No Viral Transcripts Associated with Folliculotropic Mycosis Fungoides Using a High Throughput Sequencing Approach

Aurélie Du-Thanh, Olivier Dereure, Justine Cheval, Marine Dumarest, Liza Al-Shikhley, Céline Girard, Bernard Guillot, Marc Eloit

To cite this version:

HAL Id: hal-01762109
https://hal.archives-ouvertes.fr/hal-01762109
Submitted on 3 Feb 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
No Viral Transcripts Associated with Folliculotropic Mycosis Fungoides Using a High Throughput Sequencing Approach

Aurélie DU-THANH 1,2, Olivier DEREURE 1,2, Justine CHEVAL 3, Marine DUMAREST 4, Liza AL-SHIKHLEY 4,5, Céline GIRARD 1,2, Bernard GUILLOT 1,2 and Marc ELOIT 3,4

1Department of Dermatology, Montpellier University Hospital, Hôpital Saint-Eloi, 80 avenue Augustin Fliche, FR-34295 Montpellier cedex 5, 2INSERM UMR 1058 “Pathogenesis and Control of Chronic Infections”, University of Montpellier, Montpellier, 3Pathoquest, Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Paris, and 4UMR BIPAR, INRA, ANSES, ENVA, Maisons-Alfort, France. E-mail: a-du_thanh@chu-montpellier.fr

Accepted Apr 27, 2017; Epub ahead of print Apr 27, 2017

The involvement of infectious agents in the pathogenesis of mycosis fungoides (MF) is debated, although no primary T-cell lymphotropic viruses nor previously known or unknown viral exogenous sequences were detected in 30 patients with classical MF (cMF) using semi-nested DNA amplification (1) or in 3 cMF patients with RNA-based high-throughput sequencing (HTS) (2), respectively. Retroviruses and members of the herpesvirus family have largely been investigated in MF, with contradictory results (3). Cutaviruses were recently detected by PCR in 4/17 patients with cMF, but in situ hybridization revealed only rare positive cells, arguing against an oncogenic role (4). Folliculotropic MF (fMF) displays specific clinical characteristics, a deep lymphocytic infiltrate aggressing hair follicles, and a possibly less favourable outcome than cMF. Interestingly, the presence of Merkel cell polyomavirus (MCPyV) DNA was identified by real-time PCR in 50–75% vs. 13% of patients with fMF and cMF, respectively, in 2 series, using both formalin-fixed paraffin-embedded skin biopsies (5) and fresh-frozen tissues (6), with a higher viral load in fMF compared with cMF, T-cell mediated benign skin infiltrates (psoriasis, eczemas, etc.), or healthy individuals’ skin biopsies (6). Owing to these preliminary results and considering that follicles might represent potential reservoirs for various infectious agents, RNA-based HTS was performed on skin biopsies from 6 patients with fMF.

**RESULTS AND DISCUSSION**

No known or unknown viral sequences could be detected by the powerful methods used in this study. These negative results first raise the issue of the sensitivity of RNA-based HTS, reminiscent of the very low viral load of MCPyV, which was established at less than 0.5 copies/cell, and 0.002–12.467 copies/beta-globin gene copy in previous studies (5, 6). However, it must be pointed out that the same method has already succeeded in detecting viral sequences shown by RT-qPCR to be in very low amount, which is an indirect evidence of its high level of sensitivity (7). Furthermore, the relevant negative predictive value of our results regarding the presence of viral transcripts is attested by the coverage of rare cellular transcripts (Table S1).

Although based on only 6 skin samples, these preliminary data do not support the hypothesis that RNA viruses are significantly involved in fMF. Similarly, the lack of detection of transcripts from DNA viruses strongly suggests that they are genuinely absent or that the level of transcription is below the sensitivity threshold of the method. However, DNA viruses might be involved in fMF through other pathways than viral antigen expression, such as insertion-driven mutations of the host cell genome by few bases or full viral genome, as non-transcribed sequences that would not have been detected in this study. Nevertheless, such insertion mutagenesis has not been described for DNA viruses in cancer (9). From this perspective, it is of importance to point out that, unlike previous reports based on DNA, the present study was performed on total RNAs extracted from total skin biopsy samples, a method precluding the detection of non-replicating skin-associated DNA viruses that could contaminate skin biopsies. Thus, DNA-based HTS, along with microdissection techniques targeting tumoural cells, might significantly improve the sensitivity of this investigation and the robustness of its conclusions.

**ACKNOWLEDGEMENTS**

This work was partially funded by Laboratoire d’Excellence ‘Integrative Biology of Emerging Infectious Diseases’ (grant no. ANR-10-LABX-62-IBEID).

1https://www.medicaljournals.se/acta/content/abstract/10.2340/00015555-2686

doi: 10.2340/00015555-2686

Acta Derm Venereol 2017; 97: 1125–1126

This is an open access article under the CC BY-NC license. www.medicaljournals.se/acta

The authors would like to thank Philippe Pérot for his valuable help in interpreting the raw sequencing data and Prof Vincent Foulongne for his valuable remarks concerning the thematic of fMF and viruses.

REFERENCES