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ABSTRACT 
 
We aim at detecting stress in newborns by observing heart rate variability. Thanks to an 

asymmetric detrended fluctuation analysis (ADFA), we determine the fractal structure of the 

series of interbeat intervals, in which we distinguish the periods of acceleration of the heart 

rate from decelerations. Thus, two scaling exponents, α+ and α-, representing decelerations, 

and accelerations, respectively, are obtained. Forty healthy term newborns were included in 

this study, undergoing two different types of stress stimuli, using routine heel lance blood 

sampling for metabolic screening purposes and its simulation applying dull pressure on the 

heel. It appears that, when newborns face stress, the scaling exponent related to accelerations 

significantly increases and becomes higher than the deceleration scaling exponent. To test the 

diagnostic properties of the scaling exponents, a ROC curve analysis was applied. α
- showed 

good diagnostic performance with an AUC of 0.826 and 0.796 respectively, although having 

a lower sensitivity, it showed a high specificity of 84.62% for both stress phases. This work 

thus stresses the relevance of ADFA and particularly of the acceleration scaling exponent as a 

diagnostic tool for neonatal stress. 

  



INTRODUCTION 

Acute stress is a useful life-saving evolutionary, physiological response, which, when 

becoming chronic, harms the organism [1]. Being nonspecific stimuli, which change the 

bodies homeostasis, stressors have significant effects on humans, from the fetal period, until 

old age [2,3]. Due to the adapting changes in the human body, stressors which do not harm 

the adult human, can cause a lot of harm on the term, especially, preterm newborn [4,5]. 

Various physiological responses occur in the newborns after prolonged stress, from 

cardiovascular, hormonal to epigenetic and neurodevelopmental effects, which may alter 

normal neurodevelopment [1,5-8]. In the first few days of their life, newborns experience at 

least one iatrogenic stressful procedure, which becomes even more painful and more 

invasive, and more often with lower gestational age [9].  

The variability of the duration of consecutive cardiac cycles originating in the sinus node is 

called heart rate variability (HRV). HRV is used not only for research but clinical purposes, 

using different mathematical and statistical methods [10,11]. Those methods range from time 

domain and spectral analysis, entropy measures and tools arising from chaos theory such as 

the correlation dimension, Poincare plots, recurrence plots or Lyapunov exponents [12-20]. 

 

Detrended Fluctuation Analysis (DFA)  

Detrended Fluctuation Analysis (DFA) is a common method to study long range correlations 

following the power law in complex time series. The classical version of DFA has been 

proposed by Peng et. al. in 1995 [21] and since then original and extended versions of the 

method have been successfully used in the analysis of time series from broad range of fields 

such as economy, geology, biology, physiology etc. A comprehensive list of articles related 

to DFA methods can be found on the physionet web site. 

 (https://www.physionet.org/physiotools/dfa/citations.shtml).  



The original idea of the DFA method is based on the elimination of the trend from the time 

series and dividing the data into segments of the length n. Next, for each segment, the 

fluctuations around the best straight line are calculated. The DFA method gives, as a result, a 

scaling exponent α representing the correlation properties of the signal. Usually, the 

following cases are identified [22,23]: 

- 0 < α <0.5 -  negative correlations, 

- α = 0.5 -  uncorrelated signal, white noise 

- 0.5 < α < 1 -  positive long-range correlations 

- α = 1 -  1/f noise, typical for biological systems 

- 1 < α <1.5 -  positive long-range correlations which do not follow the power law 

- α = 1.5 - red (Brownian) noise  

A detailed description of DFA algorithm can be found in [23]. 

J. Alvarez-Ramirez et. al [24] modified classical DFA method to study asymmetric scaling 

behaviors in financial time series. In ADFA (asymmetric detrended fluctuation analysis) two 

scaling exponents α+ and α- are calculated for segments with rising and falling trends 

respectively. The ADFA method has been mainly used to study the asymmetric phenomena 

in financial time series [22,25,26] but recently applications of ADFA algorithm for the study 

the heart rate asymmetry has been proposed [27,28]. 

 

  



SUBJECTS AND METHODS 

Using simple random sampling, forty (21 females and 19 males, birth weight 3542.05±339.09 

g) newborns were included in this study. The newborns were only healthy full-term infants, 

without prenatal and perinatal risk factors, without prior experienced external, iatrogenic 

stress stimuli. The research was conducted in the maternity ward, prior discharge, with the 

age of the subjects being 72 hours. As described previously, in [29], the protocol consisted of 

three parts:  a) dummy stimulation phase, b) the heel stick phase, c) the treatment phase.  

Only phases a) and b) are used in this work, each consisting of two subphases. Phase a) is the 

first baseline phase which lasted 10 minutes (further named Phase 1), after which intermittent 

pressure was applied on the newborns heel, mimicking a heel stick procedure (Phase 2), 

lasting on average 90 seconds. The duration of 90 seconds was chosen, as this is the average 

time needed for the nurses to collect enough blood by using the heel stick blood sampling 

procedure. Phase b) begins at the end of Phase 2), which also consists of two sub-phases. The 

first part (Phase 3) is the secong baseline phase, lasting 10 minutes, and is followed by the 

actual heel stick blood sampling procedure (Phase 4). 

A high resolution device, with a sampling rate of 1024 Hz was used (Firstbeat Bodyguard 2, 

Firstbeat TechnologiesLtd, Jyvaskyla, Finland). After visual inspection and artifact removal 

and interpolation, the prepared data were used for analysis. To ensure the quality of the 

recordings, the standard procedure was done positioning the infants in supine position after 

breast- or formula feeding.  

 

 

 

 

 



ADFA algorithm 

The ADFA algorithm used in this work can be summarized as follows: 

Step 1. We start with the time series {����}��	,�….�, where N is the length of the data. From 

given time series we construct the profile: 

���� 	= 	∑ �	���� 	− �̄	����	 	 , for � = 1,2,3, . . . . �,  

where x̄ is the mean of the time series. 

Step 2. The original time series and the profile are divided into series of �� non-overlapping 

boxes of length n. The length of the boxes span the values between n=5 to n=N/4 [22]. 

According to the suggestions made by Peng in the C source code dfa.c, the values of n form a 

geometric time series with ration 2	/� [30]. 

Step 3. For a given box size n, the best linear fit is calculated for all �� boxes from the 

original time series. This fit is used only to determine, via slope, the characteristic of the box 

trend (rising or falling). The same procedure is applied to all �� boxes of the size n from the 

profile. The least-square line fit in a j-th profile box is given by: 

 

��,���� 	= 	  �,�	�	 +	"�,�	,	 for � = 1,2,3, . . . . # 

This fit is used to detrend the profile data in a j-th box and the fluctuations error is calculated: 

$��#� 	= 1#%������ 	− ��,������&'

��	 		 
 

for each profile box j=1,2,...��. 

The fluctuation errors are divided into two categories $�(�#� for boxes with positive slope in 

the original time series and $�)�#� for boxes with negative slope in the original time series. 

 

 



Step 4.  The average fluctuation functions $(�#� and $)�#�  are calculated: 

$(�#� 	= 	* 1��(%$�(�#�
&'+

��	 ,
	/�

 

and 

$)�#� 	= 	* 1��)%$�)�#�
&'-

��	 ,
	/�

 

 

Where ��(and ��) are numbers of boxes with positive or negative trend respectively. 

Step 5. Asymmetric scaling exponents .(and .)are defined as follow: 

$±�#� ∼ #1± 

The values of scaling exponents are derived from the slope of the linear fit of log($±�#�� 
with respect to log(n). 

 

STATISTICAL ANALYSIS 

 

The data were analyzed with the R software (version 3.3.2). The normality of the 

distributions of numerical variables was assessed by the Kolmogorov-Smirnov test. Normally 

distributed data are descriptively presented with means and standard deviations. Group 

differences were assessed with a repeated measures ANOVA. The difference of proportion of 

newborns in each phase, for which α
->α+ is tested with a binomial test. A ROC curve analysis 

was used to test the diagnostic properties of α
- and α+. P-values less than 0.05 were 

considered statistically significant.  



RESULTS 

The results of ADFA are presented in the tables and figures. In Table 1. a comparison of .( 

and .) was made across the phases, both for the obtained signal, and the randomly shuffled 

data. At baselines (Phase 1 and 3), .( and .) were similar: at phase 1, .( was 1.12±0.12 

and .) 1.12±0.14, not significantly differing in phase 3 (.(1.15±0.18, .) 1.16±0.18). Mean 

levels of .( did not significantly change in the stress phases, but a wider standard deviation 

was observed (1.14±0.28 in phase 2, and 1.17±0.27). However, .) increased significantly in 

the stress phases (1.34±0.19 in phase 2, and 1.31±0.2 in phase 4, p<0.001). The mean values 

of the shuffled data were slightly above 0.5 in all phases, and similarly to the physiological 

data, increased in a bit in the stress phases, along with a widening of the standard deviations, 

for .( and .). After statistical analysis comparing the scaling exponents between the 

physiological and the randomly shuffled data, the obtained p values are presented in Table 2, 

showing statistically significant differences within every phase of the experiment.  

Table 3 contains the comparison of proportions of patients for which .) is greater than .(. 

Again, significant differences are observed in the stress phases, where, for roughly 70% of 

newborns, .) was greater than .( (p=0.006 and p=0.017). 

When comparing ROC curves between the first baseline phase and the stress phases, .) 

showed valuable diagnostic performance with AUC being 0.826 and 0.796, while .( did not 

significantly differ from randomness (Table 4). Using the same cut off value (>1.245), 

calculated with the Youden index J for .) in the better performing test (AUC=0.826) the 

same specificity was obtained (84.62%). The sensitivity varied, for being higher in 

comparing  phases 1 and 2 (73.17%), to phases 1 and 4 (67.85%) (Figure 2., Table 4.). 

 

 

 



 
DISCUSSION 

DFA has been already applied in human health and various pathological conditions, covering 

the entire human age spectrum, from fetal development up to old age [31-34]. DFA is often 

used to estimate the scaling parameter of a fractional Brownian motion (fBm). This scaling 

parameter is called Hurst exponent. When, in our work, we estimate a scaling exponent . on 

the series of RR intervals, it means that the description of this series by the mean of an fBm 

relies on a Hurst exponent equal to . -1. The analysis of the Hurst exponents of series of RR 

intervals to detect neonatal stress has already been investigated [29]. The conclusion of the 

cited work is that the sole Hurst statistic does not provide a satisfying diagnosis tool. 

However, a refinement of the fBm model, the mean-reverting fractional Lévy-stable motion, 

in which the Hurst exponent is divided into two components, leads to much more promising 

results than the standard Hurst analysis. This idea of the limitation of the Hurst exponent, 

when considered isolated, is confirmed by the crossover phenomenon in HRV analysis, 

which implies two different scaling rules for low and for high frequencies [23]. In a similar 

way, this paper does not focus directly on the DFA but on an asymmetric version of it. 

However, being a relatively new method, the application of the ADFA remains yet to be 

discovered. The first application of ADFA was applied to economic time series, where 

collapses are much more dynamic than recoveries [22,24]. Analogous, RR intervals follow a 

similar approach. In healthy adults, ADFA has shown asymmetries in the RR intervals time 

series, where, on average, .) dominates positive ones, both globally and locally [27]. 

A correlation between ADFA and the autonomic nervous system has been proposed in a way 

that falling trends could be connected to the sympathetic, and rising trends to the 

parasympathetic branch of the autonomic nervous system [28,24].  

In this study, a much shorter time-series of RR intervals were used for analysis. While 

resting, the average .( and .) were similar, but significantly different from randomness 



(Figure 1.). In contrast, in both stress phase, the average .( is dominated by the .). As it has 

been discussed previously, the increase of .) in the stress phases might be related to the 

increase of the sympathetic tone, as a consequence of an acute stress reaction of the neonate 

to the stimuli, followed by its decrease, when resting. Phases 2 and 4 differ significantly in 

the type of stress which is applied. In the second phase, continuous stress is applied by 

pressing the neonates' heel, whereas, in the fourth phase, the stress is caused as a lance prick, 

followed by a shorter amount of heel pressing. Such might imply that the change in the 

magnitude of .) might be affected both by the type and duration of the stressor.  

Besides showing ADFA in physiological and stress states, another main objective of this 

study is to validate the diagnostic performance of .) and .(. Comparing both stress phases 

to the first baseline, .) shows good diagnostic performance with an AUC of 0.826 and 0.796 

respectively, whereas .( shows no potential application as a diagnostic marker. A calculated 

cut-off value of .)>1.245 resulted in a high specificity of 84.62%, whereas the sensitivity 

was a bit lower. 

Again, as previously described, not only being correlated to the sympathetic branch of the 

autonomic nervous system, but also to accelerations, .) shows great potential in the 

diagnostics of acute stress in the neonatal population.  

 

CONCLUSION 

In conclusion, both the theoretical and practical knowledge and meaning of ADFA are still 

lacking. In this study, we tried to deepen its understanding, with a focus on acute stress in 

neonates. The obtained results show a promising application of ADFA by expanding the 

physiological time-series toolbox in neonates, in which a demarcation on many phenomena is 

unclear. 
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Tables 

 

Table 1. Comparison of the asymmetric scaling exponents across the phases 
  Phase 1 Phase 2 Phase 3 Phase 4 p* 
α

+ 1.12±0.12 1.14±0.28 1.15±0.18 1.17±0.27 0.806 
α

- 1.12±0.14 1.34±0.19 1.16±0.18 1.31±0.2 <0.001 
αr

+  0.51±0.03 0.53±0.06 0.51±0.03 0.53±0.06 0.01 
αr

- 0.51±0.03 0.57±0.08 0.51±0.03 0.55±0.06 <0.001 
*Repeated measures ANOVA, r – shuffled data 

 

  



Table 2. Pairwise testing p-values between original and shuffled data 
  Phase 1 Phase 2 Phase 3 Phase 4 
α

+ <0.001 <0.001 <0.001 <0.001 
α

- <0.001 <0.001 <0.001 <0.001 
 

  



Table 3. Comparison of proportions of α
- > α+ 

  Nα- > α+ (%)   
  No Yes p* 
Phase 1 17 (42.5) 23 (57.5) 0.430 
Phase 2 11 (27.5) 29 (72.5) 0.006 
Phase 3 18 (45) 22 (55) 0.636 
Phase 4 12 (30) 28 (70) 0.017 
*binomial test 
 

  



 

Table 4. Comparison of AUC between stress phases and baseline phases 
  AUC 95% C.I. Cut-off value Sensitivity Specificity p 

α
- 1-2 0.826 0.725 - 0.901 >1.245 73.17 84.62 <0.001 

α
- 1-4 0.796 0.691 - 0.878 >1.245 65.85 84.62 <0.001 

α
+ 1-2 0.564 0.449 - 0.675 >1.231 39.02 89.74 0.366 

α
+

 1-4 0.588 0.472 - 0.696 >1.244 46.34 92.31 0.211 

1-2 – comparison between phase 1 and 2, 1-4 – comparison between phases 1 and 4 
 

 

  



Figures 

Figure 1. A visual sample of the obtained scaling exponents through the study phases 

 

Phase 1 – left upper corner, phase 2 – right upper corner, phase 3 – left lower corner, phase 4 

– right lower corner, a = α 

 

 

 

 

 

 

 

 

 

 

 



Figure 2. Comparison of ROC curves between phases 1-2 and 1-4 for α- 
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