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Abstract— A stereoscopic catadioptric sensor and associated
algorithms are presented to provide a relevant solution to the
problem of 3D reconstruction of unknown environments. A
novel calibration methodology is detailed, establishing a discrete
relation between 3D points and the corresponding pixels. The
3D reconstruction adopted is an adaptation of the classic
volumetric scene reconstruction technique. Complete voxels are
projected onto the image planes and consistency measurements
are computed on pixel surfaces. To ensure fast processings,
3D/2D matchings are processed offline and results are stored
in Look-Up Tables (LUT). Calibration results are given and
3D reconstruction algorithms are validated on synthetic images.
Some results obtained for real scenes are provided.

I. INTRODUCTION

The determination of the 3D geometric structure of an

unknown environment is a traditional problem in computer

vision. Many applications, such as path generation, obstacle

avoidance, virtual reality, etc. require a complete reconstruc-

tion of a scene. To achieve this, some works deal with cam-

era networks or rotating cameras associated with mosaicing

processes [1], [2]. Our attention is focused on catadioptric

sensors, i.e camera/mirror combination, for their capacity to

provide a 360 degrees panoramic image in a single shot [3].

Traditionally, scene reconstruction techniques are based on

image matchings using correlation algorithms associated with

triangulation and surface fitting. Nevertheless, the matching

stage is a very difficult problem because scene path has

different shapes and appearances when seen from different

viewpoints and at different times [4]. Another approach,

consists on a beforehand discretization of a 3D space into

elementary volumes (i.e. voxels). Computations are based

on voxel image consistency and visibility. This method is

known as volumetric scene modeling and provides a relevant

alternative to the drawbacks of stereovision techniques [5].

This paper gives details about an architecture and the

associated algorithms for a vision sensor offering a solution to

the problem of the 3D reconstruction of an environment with

no prior knowledge. The main contributions of this paper deal

with an innovative calibration methodology based on a 3D/2D
mesh and the implementation of an adapted 3D volumetric

reconstruction for a stereoscopic panoramic sensor. The paper

is organized as follows: in §II the sensor is described. §III

presents the calibration methodology. §IV gives details about

the 3D reconstruction algorithm. §V presents the results and

§VI gives comments. The conclusion is given in §VII.

II. SENSOR ARCHITECTURE

A. Catadioptric Sensors

In any imaging system the uniqueness of the center of

projection (viewpoint) is highly desirable. For catadioptric sen-

sors, this convergence property is known as the Single Effective

Viewpoint Constraint (SEVC). It enables the formation of geo-

metrically pure perspective images and allows easier modeling

of catadioptric sensors. According to the SEVC, we distinguish

on the one hand, the non-central catadioptric sensors for which

multiple viewpoints are obtained and caustic shapes have to

be considered [6], and on the other hand, the central ones.

[3] derived all the classes of mirrors for which the SEVC is

respected. One of these solutions, and the one retained for the

development of the sensor, is the association of a hyperboloidal

mirror with a perspective camera. Nevertheless, a particular

positioning must be accomplished which is difficult to carry

out [7].

B. Mechanical Configuration

As the main objective of the study is the 3D reconstruction

of a scene, we have developed a stereoscopic panoramic bench

made of two hyperboloidal catadioptric sensors (cf. Fig. 1).

There are various mechanical configurations for mirror/camera

combinations. [8] uses multiple mirrors observed by a single

camera. Compactness and the absence of camera synchro-

nization problems are the main advantages of this sensor.

Nevertheless, the smallness of the baseline does not allow the

reconstruction of a large zone. We favor a mechanical structure

similar to the one proposed by [9]. The two catadioptric

sensors are combined in a co-axial configuration. In such a

configuration the epipolar geometry of the sensor is simplified:

the epipolar curves are radial lines in the omnidirectional

image and columns in the panoramic image (obtained by a

cylindrical projection). Moreover, the baseline can be adjusted,

which means that the reconstructed area can be user-controlled

according to the targeted applications.
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Fig. 1. Illustration of the panoramic stereovision sensor. (a): Picture of the
system - (b): Schema of the stereoscopic device. Details about catadioptric
sensors are given: It consists on a classic camera observing a revolution
hyperboloidal mirror. The different coordinate systems used in this paper are
given (i.e. RW , RM, RI , R′

I
)

III. PANORAMIC STEREOVISION SENSOR CALIBRATION

A. Brief Review of Catadioptric Sensor Calibration Methods

Calibration of catadioptric sensors is the most studied aspect

in omnidirectional vision. For more details, the reader can refer

to [10]. We distinguish intrinsic calibration which provides

the intrinsic parameters of the camera [7], weak calibration

available for stereovision sensors [11] and strong calibration.

This last category uses an external calibration pattern from

which features are extracted and matched with their corre-

sponding 2D points. Traditionally this method is based on

a model (generic or ad-hoc) whose parameters are estimated

using optimization algorithms.

B. Calibration Pattern

To calibrate the sensor, a cylindrical calibration tool is

used. The calibration tool is made of luminous markers

(LEDs) whose 3D coordinates are known in the frame of

the calibration tool (i.e. RW located at the bottom center of

the cylinder). A hypothesis is that the revolution axis of the

cylinder and the optical axis of the sensor are in common. The

markers are distributed along eight vertical bars describing

the direction circles of the cylinder entirely. According to

the calibration methodology adopted (i.e. 3D/2D mesh) and

the mirror shapes of the catadioptric sensors, the position

of the markers and their quantity are critical parameters.

A beforehand prototyping stage is provided to determine a

relevant vertical distribution of the markers onto the cylinder.

Moreover, a technique to densify the number of vertices of the

mesh belonging to direction circles of the cylinder is presented.

1) Horizontal distribution: To maximize the number of

nodal points constituting the mesh (i.e. to increase the pre-

cision of the calibration), artificial vertices are created. Cal-

ibration images are taken so that the markers defining the

direction circles of the cylinder are illuminated simultaneously.

Theoretically, direction circle projections define circles on the

image planes. Nevertheless, due to the effect of noise, theirs

projections are not perfectly circles and conic curves must be

considered. Let pi = [ui, vi] be the projections of the 3D
markers belonging to a direction circle of the cylinder. On

the image plane, pi lie on a conic Ω = [A, B, C, D, E, F ]T .

The problem of conic fitting can be written as (eq. 1), and

a solution is given by the normalized eigenvector of AT A

corresponding to the smallest eigenvalue [12]. Once Ω is

identified, the conic curve is sampled following an angular

parameter. Artificial 3D points corresponding to the 2D conic

sampling points are created and the mesh is horizontally

densified.

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2) Vertical distribution: The purpose is to determine a

relevant distribution of the markers onto the calibration pattern.

First of all a High Density Mesh (HDM) is created so that

consecutive markers are vertically distributed with a constant

and small spacing. Due to the mirror shape, spacings between

marker projections are not constant. To validate the mesh, an

average euclidean projection error (ǫ2D eq. 2) is computed

between projections (pi = [ui, vi]) of a sample of 3D points

(S) randomly located in a scene and projections obtained using

the interpolation-based calibration method (p̂i = [ûi, v̂i]).

ǫ2D =
1

S

S∑

i=1

√
(ui − ûi)

2
+ (vi − v̂i)

2
(2)

Secondly, based on the HDM calibration data, an appro-

priate distribution of markers onto the calibration pattern is

defined. A sample of 2D points regularly spaced on a radius of

a omnidirectional image is back-projected onto the calibration

pattern. Several simulations are carried out in order for ǫ2D

and the number of markers (N ) to be minimal.

C. Interpolation-Based Method

1) Calibration principle: A catadioptric sensor provides a

circular image of the environment. As illustrated in Fig. 2, a

pixel p′ = [u′, v′] in R′
I is derived from p = [u, v] expressed

in RI , so that: u′ = u − u0, v′ = v0 − v with o′ = [u0, v0]
the image center coordinates. Also, p′ can be defined in

polar coordinates, with θ (−π ≤ θ ≤ π) as its azimuth

angle and r = ||o′p′|| as its radius. The only assumption

made is the parallelism between the plane (XMOMYM ) and

the retinal plane of the camera. In the mirror frame RM, θ
defined the position of a 3D point P = [X, Y, Z] in the plane

(XMOMYM ). The orthogonal projection of P in the plane

(XMOMYM ) is denoted as P′ and θ is defined by (eq. 3):




θ = arccos
(

X√
X2+Y 2

)
if Y ≥ 0

θ = − arccos
(

X√
X2+Y 2

)
else

(3)



Moreover, r is linked to the vertical position (Z) of the 3D
point. There is a close relationship between r and ϕ, with

ϕ (−π

2
≤ ϕ ≤ π

2
) the angle of the position vector of a 3D

point in the plane (P ′OMP ). From the geometry of the vision

sensor, ϕ and the cartesian coordinates of the 3D point are

linked by a simple trigonometric relationship (eq. 4):

ϕ = arctan

(
Z√

X2 + Y 2

)
(4)
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Fig. 2. Illustrations of : - the relation linking a 3D point P to its matching
pixel p′. - the relation linking a pixel p′ to its corresponding ray of light Ψ

Thus, the 3D/2D matchings depend on the variables

(θ, ϕ, r). A projection function F can be defined, linking 2D
image points to their corresponding rays of light. Nevertheless,

the calibration procedure gives only partial knowledge of the

3D/2D matchings at the vertices of the mesh and F̃, the

discrete function associated to F, is defined by (eq. 5):

{
2D = F (3D) ⇒ r = F̃ (θ, ϕ)

3D ∼= F
−1 (2D) ⇒ ϕ ∼= F̃

−1 (θ, r)
(5)

To establish all of the entire 3D/2D and 2D/3D matchings,

a local interpolation is provided in the vicinity of the nodal

points defining the mesh.

2) 3D/2D and 2D/3D matching recovery:

• 3D → 2D: Starting with a known 3D point (P =
[X, Y, Z]) in RM, the purpose is to determine its cor-

responding pixel p′ = [θ, r] in R′
I . According to F̃, P

is also defined by: P = [θ, ϕ, r]. θ and ϕ are derived

from (3) and (4). The problem consists in determining

the coordinate r. We apply a Delaunay triangulation in

the plane (θOϕ) onto the vertices Vi. This enables the

selection of three nodes for which P is inside the triangle.

The three selected vertices define a plane (∆) whose

equation is given by (eq. 6):

∆ : r = aθ + bϕ + c (6)

By inserting the coordinates of the three vertices into

(eq. 6) and solving the linear system, the plane equation

parameters (a, b, c) are determined. Once the plane pa-

rameters are identified, r is easily computed and so, the

pixel p′ in R′
I is entirely defined (cf. Fig. 3).
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Fig. 3. Illustration of the interpolation-based calibration method and the
recovery of 3D → 2D correspondences. (a): Illustration of the projection

function F̃. × symbolize the vertices of the mesh (Vi). P = [θ, ϕ, r]
symbolized by + belongs to F̃ - (b): Projection of the vertices onto the
plane (θOϕ) represented by ⊗. Projection of P is represented by ⊕ - (c):
Delaunay triangulation applied onto the projected vertices. Three nodes for
which P is inside a triangle are selected (∗). (d): Plane (∆) defined by the
three vertices (V1V2V3)

• 2D → 3D: The problem is similar to the one detailed

previously. Starting with a known pixel p′ = [θ, r] in

R′
I , the aim is to determine the direction vector Ψ of

the corresponding ray of light. Considering Ψ as a unit

direction vector, its coordinates are defined by (eq. 7),

and so, the objective is ϕ component computation.

Ψ =




sinϕ cos θ
sin ϕ sin θ

cosϕ


 (7)

According to F̃
−1, the Delaunay triangulation is estab-

lished in the plane (θOr). Three vertices Vi are selected

and a plane is defined (∆′ : ϕ = a′θ + b′r + c′). Once

the plane parameters (a′, b′, c′) are computed, ϕ is easily

determined. Thus, Ψ expressed in RM is defined.

3) Calibration validation: To validate the calibration

methodology, the complete stereoscopic panoramic sensor is

evaluated. Back-projection error ǫ3D (eq. 8) is computed

between real 3D coordinates of 3D points (Pi = [Xi, Yi, Zi])
randomly distributed in a scene and the coordinates of the

3D points (P̂i = [X̂i, Ŷi, Ẑi]) obtained by the inverse projec-

tion function F̃
−1 associated with a mid-point triangulation

method.

ǫ3Di
=

√(
Xi − X̂i

)2

+
(
Yi − Ŷi

)2

+
(
Zi − Ẑi

)2

√
X2

i
+ Y 2

i
+ Z2

i

(8)



IV. 3D RECONSTRUCTION

Using an omnidirectional sensor, we can observe the sur-

rounding environment and build a 3D model of the scene from

a few pictures. In our application, it is assumed that the scene

is unknown (i.e. scene model objects are not available). In such

conditions, a generic reconstruction method is preferred. Voxel

coloring algorithms are known to be useful in such situations

[5].

A. Volumetric reconstruction framework

Many applications use voxel coloring to obtain photo-

realistic reconstructions [13]. But the simplicity of this algo-

rithm makes it suitable to obtain a rough geometric approx-

imation of the scene objects. Voxel coloring algorithm uses

a discretized volume as a representation of the 3D scene. To

process the reconstruction, each voxel of the discretized scene

is virtually projected onto the image planes of the cameras.

This projection is made according to the calibration data. A

voxel can be projected onto the images with various shapes and

sizes, depending on its distance from the sensor and its viewing

angle. Three different approaches are defined to project the

voxels [14]. The first considers only the center of gravity

of the voxel. The second approximates the projection as a

simple shape (ex. a rectangle). The third processes the exact

voxel projection. Once the voxel is projected onto each image,

its projections are compared to determine if the projected

voxel is consistent across all its projections. Many different

algorithms can be used to make this comparison [15]. Our

attention is focused on a photoconsistency-test similar as the

one developed by [13]. The algorithm processes each voxel

and consistent ones are marked full. When all the voxels of the

discretized scene have been processed, the 3D reconstruction

is obtained with the set of filled voxels.

There are two major key points with this algorithm. The

first is the consistency test which determines the reconstruc-

tion quality. The second is the 3D/2D projection which

is usually time-consuming. Our contribution focuses on the

adaptation of the voxel coloring algorithm for an omnidirec-

tional stereoscopic sensor. We developed algorithms to provide

fast 3D/2D projections and consistency-tests for decreasing

reconstruction times.

Up image

Low image

Fig. 4. Illustration of the scene discretization and 3D → 2D projection

B. Methodology

Our reconstruction method is based on an adapted voxel

coloring algorithm. Some variations are introduced due to

the specific sensor and calibration method developed. Our

approach focused on obtaining a fast 3D reconstruction with

limited computation power to target embedded applications.

To achieve this, we used some additional techniques to reduce

reconstruction time.

1) Scene description: The sensor is placed in an unknown

scene, and a bounded reconstruction volume is defined in this

scene. A discretization resolution is chosen in accordance with

application goals. The scene illumination is approximated by

a Lambertian model. The scene is supposed static and the

sensor is optionally moved to different places in the scene;

a pair of pictures is taken at each position. This leads to

two types of reconstruction, a local one by processing only

a pair of pictures, and a global one by taking into account

multiples views of the same static scene. All positions of

the sensor are known before processing the reconstruction.

Both reconstruction types share the same algorithm. The

global one contains an additional step to merge multiple local

reconstructions.

* FOR EACH voxel IN scene volume

* FOR EACH image IN {Up, Low}

* PROJECT voxel ONTO image

* Calculate Average Color

of the voxel projection

* IF ||Avg_Up - Avg_Low|| < Avg_TH

* Mark voxel as full

Fig. 5. Pseudo algorithm of the local 3D reconstruction. Avg TH is the
threshold on the Average Color to set a voxel as consistent or not.

2) 3D → 2D projection: In order to process the voxel pro-

jections quickly at run-time, the projections of all voxels are

computed during the calibration process and results are stored

into a LUT. This LUT contains correspondences between 3D
points in RW and 2D points in RI for both cameras. This

LUT is then used at run-time (during the actual reconstruction)

for a fast voxel-to-surface projection. When projecting a voxel,

the convex hull of its projection is approximated as an axis-

aligned rectangular area. This approximation of the projection

allows fast reading of the projected surface.

3) Photo-consistency algorithm: The consistency test per-

formed between two different projections of the same voxel

on different images is a key part of the reconstruction. Our

approach tries to obtain a rough 3D reconstruction of the

surrounding environment with limited processing performance.

Thus we use a photo-consistency algorithm that calculates for

each voxel projection the average color of this surface. Color

averages of all projections are then compared to determine

the consistency of the projected voxel (made by a euclidean

distance computation in the RGB color space).



V. RESULTS

A. Calibration

This section presents the results obtained for the calibration

stage. The TABLE I specifies the number of markers (N )

constituting the calibration pattern, the corresponding average

projection error ǫ and the standard deviation σ.

N ǫ ± σ

HDM 0.26253± 0.15038

40 0.16085 ± 0.087807
30 0.16569 ± 0.09538
20 0.31549 ± 0.18551
15 0.39709 ± 0.1974
10 0.68764 ± 0.32136
5 2.4666 ± 1.313

TABLE I

MEAN PROJECTION ERRORS WITH ASSOCIATED STANDARD DEVIATIONS

(ǫ ± σ) FOR DIFFERENT QUANTITIES OF MARKERS (N ) ALONG A SINGLE

VERTICAL. THE MEAN PROJECTION ERROR IS EXPRESSED IN PIXELS.

The TABLE II summarizes the results obtained for the

3D metric recovery. A sample of known 3D points Pi =
[Xi, Yi, Zi] and corresponding triangulated 3D points are

detailed. The back-projection percentage errors (ǫ3D%) are

given.

X Y Z X̂ Ŷ Ẑ ǫ3D%
-2650 -500 550 -2648.1 -500.6 553.9 0.16
500 500 1000 497.1 497.1 998.8 0.40
1500 -700 800 1499.2 -698.9 802.5 0.15
-850 -1150 2200 -848.9 -1146.7 2200.7 0.13

-1500 3000 1800 -1501.9 3004.2 1806.4 0.20
-1500 500 450 -1498.0 499.3 452.2 0.18
-750 1500 550 -748.7 1496.3 553.5 0.30
-450 650 900 -448.2 647.7 901.3 0.26
-750 -800 1000 -748.5 -798.2 1001.1 0.17

TABLE II

STEREOSCOPIC PANORAMIC SENSOR EVALUATION BY MEASUREMENTS OF

A 3D METRIC ERROR. ALL DIMENSIONS ARE EXPRESSED IN MILLIMETERS

To corroborate these results, a previous study has been made

which consisted in a comparison between a classic parametric

calibration technique and the interpolation-based one. In terms

of projection and 3D metric errors, similar results have been

founded [16].

B. 3D Reconstruction

3D reconstruction results are presented. Pictures of the

reconstructed scene are given associated with their original

pictures. The reconstruction performance is also measured in

terms of reconstruction speed.

1) Reconstruction results: Two reconstructions are pre-

sented. Fig. 6 is a local reconstruction of a real environment.

The resolution is rough with a 5×5×5cm voxel size. The roof

and walls are manually erased from the final reconstruction

in order to be able to see objects inside the room. Fig. 7

show a global reconstruction made by merging eight local

reconstructions of the same scene from eight different sensor

positions. This simulation is done in a synthetic environment

made with PovRay.

(a) (b)

(c)

Fig. 6. Omnidirectionnal pictures of our lab. (a): Up camera - (b): Low
camera - (c): Corresponding 3D reconstruction. This is a local reconstruction
built from only one pair of pictures. The background (roof and walls) is not
displayed

2) Performance measurement: By using the proposed

method for projecting the voxels onto pictures by means

of LUTs, we achieved a fast reconstruction, even for high

resolution reconstructions. TABLE III shows reconstruction

time in seconds for different scene voxel resolutions (i.e.

different quantity of voxels).

Number of vxls Reconstruction time (s)

64 × 64 × 48 = 196′608 10

80 × 80 × 40 = 256′000 20

100 × 100 × 45 = 450′000 28

200 × 200 × 100 = 4′000′000 131

TABLE III

3D RECONSTRUCTION PERFORMANCES. MEASURES HAVE BEEN DONE ON

A STANDARD (LOW END) DESKTOP PC (AMD 2GHZ, 1GB RAM)

RUNNING UNDER WINDOWS XP SP2 32BITS. DURATIONS ARE ROUNDED

TO THE NEAREST SECOND AND INCLUDES TIME FOR LOADING FILES AS

WELL AS SAVING RECONSTRUCTION RESULTS ON THE HARD DRIVE.

VI. DISCUSSION

A. Calibration

From the results presented in the TABLE I, more the number

of markers is important more the projection error is minimal.



(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m)

Fig. 7. Synthetic omnidirectionnal pictures of an empty room with 3 colored
columns. (a-f): Up camera - (g-l): Low camera - (m): Corresponding 3D recon-
struction. This reconstruction was made by merging 8 local reconstructions
built from 8 different places in the room. Blue roof and red walls are not
displayed in the reconstruction

Nevertheless, to build the calibration tool, a compromise has

to be made between the projection error and the quantity of

markers. A quantity of 15 markers for a single bar introduces

an error less than 1

2
pixel: this seems to be a good compromise.

The results given in the TABLE II are made with a 15 ×
8 markers constituting the calibration tool (i.e. quantity of

markers for a single bar times the number of bars). The back-

projection error percentages are strictly inferior to 1% which

means that the calibration performed with the Interpolation-

based method, according to the new distribution of the markers

on the cylinder, is relevant.

B. 3DReconstruction

Our photo-consistency algorithm introduces errors when

processing empty voxels placed in front of an object with a

uniform color. These errors leads to a fulfilled cone in front of

objects (cf. Fig. 6). Discarding these false voxels needs more

reliable consistency-test. We are working on improving the

existing algorithm without introducing additional complexity.

A solution to improve the reconstruction consists in merging

3D local reconstructions obtained from more views at wider

spaced positions. This approach has been tested on synthetic

scene and cheering results have been obtained (cf. Fig. 7).

VII. CONCLUSION

In this paper, we have presented a panoramic architecture

and algorithms for a stereoscopic panoramic bench providing

a relevant solution to the problem of the 3D reconstruction

of an unknown scene. First of all, we have defined the sensor

architecture, made of two catadioptric sensors, and justifica-

tions of such a design have been detailed. Secondly, we have

elaborated an innovative and generic calibration methodology.

This method is available for different kinds of catadioptric

sensors and can be used to calibrate catadioptric sensors

made of low-cost mirrors. The concept is based on a mesh

which establishes 3D/2D matchings. These knowledges being

established only at the vertices of the mesh, the projection

function is a discrete representation of the 3D/2D matchings.

Thus, 3D/2D recovery is done by a local interpolation at

the vicinity of the vertices. Finally, we have presented a 3D
volumetric reconstruction adapted to a panoramic sensor. Each

complete voxel is projected onto the two image planes and a

photo-consistency test is computed on an approximation of the

surfaces. The implementation of the algorithms, i.e. 3D/2D
correspondences made offline and stored in LUTs, provides

fast reconstructions even for high resolution reconstructions.
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