S. Luquet, Hypothalamic regulation of energy balance: a key role for DICER miRNA processing in arcuate POMC neurons, Molecular Metabolism, vol.2, issue.2, pp.55-57, 2012.
DOI : 10.1016/j.molmet.2012.12.001

M. Claret, M. A. Smith, R. L. Batterham, C. Selman, A. I. Choudhury et al., AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons, Journal of Clinical Investigation, vol.117, issue.8, pp.2325-2336, 1172.
DOI : 10.1172/JCI31516DS1

A. P. Coll, I. S. Farooqi, B. G. Challis, G. S. Yeo, O. Rahilly et al., Proopiomelanocortin and Energy Balance: Insights from Human and Murine Genetics, The Journal of Clinical Endocrinology & Metabolism, vol.89, issue.6, pp.2557-25622004, 2004.
DOI : 10.1210/jc.2004-0428

URL : https://academic.oup.com/jcem/article-pdf/89/6/2557/10742481/jcem2557.pdf

R. Coppari, M. Ichinose, C. E. Lee, A. E. Pullen, C. D. Kenny et al., The hypothalamic arcuate nucleus: A key site for mediating leptin???s effects on glucose homeostasis and locomotor activity, Cell Metabolism, vol.1, issue.1, pp.63-72004, 2004.
DOI : 10.1016/j.cmet.2004.12.004

M. A. Cowley, J. L. Smart, M. Rubinstein, M. G. Cerdán, S. Diano et al., Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus, Nature, vol.411, issue.6836, pp.480-484, 1038.
DOI : 10.1038/35078085

D. Crépin, Y. Benomar, L. Riffault, H. Amine, A. Gertler et al., The over-expression of miR-200a in the hypothalamus of ob/ob mice is linked to leptin and insulin signaling impairment, Molecular and Cellular Endocrinology, vol.384, issue.1-2, pp.1-11, 2014.
DOI : 10.1016/j.mce.2013.12.016

T. L. Cuellar, T. H. Davis, P. T. Nelson, G. B. Loeb, B. D. Harfe et al., Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration, Proceedings of the National Academy of Sciences, vol.12, issue.2, pp.5614-5619, 2008.
DOI : 10.1261/rna.2258506

D. E. Cummings and M. W. Schwartz, Melanocortins and body weight: a tale of two receptors, Nature Genetics, vol.26, issue.1, pp.8-9, 2000.
DOI : 10.1038/79223

A. Derghal, M. Djelloul, C. Airault, C. Pierre, M. Dallaporta et al., Leptin is required for hypothalamic regulation of miRNAs targeting POMC 3'UTR. Front, Cell. Neurosci, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01212345

A. Derghal, M. Djelloul, J. Trouslard, and L. And-mounien, An Emerging Role of micro-RNA in the Effect of the Endocrine Disruptors, Frontiers in Neuroscience, vol.64, issue.3, 2016.
DOI : 10.1016/j.jpsychires.2015.02.018

URL : https://hal.archives-ouvertes.fr/hal-01471933

H. Dhillon, J. M. Zigman, C. Ye, C. E. Lee, R. A. Mcgovern et al., Leptin Directly Activates SF1 Neurons in the VMH, and This Action by Leptin Is Required for Normal Body-Weight Homeostasis, Neuron, vol.49, issue.2, pp.191-203021, 2005.
DOI : 10.1016/j.neuron.2005.12.021

N. F. Díaz, M. S. Cruz-reséndiz, H. Flores-herrera, G. García-lópez, and A. Molina-hernández, Abstract, Reviews in the Neurosciences, vol.0, issue.0, pp.675-686, 2014.
DOI : 10.1515/revneuro-2014-0014

J. G. Doench and P. A. Sharp, Specificity of microRNA target selection in translational repression, Genes & Development, vol.18, issue.5, pp.504-511, 2004.
DOI : 10.1101/gad.1184404

S. Doubi-kadmiri, C. Benoit, X. Benigni, G. Beaumont, C. M. Vacher et al., Substantial and robust changes in microRNA transcriptome support postnatal development of the hypothalamus in rat The widespread impact of mammalian MicroRNAs on mRNA repression and evolution, Science, vol.310, pp.1817-1821, 2005.

I. S. Farooqi, O. Rahilly, and S. , Recent advances: Recent advances in the genetics of severe childhood obesity, Archives of Disease in Childhood, vol.83, issue.1, pp.31-34, 2000.
DOI : 10.1136/adc.83.1.31

R. C. Friedman, K. K. Farh, C. B. Burge, and D. P. Bartel, Most mammalian mRNAs are conserved targets of microRNAs, Genome Research, vol.19, issue.1, pp.92-105, 2009.
DOI : 10.1101/gr.082701.108

R. J. Frost and E. N. Olson, Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs, Proceedings of the National Academy of Sciences, vol.107, issue.26, pp.21075-21080, 2011.
DOI : 10.1073/pnas.1007158107

H. Funato, S. Oda, J. Yokofujita, H. Igarashi, and M. Kuroda, Fasting and High-Fat Diet Alter Histone Deacetylase Expression in the Medial Hypothalamus, PLoS ONE, vol.149, issue.4, 2011.
DOI : 10.1371/journal.pone.0018950.g006

Y. Greenman, Y. Kuperman, Y. Drori, S. L. Asa, I. Navon et al., Postnatal Ablation of POMC Neurons Induces an Obese Phenotype Characterized by Decreased Food Intake and Enhanced Anxiety-Like Behavior, Molecular Endocrinology, vol.27, issue.7, pp.1091-11022012, 2013.
DOI : 10.1210/me.2012-1344

A. Grimson, K. K. Farh, W. K. Johnston, P. Garrett-engele, L. P. Lim et al., MicroRNA Targeting Specificity in Mammals: Determinants beyond Seed Pairing, Molecular Cell, vol.27, issue.1, pp.91-105, 2007.
DOI : 10.1016/j.molcel.2007.06.017

H. Guo, N. T. Ingolia, J. S. Weissman, and D. P. Bartel, Mammalian microRNAs predominantly act to decrease target mRNA levels, Nature, vol.5, issue.7308, pp.835-840, 2010.
DOI : 10.1038/nature09267

S. S. Hébert, A. S. Papadopoulou, P. Smith, M. C. Galas, E. Planel et al., Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration, Human Molecular Genetics, vol.24, issue.20, 2010.
DOI : 10.1523/JNEUROSCI.5561-03.2004

S. Herzer, A. Silahtaroglu, and B. Meister, Locked nucleic acidbased in situ hybridization reveals mir-7a as a hypothalamus-enriched microRNA with a distinct expression pattern, J. Neuroendocrinol, 2012.

J. W. Hill, C. F. Elias, M. Fukuda, K. W. Williams, E. D. Berglund et al., Direct Insulin and Leptin Action on Pro-opiomelanocortin Neurons Is Required for Normal Glucose Homeostasis and Fertility, Cell Metabolism, vol.11, issue.4, pp.286-297, 2010.
DOI : 10.1016/j.cmet.2010.03.002

S. Jégou, L. Mounien, I. Boutelet, and H. Vaudry, The YY3-36 peptide, a new therapeutic weapon against obesity, Med. Sci, vol.19, pp.537-539, 2003.

P. Kievit, J. K. Howard, M. K. Badman, N. Balthasar, R. Coppari et al., Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells, Cell Metabolism, vol.4, issue.2, pp.123-132, 2006.
DOI : 10.1016/j.cmet.2006.06.010

H. Krude, H. Biebermann, W. Luck, R. Horn, G. Brabant et al., Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans, Nature Genetics, vol.86, issue.2, pp.155-157, 1038.
DOI : 10.1073/pnas.86.8.2766

J. Krützfeldt and M. Stoffel, MicroRNAs: A new class of regulatory genes affecting metabolism, Cell Metabolism, vol.4, issue.1, 2006.
DOI : 10.1016/j.cmet.2006.05.009

E. J. Lee, M. Baek, Y. Gusev, D. J. Brackett, G. J. Nuovo et al., Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors, RNA, vol.14, issue.1, pp.35-42, 2008.
DOI : 10.1261/rna.804508

R. C. Lee, R. L. Feinbaum, A. , and V. , The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 The role of leptin-melanocortin system and human weight regulation: lessons from experiments of nature, Cell Ann. Acad. Med. Singap, vol.75, issue.38, pp.843-854, 1993.
URL : https://hal.archives-ouvertes.fr/in2p3-00597159

H. Mackay and A. Abizaid, Embryonic development of the hypothalamic feeding circuitry: Transcriptional, nutritional, and hormonal influences, Molecular Metabolism, vol.3, issue.9, 2014.
DOI : 10.1016/j.molmet.2014.09.004

G. M. Mang, S. Pradervand, N. H. Du, A. B. Arpat, F. Preitner et al., A Neuron-Specific Deletion of the MicroRNA-Processing Enzyme DICER Induces Severe but Transient Obesity in Mice, PLOS ONE, vol.34, issue.1, 2015.
DOI : 10.1371/journal.pone.0116760.s006

J. M. Mercader, J. R. González, J. J. Lozano, M. Bak, S. Kauppinen et al., Aberrant brain microRNA target and miRISC gene expression in the anx/anx anorexia mouse model, Gene, vol.497, issue.2, pp.181-190, 2012.
DOI : 10.1016/j.gene.2012.01.057

G. J. Morton, J. E. Blevins, D. L. Williams, K. D. Niswender, R. W. Gelling et al., Leptin action in the forebrain regulates the hindbrain response to satiety signals, Journal of Clinical Investigation, vol.115, issue.3, pp.703-710, 1172.
DOI : 10.1172/JCI200522081

G. J. Morton, D. E. Cummings, D. G. Baskin, G. S. Barsh, and M. W. Schwartz, Central nervous system control of food intake and body weight, Nature, vol.81, issue.7109, pp.289-295, 1038.
DOI : 10.1016/j.physbeh.2004.04.034

L. Mounien, J. C. Do-rego, P. Bizet, I. Boutelet, G. Gourcerol et al., Pituitary Adenylate Cyclase-Activating Polypeptide Inhibits Food Intake in Mice Through Activation of the Hypothalamic Melanocortin System, Neuropsychopharmacology, vol.52, issue.2, pp.424-43573, 2008.
DOI : 10.1038/12506

URL : https://hal.archives-ouvertes.fr/inserm-00349463

L. Mounien, N. Marty, D. Tarussio, S. Metref, D. Genoux et al., Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons, The FASEB Journal, vol.24, issue.6, pp.1747-1758, 2010.
DOI : 10.1210/en.2002-220659

M. M. Ollmann, B. D. Wilson, Y. K. Yang, J. A. Kerns, Y. Chen et al., Antagonism of Central Melanocortin Receptors in Vitro and in Vivo by Agouti-Related Protein, Science, vol.268, issue.5335, pp.135-138, 1997.
DOI : 10.1093/hmg/4.2.223

L. Olsen, M. Klausen, L. Helboe, F. C. Nielsen, and T. Werge, MicroRNAs Show Mutually Exclusive Expression Patterns in the Brain of Adult Male Rats, PLoS ONE, vol.19, issue.490, 2009.
DOI : 10.1371/journal.pone.0007225.s002

L. E. Parton, C. P. Ye, R. Coppari, P. J. Enriori, B. Choi et al., Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity, Nature Cell Metab, vol.449, issue.12, pp.228-232, 2007.

J. Rossi, N. Balthasar, D. Olson, M. Scott, E. Berglund et al., Melanocortin-4 Receptors Expressed by Cholinergic Neurons Regulate Energy Balance and Glucose Homeostasis, Cell Metabolism, vol.13, issue.2, pp.195-204, 2011.
DOI : 10.1016/j.cmet.2011.01.010

S. Sangiao-alvarellos, L. Pena-bello, M. Manfredi-lozano, M. Tena-sempere, C. et al., Perturbation of Hypothalamic MicroRNA Expression Patterns in Male Rats After Metabolic Distress: Impact of Obesity and Conditions of Negative Energy Balance, Endocrinology, vol.155, issue.5, pp.1838-1850, 2014.
DOI : 10.1210/en.2013-1770

A. Schaefer, D. O-'carroll, C. L. Tan, D. Hillman, M. Sugimori et al., Cerebellar neurodegeneration in the absence of microRNAs, The Journal of Experimental Medicine, vol.312, issue.7, pp.1553-1558, 2007.
DOI : 10.1073/pnas.96.25.14588

M. Schneeberger, J. Altirriba, A. García, Y. Esteban, C. Casta-o et al., Deletion of miRNA processing enzyme Dicer in POMC-expressing cells leads to pituitary dysfunction, neurodegeneration and development of obesity, Molecular Metabolism, vol.2, issue.2, pp.74-85, 2012.
DOI : 10.1016/j.molmet.2012.10.001

M. Schneeberger, A. G. Gomez-valadés, S. Ramirez, R. Gomis, and M. Claret, Hypothalamic miRNAs: emerging roles in energy balance control, Frontiers in Neuroscience, vol.3, issue.175, 2015.
DOI : 10.1371/journal.pbio.0030415

M. Schneeberger, R. Gomis, and M. Claret, Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance, Journal of Endocrinology, vol.298, issue.3, pp.25-46, 2014.
DOI : 10.1152/ajpregu.00619.2009

URL : http://joe.endocrinology-journals.org/content/220/2/T25.full.pdf

M. Selbach, B. Schwanhäusser, N. Thierfelder, Z. Fang, R. Khanin et al., Widespread changes in protein synthesis induced by microRNAs Epigenetic changes in the hypothalamic proopiomelanocortin and glucocorticoid receptor genes in the ovine fetus after periconceptional undernutrition, Nature Endocrinology, vol.455, issue.151, pp.58-63, 1210.

A. Stevens, G. Begum, and A. White, Epigenetic changes in the hypothalamic pro-opiomelanocortin gene: A mechanism linking maternal undernutrition to obesity in the offspring?, European Journal of Pharmacology, vol.660, issue.1, pp.194-201, 2011.
DOI : 10.1016/j.ejphar.2010.10.111

J. Tao, H. Wu, Q. Lin, W. Wei, X. H. Lu et al., Deletion of Astroglial Dicer Causes Non-Cell-Autonomous Neuronal Dysfunction and Degeneration, Journal of Neuroscience, vol.31, issue.22, pp.8306-8319, 2011.
DOI : 10.1523/JNEUROSCI.0567-11.2011

E. Van-de-wall, R. Leshan, A. W. Xu, N. Balthasar, R. Coppari et al., Collective and Individual Functions of Leptin Receptor Modulated Neurons Controlling Metabolism and Ingestion, Endocrinology, vol.149, issue.4, pp.1773-17852007, 2008.
DOI : 10.1210/en.2007-1132

I. A. Vinnikov, K. Hajdukiewicz, J. Reymann, J. Beneke, R. Czajkowski et al., Hypothalamic miR-103 Protects from Hyperphagic Obesity in Mice, Journal of Neuroscience, vol.34, issue.32, pp.10659-10674, 2014.
DOI : 10.1523/JNEUROSCI.4251-13.2014