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A fast implementation of a spectral finite
elements method on CPU and GPU
applied to ultrasound propagation
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Abstract. In this paper we present an optimization of a spectral finite element
method implementation. The improvements consisted in the modification of the
memory layout of the main algorithmic kernels and in the augmentation of the arith-
metic intensity via loop transformations. The code has been deployed on multi-core
SIMD machines and GPU. Compared to our starting point, i.e. the original scalar
sequential code, we achieved a speed up of x228 on CPU. We present comparisons
with the SPECFEM2D code that prove the good performances of our implementa-
tion on similar cases. On GPU, a hybrid solution is investigated.
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1. Introduction

In the context of ultrasonic non-destructive testing (NDT) simulation, a new finite ele-
ment method based on the spectral finite elements and the domain decomposition method
has been developed in the CIVA software [1]. As the computational cost of such a nu-
merical method is expensive, our goal is to reduce the simulation time by an efficient
use of the hardware to reach the speed expected by the NDT engineers who are mainly
equipped with standard PCs or workstations.

First, we will perform an overview of the spectral finite elements and the domain
decomposition method. Secondly, the equation will be split into workable stages to anal-
yse the performance and which optimizations can be efficient, like memory layout opti-
mizations and loop transformations. Thirdly, an analysis of accuracy, hardware architec-
ture, scalability and vectorization on several multi-cores machines will be presented. We
will compare our code performance with SPECFEM2D, a well-known software imple-
mentation of SFEM. A feasibility study will be also performed on GPU. Lastly, we will
conclude and draw some perspectives.

lCorrt:sponcling Author: Carlos Carrascal-Manzanares, CEA Saclay, Digiteo Labs, P.C. 120, F-91191 Gif-
sur-Yvette Cedex, France; E-mail: carlos.carrascal @cea.fr.



2. Overview of the Numerical Method

The ECHO library simulates ultrasounds controls to detect echoes on cracks. It has to
model the propagation of waves inside a component several order bigger. For this, it
combines the domain decomposition method and the Spectral Finite Element Method
(SFEM) to solve the problem.

The SFEM is a powerful tool for solving the wave equation. It relies on high-order
finite element spaces while conserving a fully explicit scheme, thanks to the mass lump-
ing technique [2]. For example, applying an explicit time discretization of order two,
which is stable under the so-called Courant-Friedrichs-Lewy condition on the time step,
the fully discrete equation obtained reads
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where 7’) is the unknown, n represents the time step, M is the mass matrix, K is the
stiffness matrix and F is the source. In practice, in order to apply the SFEM, the domain
needs to be discretized by a mesh composed of hexahedral elements, which are known
to be a major challenge for meshing algorithms [3].

This method has been extensively used: to solve transient wave equations [4], elas-
todynamic multi-dimensional problems [5] or targeting seismic problems [6][7] using
also GPU hardware [8] and distributed computation [9][10].

The region of interest, where the cracks are situated, is decomposed into deformed
cubes, which are called sub-domains. The cracks are situated as boundaries between two
or more sub-domains where the wave propagation is altered or interrupted. Each sub-
domain corresponds to a deformed predefined grid. Every element is associated with a
reference spectral finite element. In this reference element, high-order lagrangian func-
tions are defined using Gauss-Lobatto points [11]. Using an approximation order g leads
to ¢+ 1 symmetrical DoFs per dimension. In order to reduce sub-domains communica-
tions we impose one-to-one interfaces and same DoF position within common interfaces.
This strategy allows us to solve explicitly interface problems arising from domain de-
composition. Hence the computational burden is mostly related to computational steps.
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Figure 1. From left to right: a 2D surface with a parametric defect; the same surface divided into six sub-do-
mains; a deformed pre-defined grid; a finite reference element and 16 DoFs located by a quadrature rule of
order 3.



3. Optimization of the Stiffness Matrix
3.1. Local Stiffness Matrix

Since the mass matrix is diagonal, the main computational effort (75% of the total ex-
ecution time) comes from the product of the stiffness matrix with the previously com-
puted solution vector. Thanks to the SFEM, the structure of the global stiffness matrix is
composed of overlapping local stiffness matrices related to every element in the mesh.

In the context of ultrasound propagation modelling, storing the global stiffness is
numerically intractable, due to the huge number of elements in the mesh. Hence, we opt
for an unassembled strategy where the product between the local stiffness matrices and
the finite element vector corresponding to each element is performed on the fly. The only
constraint to the unassembled strategy is that the local products within a sub-domain
with two elements sharing DoFs (neighbours) cannot be computed at the same time. For
this, we use a colouring strategy that gives a color to each element, knowing that two
neighbours cannot have the same colour (that is, 4 colors in 2D, 8 colors in 3D). Then,
each group of colours can benefit from parallel computing. The colouring strategy is also
explicit and does not add heavy complexity. A similar strategy was followed in [8], with
the added complexity of dealing with unstructured meshes. In the following, working
on the elements of the same colour is supposed, eliminating all constraints regarding
concurrent accesses in the parallelization.

3.2. Stage Decomposition

In this paper, we shall address the case of a two-dimensional acoustic wave equation
and a propagation inside an isotropic homogeneous material, but other cases, as three
dimensions, elastic wave equation and anisotropic materials, have also been treated. The
resulting equation is Eq. (2), where the input U represents the local finite element vector
of size (g + 1)2, and the output is the vector with the product. A is the gradient matrix,

and A7 is its transposition. co(DF) is the cofactor of the linear transformation F and
Jr the jacobian of F. These terms are related to the transformation and they are applied
to each local DoF, a vector of two dimensions. ¢ is the wave speed, which is constant
because of the homogeneous isotropic nature of the material. From an algorithmic point
of view, this equation can be divided in 5 stages in accordance with their main function.
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More specifically, stage 0 finds the degrees of freedom corresponding to a local
element on the global vector and then copies them to a local vector. Stage 1 computes
the gradient as a product of an invariant matrix by this local vector. Stage 2 consist in
two two-dimensional matrix products, adding some scalar products for each DoF. Stage
3 computes the transposed gradient, which are the same calculations as in stage 1. This
last one is finally accumulated on the global vector by means of stage 4.



3.3. Memory Layout

In order to select which optimization to apply, we first compute the arithmetic intensity
(AI) which is the ratio between computations and memory accesses. A small Al usually
leads to memory bound algorithm. The original code has an average Al value of 0.5
for approximation order 2 (further details are shown in Table 1). The main target of the
following optimizations is to reduce the amount of memory accesses.

Table 1. Computations and memory accesses for the original code, the memory layout optimizations and the
loop transformations in each stage for the approximation order 2.

Computation / IOs Stage 0 Stage 1 Stage 2 Stage 3 | Stage 4 Total AL
Original 0/18 | 108/234 | 198/315 | 108/225 18/27 | 432/810=0.5
Memory Layout 0/27 | 108/216 117/45 | 108/216 27/36 | 360/540=0.7
Loop Transformation 0/9 90/0 162/0 90/0 27/18 | 369/27=13.7

Let us focus on stage 1 and then apply the optimizations to stage 3, as it is mostly
the same calculation. The gradient matrix, A, is a regular sparse matrix. Most of the co-
efficients are zero, and the non-zero ones follow a regular structure. There is a different
matrix A for each dimension. Each (i, j) coefficient shows the relation between the DoF
i and the DoF j. Thanks to the finite element of reference, the DoFs elements are sym-
metrically situated in each dimension with repeated pattern. Considering second order,
the reference element size is 9 DoFs and thus there are only 9 different coefficients. As
shown in Figure 2, we decided to store once each coefficient, creating a reorganized copy
of the local vector to match the new and smaller matrix product. In this example two 9x9
matrix products are reduced to six 3 x 3 matrix products.
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Figure 2. Schema of stage 1 calculations. One gradient for each dimension is converted into several small
matrix-vector products using the same smaller matrix.

As Figure 2 shows, the second vector is reorganized. This new memory layout sim-
plifies the code because multiple chained loops with strided accesses become only one
loop performing basic small products. We apply the same ideas to stage 3, but using the
transposed matrix. Other stages are modified to suit the new layout. Stage 2, being in
the middle of this optimizations, benefits largely regarding both memory accesses and
computations. New Al values can be found in Table 1. This technique should reduce the
number of cache misses.



3.4. Loop Transformation

Loop unwinding and scalarization [12][13] have been applied. It pursues operator fusion
and reduces the amount of memory accesses (or increasing the AI). The code is divided
in three pieces: memory loads, computations and memory stores. The data is loaded into
and stored from scalar variables. The strided accesses are reduced, therefore allowing
the compiler to optimize the code freely. Complex codes with multiple reused values can
benefit largely, although the resulting code may be longer. After applying this transfor-
mation in all stages, the code has an average Al of 13.7 (see Table 1), which means it is
computed bound.

4. Benchmark & Analysis

To benchmark our code, we selected a configuration of a two-dimensional mesh of 64
million global DoFs (that is 8,000 for each dimension), with a polynomial approxima-
tion order from 2 to 10. The code solving the stiffness matrix product is intended to be
used from order 2 to 5, but the range has been extended to gather more information. As
the global points are fixed, increasing the elements size results in decreasing the number
of total elements. That allows to evaluate the relation between the order and the opti-
mizations. It should be highlighted that computing each local element separately leads
to compute much more DoFs than 64 million because of repeated DoFs in borders. It
should also be noted that the bigger the element is, the smaller the border ratio is, and
thus less DoFs are computed.

Table 2. Millions of elements and computed DoFs against approximation order for 64 million points mesh
(values are rounded).

Order 2 3 4 5 6 7 8 9 10
Elements (M) 16 7 4125|1813 1| 079 | 0.064
Computed DoFs (M) 144 | 114 | 100 92 87 84 | 81 79 77

64 million global points on 32-bit floating points leads to a 1.4GB-size problem.
The unit of measure selected is cycles per point (cpp), that is total clock cycles (RDTSC
instruction) divided per computed DoFs [see Table 2]. All measurements correspond to
one time step. The processors used are specified in each case. Turbo-boost and hyper-
threading are always disabled. Code is compiled with Intel C++ Compiler 17.0 and high-
est optimization flag (O3). The source code is parallelized using a # pragma omp parallel
OpenMP directive and vectorized using only # pragma ivdep directives.

4.1. Accuracy Analysis

Single precision floating point values are used, although the original code used double
precision values. This change have been decided based upon the relative error when using
single precision compared with a double precision result. To do so, the biggest difference
between the points of a defined time-step is compared with the biggest value in that time-
step. After 500 time-steps, the relative error is for all approximation orders smaller than
0.01%, and after 5000 time-steps smaller than 0.1%. The error grows linearly with the
number of steps and can be limited.



4.2. Impact Analysis

Four machines have been used for benchmarking: Westmere (WSM) 2 x 6 cores Intel
Xeon Processor X5690 3.46Ghz, Ivy Bridge (IVB) 2 x 4 cores Intel Xeon Processor E3-
1245 v2 3.45GHz, Haswell (HSW) 2 x 8 cores Intel Xeon Processor E5-2630 v3 2.4GHz
and Broadwell (BDW) 2 x 10 cores Intel Xeon E5-2640 v4 2.4GHz. The following test
is performed with the IVB machine. The optimized code is faster in every case than the
older code using a scalar mono-thread execution (Figure 3). The cache misses have been
reduced in a 50% and the acceleration factor is on average 3. It seems to use less cpp
before approximation order 7 and much more after order 8. By using Intel VTune Am-
plifier XE, an increase of instruction cache misses has been measured from insignificant
to around 10%. This is related to the increasing size of the code with the order, from
240 lines for approximation order 2 to 1520 lines for approximation order 10. In order
to know if the issue can be overcomed varying the processor architecture, this version
has been tested with WSM, IVB and HSW. The L1 cache sizes used are 64KB, 16KB
and 32KB respectively. As shown in Figure 4, HSW does not meet the problem until the
approximation of order 12, using a smaller L1 cache than WSM. HSW must implement
a different algorithm to handle the instructions cache misses, but the information about
these algorithms is scarce, so it is just a guess. Regarding why WSM performs better than
IVB, the L1 cache sizes difference may be the reason. Then using HSW, the acceleration
factor is on average 4.5.
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Figure 3. Cpp by approximation order+1 comparing  Figure 4. Performance of the code using WSM, IVB
a scalar mono-thread execution using a IVB proces- and HSW processors. The abscissa has been extended
SOr. to observe the deferred effect.

4.3. Scaling and Vectorization Efficiency

For clarity, only the first four approximation orders are kept during this section. Then the
acceleration factor is on average 5.3. The machine used is the HSW. Our new code ben-
efits of great vectorization and scalability efficiency. The test compares a scalar mono-
thread execution against 2 up to 16 scalar OpenMP threads. Before optimizations, the
code had an efficiency of around 22%. Now the efficiency goes from 97% using two
threads to 90% using sixteen (Figure 5).

Then we evaluated the impact of different SIMD extensions, comprising SSE4.2 and
AVX2 instructions without and with FMA. The theoretical speed up factors are 4, 8 and
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Figure 5. Scalability of the new code. Figure 6. Vectorization impact of the new code.

16 respectively. Before, the vectorization efficiency with AVX instruction was of 26%.
The efficiency now is respectively around 100%, 75% and 35% (Figure 6).

Some NUMA issues in bi-processor configuration have been found when combin-
ing OpenMP with SSE4.2 and AVX. As HSW has two processors, the first one is used
efficiently but the second one suffers a fall of performance. Using SSE4.2 instructions
(Figure 7), the first eight threads have an efficiency of around 95%, but then it falls to
50%. On the other hand, AVX performs around 90%, then decreases to 30%, to increase
again to 80%. This roller coaster is closely related to our memory layout. The loop is
divided between the threads, which process process elements that can be situated in the
same line and be ‘reasonably’ contiguous, or through different lines. Depending on the
number of threads and the problem size, this can highly affect the NUMA nodes, or not
at all. The code has been tested with different NUMA node sizes, and there are always
some strong disturbances using the second one.
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Figure 7. Scalability of the SSE4.2 code. Figure 8. Scalability of the AVX code.

Finally, the 8-core AVX version using the HSW machine is x228 faster than the
original scalar code.

4.4. Comparative Benchmark with SPECFEM2D
SPECFEM2D [14] is the reference software for seismic wave propagation in two-

dimensional acoustic and elastic media. Both codes use spectral finite elements for sim-
ulation but at different scales: ECHO is coded for NDT and SPECFEM2D is used in



geodynamics. Until now, only the product of the stiffness matrix has been discussed. For
comparison, the capability to solve the entire wave equation (Eq. (1)) has been added,
using the same methodology when possible.

The machine used is the BDW. An approximation order of 2 is used, because
SPECFEM2D only allows orders 1 and 2. SPECFEM2D uses a square mesh generated
with the pre-processing finite element mesh generator Gmsh. The same source and sim-
ilar variables has been settled between the two codes. SPECFEM2D has been modified
to remove all output and related checks it usually does, to compare only computation
time. 2,000 time-steps are used. In this case, both codes use a call to CPU time, so the
elapsed time is given in seconds, not cycles. The measured scale is time per element.
Both of them have been compiled with the Intel compiler, ICC in our code and IFC for
SPECFEM2D. OpenMP and AVX2 vectorization flags have been activated. To be fair, we
can not compare multi-threading execution. SPECFEM2D is designed to use distributed
architectures via MPI, whereas our code is intended to use OpenMP in single worksta-
tions. Our code benefits of great scalability but SPECFEM2D suffer with MPI commu-
nication overhead, which is pointless using this kind of architecture. We are therefore
comparing mono-thread executions.

Table 3. DoFs, elements and execution time of our code and SPECFEM2D.

DoFs | Elements Total seconds | Seconds per element

SPECFEM2D 130561 32480 1.46x 1072 4.48x1077
ECHO 133225 33124 1.76 x 1073 5.30x 1078
Speed up factor x8.45

As shown in Table 3, our code has a substantial speed up factor. There are multiple
reasons. First, SPECFEM2D aims at treating more general geometries than our code and
therefore supports unstructured meshes. This more generic data structure may provoke
indirect accesses and more complex memory layouts. Secondly, according to the Intel
optimization report, few loops have been vectorized, because vector dependence prevents
vectorization.

4.5. GPU: a Feasibility Study

Our optimized stiffness algorithm has a high Al and a good parallel efficiency. It should
therefore benefit from GPU computational power. Our interest is to target one single
GPU, as did Huthwaite [15], but it can be done using several GPUs [9]. The are two main
issues regarding the efficient use of GPUs: transfer time and computation time.

The input memory (which is going to be read during stage 0) and the output memory
(which is written during stage 4) need to be transferred. The constant coefficients are
negligible. Furthermore, these transfers will not fit the GPU global memory in a context
of multi-domain problems, where the meshes need dozens of gigabytes [8]. Our strategy
is to load (potentially several) domains in order to fill in the GPU memory and compute
one temporal iteration before replacing it with a new domain. These memory transfers
can be asynchronous, so they can be hidden. Our tests use a NVIDIA GeForce GTX
TITAN, 6GB of global memory, Kepler GK110, 0.8GHz, compute ability 3.5 and 2048
single precision cores. This GPU is connected through a PCI Express x16 2.0. The code
is written in CUDA and compiled with NVCC. We consider a two-dimensional mesh



of 640 million global DoFs. The problem size is 4.2GB, half input, half output. The
bandwidth achieved is 6.29GB/s out of the ideal 6.4GB/s transfer bandwidth given by
the tool CUDA Bandwidth Test (that is 749ms). This bandwidth could be higher using a
motherboard connection with architecture PCI 3.0, going up to 10.8GB/s.

Regarding the computing time, there are up to 64 warps of 32 threads each and
65536 registers to be distributed equally. Occupancy is fulfilled if all the 64 warps are in
use, that is using 2048 threads and having 32 registers for each one. A single thread can
not use more than 255 registers. Balancing the warp used against register availability is
crucial, because high occupancy is not always better [16].

The GPU version of the code computes one element using one thread. Shared mem-
ory is not used because threads does not access same positions. The cudaOccupancy-
MaxPotentialBlocks function helps us to calculate the maximal size of one block con-
sidering how many registers the kernel uses (it depends on the approximation order, see
Table 4). The code presents two main issues. The first one is that a single thread requires
a lot of registers and thus the occupancy decreases. The second issue is about memory
layout. As each thread load an element, and the elements are not adjacent, the threads
cannot load coalesced memory.

Table 4. Values related to the GPU algorithm. Each column from left to right: approximation order+1, registers
used in each kernel, block size, active warps in GPU at the same time, its proportion against 64 total warps,
GPU execution time and CPU execution time (seconds) using the fastest CPU version (HSW mono-socket
using AVX instructions).

Order+1 | Registers/thread | Threads/block | Active warps | Occupancy | GPU time | CPU time
3 71 32x28 28 43.75% 1.57 1.00
4 101 32x16 16 25.00% 1.82 0.81
5 135 32x12 12 18.75% 2.20 0.73
6 181 32x8 8 12.50% 2.98 0.74

The GPU version is slower than our fastest CPU code considering execution time.
Our current work is trying to limit the register number to increase the GPU occupancy.
We plan to use the maxrregcount flag combined with kernel launch bounds to control the
number of registers. By increasing the warps used and the occupancy, the hypothesis is
that the performance will be increased.

Even when the GPU is not still fully used, we plan to develop a hybrid computation
strategy, following the ideas of Papadrakakis [17]. As all the information regarding the
use of different approximation orders is available, we will be able to add an auto-tuning
step, as did Dollinger [18]. We expect to predict the execution time launching a small
test-case with different approximation orders and sub-domains sizes, and then decide
consequently the placement.

5. Conclusion and Perspectives

A fast SFEM implementation has been presented. We have performed memory layout
optimizations and code transformations to increase the arithmetic intensity and reduce
the cache misses. Further loop optimizations lead to a code automatically vectorized and
parallelized which is several order faster than the original code. A comparative bench-
mark of execution time has been performed between SPECFEM2D and our code, show-



ing a significant performance improvement. Finally, a feasibility study regarding the use
of GPUs has been conducted.

A particular case of the wave equation has been presented. Our next step will be to
apply the work done to a wider range of cases: dimension, materials, transformations.
Using these code transformations means having one source file for each approximation
order (potentially 2 to 10), which size can be considerable. Combining the different bi-
nary parameters leads to 144 files for each hardware. We therefore plan to generate au-
tomatically these files from another program.
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