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Abstract—This paper presents a technique for inferring the
availability of people to receive communications based on their
current situation. This technique uses a context model that as-
sociates situations with learned preferences for communications.
Situations are represented as a tuple composed of identity, time,
place, activity, correspondent, and communication modality. A
place-based activity recognition technique is used to recognize
the current activity from sensor data. Availability for commu-
nications is learned from history of the occupant’s preferences
of availability for each situation. The system is demonstrated
using a dataset of availability preferences recorded from the
occupant of an instrumented apartment over a period of 4
weeks. Performance of the system is compared under various
assumptions of independence of availability from some of the
context elements. The paper is completed with a discussion of
how such techniques can be used to construct an intelligent
communications assistant for smart home services.

Index Terms—ambient intelligence, context-aware services,
smart homes, activity recognition

I. INTRODUCTION

Constant advances in Internet of Things technologies in
the recent years have opened up a plethora of possible new
intelligent services. One such service is that of a commu-
nication assistant for managing incoming communications
from outside. Such a service would act as a secretary to
advise outside correspondents concerning appropriate times
to initiate a communication with an occupant of the home,
to suggest alternative communication modes that the occupant
may prefer, or to automatically redirect a communication from
one mode to another mode that is more appropriate for the
current situation of the occupant.

To provide such services, a communication assistant would
require information about the availability for communication
of the occupant. While this information can be inferred
from specific data sources in certain environments (e.g. in
professional offices, the availability of an employee can be
inferred from their schedule), communications availability in
private homes is highly dependent on individual preferences.
Estimating the availability for communication of occupants
from low-level data sources that are typically used in smart
home systems currently (such as presence sensors, smart plugs,
door opening sensors, etc.) is thus a difficult task.

This paper reports on experiments with the use of context to
estimate availability for communication. Innovations include
(1) the use of a context model based on identity, time, place,
activity, correspondent and communication modality, (2) the
use of place-based approaches for activity recognition from
sensor data, (3) the use of an availability preference database,
which contains availabilities in past situations. The proposed
techniques are evaluated using a new publicly available data
set [1] that provides a recorded history of communication
availability recorded over a period of 4 weeks in a highly
instrumented apartment.

This paper is organized as follows: Section II provides a
summary of related papers on estimation of availability in
both home and professional environments. Section III presents
a model of availability as a function of context information,
including a discussion of state values for each variable in the
context model. Section IV describes the experimental results.
This is followed by a conclusion on the design of communi-
cation assistance systems based on availability estimation, in
Section V.

II. RELATED WORKS ON AVAILABILITY ESTIMATION

In the literature, works on estimating the availability1 of
people have been mostly focused on professional environments
[2]. In [3], an availability estimation approach is proposed in
the context of office work. The importance of head posture
as well as computer interactions is studied in relation with
the availability of employees. In [4], a system for auto-
matic recommendation of communication modalities to use
at work is proposed; modalities are suggested depending on
the availability of the employee that needs to be contacted.
Availability is, in that case, deduced from common rules that
exist at work, such as whether the office door is opened,
the schedule of the employee, the sound levels around their
computer, etc. In [5], an email delivery system based on users’
availability is presented. Here, availability is determined based
on interactions with the computer. For example, a moment
of switch between two applications is considered to be an
opportune time to interrupt the user with an email. In these

1“Interruptibility” is also a term often used instead of “availability”.



examples, availability is estimated based on predefined rules
(e.g. an employee is probably unavailable if their office’s door
is closed), which is reasonable in professional environments.
However, such rules do not generally exist at home, where
availability is highly dependent on individual preferences.

Nevertheless, there are some papers on the subject in the
literature: in [6], the availability of occupants of homes is
estimated using data from cameras and microphones. The
availability is deduced from audio-visual features, using a
support vector regression approach. This exploits features
extracted from sensor data to infer availability, as opposed
to using richer context information gathered from available
sensors. On the other hand, in [7], a statistical study of
availability in the home shows that identity, place, and activity
are all important indicators for estimating availability. They
also conjecture that time plays an important role. Both of these
papers present different approaches to the problem of avail-
ability estimation: in one approach, availability is estimated
using machine learning, from data produced by sensors rich in
information; in the second approach, availability is estimated
from other context information of the home. The approach
described in this paper mixes these 2 methods, estimating
availability using rich information, including activity, which
is itself recognized from data produced by sensors weak in
information such as presence sensors, smart plugs, etc.

III. AVAILABILITY FOR COMMUNICATION IN HOMES

Availability for communication at home depends on context.
The most widely used elements of context at home are identity,
time, place and activity, reported, for example in [7] and in [8].
In addition to these contextual elements, availability for com-
munication depends on the person seeking to communicate
with the occupant (the correspondent), and the communication
modality, that is the mean of communication. This suggests
that a communications assistant should be able to predict
availability based on the tuple (identity, time, place, activity,
correspondent, modality).

Before computing the availability function of one occupant
Av (as presented in Section III-A), identity, time, place and
activity need to be evaluated from sensor data:
• Identity: we assume here that the identity is either given

by a perfect identity detector, or is unique in the home.
• Time: sensor events are timestamped, therefore time is

trivial to evaluate.
• Place: we assume in this work that the localization of

sensors and activities is given. We make no assumption
on the localization of the occupant; Section III-B shows
why this information is not needed in our approach.

• Activity: we present our activity recognition approach in
Section III-B.

Secondly, we propose an availability preferences database
that can be used to compute Av for each possible (correspon-
dent, modality) couple. This database as well as the domains
of values of correspondents, modalities, and availability are
presented in Section III-C.

A. Availability as a function of Context

Elements of context information are not independent. For
example, place information can be used to improve activity
recognition [9]. Thus, we expect to be able to use the other 6
elements of context to determine availability. More formally,
we define the availability of an occupant in the domain AV to
be the image through a function Av:

Av : I × T × P ×A× C ×M −→ AV
(i, t, p, a, c,m) 7−→ Av(i, t, p, a, c,m)

, (1)

of the corresponding context tuple (identity, time, place, ac-
tivity, correspondent, modality) in I × T ×P ×A× C ×M.
In reality, the availability of an occupant is also dependent on
their current thoughts, their mood, etc. [10], which cannot be
automatically captured by a smart home system currently.

B. Activity Recognition

Our availability inference model uses a place-based tech-
nique for activity recognition from low-level sensor data
described in [9]. In this approach, each place of the home
is assigned a classifier, which is responsible for recognizing
activities that can occur in this place, using only the sensors
relevant to this place. A step of fusion combines the decisions
taken in each place into a final decision about the class of the
input activity instance.

Using this approach provides multiple benefits: first, it has
been shown in [9] to improve recognition rates on a specific
dataset (which we also observe in the experimental section of
this paper on another dataset in Section IV-B); second, it is
faster to train and easier to parametrize; third, its subdivision
per place circumvents the need for localizing the occupant in
the home, as this can deduced from the recognized instance.

C. Database of Availability Preferences

The database of availability preferences contains records
of the availabilities of an occupant for activity instances that
occurred previously in the home. For each of these instances, a
value of availability is indicated for each possible (correspon-
dent, modality) couple. The availability function Av can use
this database to infer the availability of each (correspondent,
modality) couple for a newly recognized activity.

Correspondents can be identified uniquely through their
identity. However, this makes the number of possible cor-
respondents very high, even though the availability of an
occupant will probably not vary between similar types of
correspondents. In fact, it seems more reasonable to set the
domain of correspondents to a set of categories of people
known to the occupant. We have identified the following
categories (which are similar to the ones identified in [11]) for
which the occupant will choose significantly different patterns
of availability:
• close relatives
• distant relatives
• friends
• strangers

• professional colleagues
• professional supervisors
• acquaintances



The number of communication modalities available in the
home has greatly increased over the last decade, so much so
that listing all those modalities is hardly possible. Neverthe-
less, we group those modalities into hierarchical categories:
first, we separate them between synchronous (e.g. a phone
call) and asynchronous (e.g. an email) modalities; second,
we separate them based on the type of data exchanged to
communicate (voices, videos, or text); last, we divide them
based on the actual type of device used. This leads us to the
following hierarchical domain of values for modality:
• Synchronous

– Voice
∗ Landline phone
∗ Mobile phone
∗ Computer

– Video
∗ Mobile phone
∗ Computer

– Text
∗ Mobile phone
∗ Computer

• Asynchronous
– Voice
∗ Landline phone
∗ Mobile phone

– Text
∗ Mobile phone
∗ Computer

In the literature, there seems to be no consensus on the
domain of values to use to represent availability. For example,
a 4-point scale (highly available, available, unavailable, highly
unavailable) is used in [4], and a 5-point scale (from highly
available to highly unavailable) is used in a later related work
[12], and no motivation seems to be given for this change nor
for the original choice of the 4-point scale. A 3-point scale
(high, medium, low) is used in [5]. A 5 point scale with relative
values (from least interruptible to most interruptible) is used
in [6]. A survey on interruptibility prediction reports the same
observation: both ordered sets of various gradations, as well
as qualitative sets, are used to represent availability, with no
established consensus or clear justifications for those choices
[2]. As such, we decided to use a set of symmetric gradations
to label availability:

• −2: definitely unavailable;
• −1: preferably unavailable;
• 0: no opinion, does not know;
• 1: preferably available;
• 2: definitely available.

This scale allows the occupant to choose their availability
both as a hard decision (definitely unavailable/available), as
well as a preference (preferably unavailable/available). It also
allows the occupant to be neutral about their availability, which
seems important from a user-centric standpoint, considering
that evaluating one’s own availability is often difficult. The
symmetry of this scale makes it easier for the occupant to
select their availability, by comparing their current situation to
the availability of similar or of completely opposite situations.

The availability preferences database contains, for each of
its recorded activity instances, the availability values from −2
to 2 for each of the possible 77 (correspondent, modality)
couples.

TABLE I
PRESET AVAILABILITIES FOR WATCHING TV IN THE LIVING ROOM.

Synchronous Asynchronous

Voice Video Text Voice Text

Correspondent L M C M C M C L M M C

Close Relatives -1 1 -2 -2 -2 2 -2 0 0 2 2
Distant Relatives -1 1 -2 -2 -2 2 -2 0 0 1 2
Prof. colleagues -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 2
Prof. supervisors -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 2

Friends -1 1 -2 -2 -2 2 -2 0 0 1 2
Acquaintances -1 1 -2 -2 -2 1 -2 0 0 -1 2

Strangers -1 1 -2 -2 -2 1 -2 0 0 -1 2

IV. EXPERIMENTAL RESULTS

A. The Orange4Home Dataset

Orange4Home2 [1] is a dataset of routine activities collected
in a fully instrumented apartment. Data from 236 heteroge-
neous sensors were collected over a period of 4 consecutive
weeks of working days; 493 instances of activities were
labelled in situ by the occupant during that period, following a
predefined realistic routine of living; those instances are each
labelled as one of 27 high-level classes (such as Cooking or
Watching TV) that can occur in 8 different places of the home.

The Orange4Home dataset also contains data about the
availability levels of the occupant (although this was not
reported in [1]). For each activity instance, the occupant had
to set their availability in situ. Since the number of couples
is high (77, as presented in Section III-C), and availability
is often similar between activities of the same class, those
availability values were actually preset by the occupant before
the experiment. An example of such preset for the activity
class Watching TV in the Living Room is shown in Table I.
Then, for each activity instance, the occupant only changed
the availability of the few couples for which they deemed the
preset availability value to not fit their current situation. For
example, only 2 changes occurred for Watching TV in the
Living room, while 24 changes occurred for Computing in the
Office) during the 4 weeks of experiment.

B. Place-Based Activity Recognition

Activity recognition was performed after the following
preprocesses: a low-pass filter was applied on the data, and
data was standardized to have a mean of 0 and standard
deviation 1 for each sensor. Data were then resampled so that
each activity instance is 20 samples long; those samples are
concatenated and used as feature vectors to the classifiers. The
first two weeks of data were used as a training set, and the
third week as a validation set for training classifiers. Data from
the fourth week were used as the test set.

As in [9], we compare in Table II the F1 scores of a Home
configuration, where all sensors are used and all activities can
be decided by a single classifier, to the results of the place-
based approach where 8 different classifiers (one for each
place) are combined using a decision fusion step. The decision

2https://amiqual4home.inria.fr/orange4home/



TABLE II
F1 SCORES OF THE HOME CONFIGURATION AND OF THE PLACE-BASED

APPROACH, FOR TWO DIFFERENT TYPES OF CLASSIFIERS

Classifier

Approach MLP SVM

Place-based 93.05%1 92.08%2

Home 77.85% 89.61%

Decision Fusion algorithm used:
1 Dempster-Shafer fusion
2 Majority vote fusion

fusion algorithms tested in this experiment are presented in
[13]. The parameters of the Home classifiers as well as the
place-based classifiers were optimized on the validation set
using a grid-search approach. We chose here the MultiLayer
Perceptron (MLP) and the Support Vector Machine (SVM) to
obtain baseline results; we used the implementations of the
Weka library [14] for those two classifiers.

We observe in Table II that the place-based approach
significantly outperforms the Home approach on this dataset,
for both the MLP (93.05% compared to 77.85%) and the
SVM (92.08% compared to 89.61%). The gap between the
two approaches is significantly larger than the one reported
in [9] on another dataset: this can be explained from the fact
the dataset used in this study contained a large number of
body-worn sensors as data sources, which lowers the benefits
of the place-based approach. Indeed, since body-worn sensors
are used as data sources in all places and since any activity
will have an impact on those sensors, the classifiers of all
places will observe this data and tend to wrongly assume that
something is happening in their respective place.

C. Inferring Availability from Activity Recognition

Mistaking availability for unavailability (and vice versa) is
a significant error, as the services offered by a communication
assistance system will surely be different between those two
cases. On the other hand, confusing definite availability and
preferable availability (and similarly for unavailability) is less
damaging, as the occupant is still available (or unavailable)
in both cases. In numerical terms, this means that large
absolute error values are worse than small absolute error
values. Similarly, errors of availability inference made on long
activities are worse than those made on short ones. We thus use
a Duration-Weighted Root Mean Squared Error (DWRMSE)
to evaluate the results of availability inference, as this metric
penalizes more both large absolute errors (due to the quadratic
term) and errors made on long activities (due to the weight).
For a test set of n activity instances, where the inferred
availability is Âv and the true availability is Av, we have:

DWRMSE =

√√√√ n∑
i=1

wi(Âvi − Avi)2, wi =
di∑n
j=1 dj

where di is the duration of activity i. Note that the standard
RMSE is a special case of DWRMSE when ∀i, wi =

1
n .

TABLE III
DWRMSE AND ERROR RATE OF AVAILABILITY INFERENCE AVERAGED

BY CORRESPONDENT, BY MODALITY, AND IN TOTAL.

DWRMSE Error rate

Correspondent Close relatives 0.126 0.019
Distant relatives 0.119 0.019
Prof. colleagues 0.222 0.002
Prof. supervisors 0.147 0.006
Friends 0.128 0.020
Acquaintances 0.489 0.023
Strangers 0.137 0.019

Modality Sync. Voice landline 0.067 0.007
Sync. voice mobile 0.133 0.007
Sync. voice computer 0 0
Sync. video mobile 0.220 0.003
Sync. video computer 0.220 0.003
Sync. text mobile 0 0
Sync. text computer 0 0
Async. voice landline 0.152 0.037
Async. voice mobile 0.180 0.048
Async. text mobile 0.521 0.044
Async. text computer 0.380 0.022

Average total 0.232 0.015

We will also use the error rate as an evaluation metric,
that is, the number of inferred availabilities that are not equal
to their corresponding true availabilities, divided by the total
number of inferred availabilities. The error rate will indicate
how often availability is incorrectly inferred, and DWRMSE
will indicate how bad those incorrect inferences are.

Following an activity recognition step, we can now infer
availability for each activity instance. We use the place-based
MLP activity recognition approach to provide the activity
labels (as this approach is the most accurate one with an F1
score of 93.05%). We use a simple baseline inferring approach
as the Av function described in Section III-A: the availability
of an activity instance from activity class a, for a couple of
correspondent and modality (c,m), is the average (rounded to
the closest integer) of all availabilities for the couple (c,m)
of instances of a in the training set.

Table III reports the DWRMSE and error rates of this
availability inference approach, averaged for each category of
correspondent, for each category of modality, and averaged
in total over all activity instances. We see that the average
total error rate is fairly small (0.015): since there are 108
instances of activities during the test week, and since each
activity instance accounts for 77 availability values (one for
each couple of (correspondent, modality)), there are in total
128 badly inferred availability values, over the total 8316
availability values. Given the simple averaging approach that
was used, this implies that the occupant has rarely changed
their level of availability from the preset values that they had
chosen before the experiment. Assuming that this behaviour is
common to most occupants, inferring availability is thus only
difficult in the rare cases where the occupant’s availability
deviates significantly from their preferences.

We can observe that the availability for correspondents and
modalities are not all equivalently well inferred: in particular,



we see that professional colleagues (0.222), professional su-
pervisors (0.147), acquaintances (0.489) and strangers (0.137)
have higher DWRMSE than the other 3 groups of correspon-
dents. This may be explained by the fact that those categories
of correspondents are the most emotionally distant from the
occupant, and their availability is thus much less clear to the
occupant and depends on the actual content of the conversation
that the occupant is expecting.

Availability for synchronous modalities is often dependent
on physical restrictions. For example, it is physically im-
possible to stay on the phone with someone while taking a
shower. Thus, many availability values for such modalities
are implicitly “imposed” by their own nature, which reflects
in the preset values of the occupant and thus in the smaller
DWRMSE values observed. Such restrictions obviously do
not exist for asynchronous modalities, and are therefore more
freely set by the occupant, thus leading to higher inference
errors. This is illustrated by the high DWRMSE (0.220) of
the two synchronous video modalities.

D. Independence of Availability from Correspondents, Modal-
ities, or Activities

The assumption that availability is dependent on correspon-
dents, modalities, as well as activities, implies that there is
a significant number of different availability values for the
occupant to both preset and choose from (when changing the
preset values for a particular activity instance). For instance,
with 20 activity classes, 7 groups of correspondents and
11 groups of modalities, there are 1540 specific availability
values. The higher this number is, the less likely a smart home
occupant will be to willingly provide their availability for each
of those possibilities. Therefore, it is interesting to see whether
availability inference is greatly worsened or not under one of
the following assumptions:
A1) availability is independent of the correspondent;
A2) availability is independent of the modality;
A3) availability is independent of both the correspondent and

the modality;
A4) availability is dependent on the place in which the activity

takes place, but not the activity itself.
Each of those assumptions lead to the following availability
inference approach: the availability of an activity instance from
activity class a, for a couple of correspondent and modality
(c,m), is the average (rounded to the closest integer) of:

1) all availabilities for couples with modality m of instances
of a in the training set;

2) all availabilities for couples with correspondent c of
instances of a in the training set;

3) all availabilities for all couples of instances of a in the
training set;

4) all availabilities for the couple (c,m) of instances of
activity classes that can occur in the same place as a
can in the training set.

On the Orange4Home dataset, the number of availability
values the occupant has to preset or choose from under each
of those assumptions is respectively:

TABLE IV
DWRMSE AND ERROR RATE OF AVAILABILITY INFERENCE UNDER

VARIOUS INDEPENDENCE ASSUMPTIONS

DWRMSE Error rate

Correspondent independence 1.002 0.427
Modality independence 1.226 0.268
Correspondent-and-modality independence 1.393 0.489
Activity independence 0.637 0.151

1) 20 activities× 11 modalities = 220;
2) 20 activities× 7 correspondents = 140;
3) 20 activities = 20;
4) 8 places× 7 correspondents× 11 modalities = 616.

which are all orders of magnitude smaller than the initial 1540
availability values.

Table IV presents the DWRMSE and average error rate of
each of those 4 availability inference approaches based on
independence assumptions, when the inferred availability is
compared to the true availability value that was given under
no assumption of independence. We can see that error rates and
DWRMSE under any of those 4 assumptions are considerably
bigger than when no such assumptions were made (0.232
DWRMSE and 0.015 error rate). In particular, both the cor-
respondent independence assumption and the correspondent-
and-modality independence assumption have error rates near-
ing 50% (0.427 and 0.489 respectively), which is obviously
unacceptable. Therefore, A1 and A3 are not valid assumptions.

Modality independence, despite having an error rate smaller
than correspondent independence (0.268 against 0.427), has a
larger DWRMSE (1.226 against 1.002). This can be explained
by the fact that activities that are the longest often induced spe-
cific preferences of modalities. For example in Orange4Home,
computing in the office and napping in the bedroom are among
the longest activities that occur: in both cases, the occupant
has set their availability because of specific constraints (for
example, they cannot receive synchronous communications
during their sleep, and that they heavily favor emails during
their work); under the modality independence assumption,
those specificities are ignored and the errors done mostly occur
on those long activities, thus penalizing the DWRMSE result.
Therefore, A2 is not a valid assumption.

The activity independence assumption leads to smaller error
rates and DWRMSE compared to the other 3 assumptions,
although the performances are still heavily degraded com-
pared to the no-assumption approach (0.637 against 0.232
DWRMSE and 0.151 against 0.015 error rate, see Tables III
and IV). This rather limited decrease in performance suggests
that places, ignoring activities performed in those places,
are already a fairly important factor of influence over the
availability of the occupant. Intuitively, this can be justified
by the fact that places in the home are, in the Orange4Home
dataset but also often in real life, single rooms with specific
appliances and with a limited set of functions in the mind
of the occupant. As such, activity classes that occur in the
same place tend to be functionally linked (e.g. Cooking and



TABLE V
ACTIVITY INSTANCES MISCLASSIFIED BY THE PLACE-BASED MLP

Ground truth Decision

Place Class Place Class

Bathroom Cleaning Bedroom Dressing
Bathroom Using the sink Bathroom Using the toilet
Bathroom Using the sink Bathroom Using the toilet
Entrance Leaving Kitchen Cleaning
Kitchen Preparing Kitchen Cleaning
Kitchen Preparing Kitchen Cleaning
Kitchen Preparing Kitchen Cleaning
Living room Cleaning Kitchen Cleaning

Washing the dishes in the Kitchen) and so the availability
of the occupant is also often linked between those activities.
Therefore, A4 can be a valid assumption, but will induce a
significant drop in performances.

E. Impact of Activity Recognition on Availability Estimation

In the case where the activity class a of an instance is
the true class of the instance rather than the class decided
by the place-based MLP, the inference approach of Section
IV-C reaches a DWRMSE of 0.220 and an error rate of 0.007.
This error rate is approximately two times smaller than when
recognized activity labels are used (0.015 in Table III). An
F1 score gap of only 6.95% (100% − 93.05%, see Table II)
during the activity recognition step thus causes a doubling
error rate for the subsequent availability inference. In Table V,
we report the 8 activity instances misclassified by the place-
based MLP. We see that 5 of those instances were misclassified
as an activity from the same place. Since place seems to be
a good indicator of availability by itself (as shown in Section
IV-D), the bias of our place-based approach, which tends to
misclassify instances to classes of the same place, is beneficial
in such systems.

V. CONCLUSION

From the conducted experiments presented in Section IV-C,
we have seen that a simple averaging approach for inferring
availability from a training set results in very small error
rates (0.015) and DWRMSE (0.232). This indicates that a
preferences-based approach, as was used in the Orange4Home
data collection, can be used to accurately collect a training set
that is representative of the desired availability of the occupant.
In other words, an occupant will only sporadically change their
availability from what they had preset.

As shown in Section IV-D, availability is heavily dependent
on the correspondent, the modality as well as the activity of the
occupant. Indeed, under various assumptions of independence,
the performances of a baseline availability inference approach
significantly worsen, which indicates that an occupant will not
set their availability preferences identically regardless of the
correspondent, regardless of the modality, regardless of both,
or regardless of the activity.

However, we have observed that activities that occur in
the same place have mostly similar availability preferences,

so that misclassifying an instance as an activity that occurs
in the same place as the true activity class is generally less
harmful than completely misjudging the place in which the
instance occurs. The place-based approach we have used in
those experiments, when misclassifying instances, is biased
towards activities of the same place, which is a desirable
property for an activity recognition system used for availability
inference.
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