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GALERKIN METHOD FOR TIME FRACTIONAL DIFFUSION
EQUATIONS

LAID DJILALI AND ARNAUD ROUGIREL

Abstract. We propose a Galerkin method for solving time fractional diffusion
problems under quite general assumptions. Our approach relies on the theory of
vector valued distributions. As an application, the “` goes to plus infinity” issue
for these problems is investigated.

1. Introduction

The Galerkin approximation method in an efficient and robust tool for solving
linear and nonlinear partial differential equations (see for instance [Tem88], [Lio69]).
In this paper, we implement this method for solving time fractional diffusion prob-
lems. Our implementation allows non trivial initial conditions and the functional
framework is quite simple.

There are two drawbacks for solving time fractional PDE’s with the Galerkin
method. First, an estimate from below is needed for integrals of the form∫ T

0

∫
Ω

Dαu(t, x)u(t, x) dx dt

Here u = u(t, x) is the solution of some time fractional PDE set on [0, T ] × Ω ⊂
[0,∞) × Rd, and α ∈ (0, 1). The positivity of that integral can be achieved by
assuming, roughly speaking, that u(0, x) = 0 (see [TM15]). However, this hypothesis
is clearly too restrictive. Also, in the integer setting (i.e. when α = 1), the above
integral equals

1

2
‖u(T )‖2

L2(Ω) −
1

2
‖u(0)‖2

L2(Ω).

Hence, it has no sign. Thus, in the fractional case, we may expect to control this
integral in a similar way. This is indeed the case: in the proof of Theorem 4.1, we
decompose that integral into the sum of a bad term, which turns out to be positive
(by an estimate due to Nohel and Shea; see Theorem 2.1), and a quantity with no
sign but controllable.

The second difficulty concerns functional spaces. In many papers, fractional
Gagliardo-Sobolev spaces are used. These spaces are quite complicated to handle,
and the necessity of their use in the Galerkin method, seems not obvious to the
authors. Moreover, in order to have a continuation property from the time interval
[0, T ] into R, a trivial initial condition is needed (see [LX09], [JLPR15]).

In this paper, we use simple functional spaces which are natural generalization of
the spaces involved in the integer setting (see Definition 4.1). We consider Riemann-
Liouville derivatives.
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In the two forcoming sections, we give the background on weak fractional deriva-
tives. The Galerkin method is implemented in section 4 for solving a time fractional
model problem. Finally, in Section 5, we apply our result to the “` goes to plus in-
finity” issue. It is about to study the asymptotic behavior of the solution u = u(t, x)
when the domain Ω = Ω` becomes unbounded in one or several directions as `→∞.

2. Preliminaries

For (X, ‖ · ‖) a real Banach space, let us introduce the convolution of functions
and the (formal) adjoint of the convolution.

Definition 2.1. Let g ∈ L1
loc([0,∞)), T > 0 and f ∈ L1(0, T ;X). Then the convo-

lution of g and f is the function of L1(0, T ;X) defined by

g ∗ f(t) :=

∫ t

0

g(t− y)f(y)dy, a.e. t ∈ [0, T ].

Also, we define

g ∗′ f(t) :=

∫ T

t

g(y − t)f(y)dy, a.e. t ∈ [0, T ].

Remark 2.1. Roughly speaking, f 7→ g ∗′ f is the adjoint of f 7→ g ∗ f . Indeed, for
f , g as above and ψ ∈ C([0, T ]), one has, by Fubbini’s Theorem∫ T

0

g ∗ f(t)ψ(t) dt =

∫ T

0

f(t)g ∗′ ψ(t) dt.

The following kernel is of fundamental importance in the theory of fractional
derivatives.

Definition 2.2. For β ∈ (0,∞), let us denote by gβ the function of L1
loc([0,∞))

defined for a.e. t > 0 by

gβ(t) =
1

Γ(β)
tβ−1.

For each α, β ∈ (0,∞), the following identity holds.

gα ∗ gβ = gα+β, in L1
loc

(
[0,∞)

)
. (2.1)

Let us recall the following well-known result: if f ∈ L2(0, T ;X) and g ∈ L1(0, T )
then

g ∗ f ∈ L2(0, T ;X) and ‖g ∗ f‖L2(0,T ;X) ≤ ‖g‖L1(0,T )‖f‖L2(0,T ;X). (2.2)

The following deep result due to Nohel and Shea ([NS76, Theorem 2 & Corollary
2.2]) is a crucial tool for estimating. That result was originally stated for scalar
valued functions but can easily be extended into an hilbertian setting.

Theorem 2.1. Let (H, (·, ·)) be a real Hilbert space, f ∈ L2(0, T ;H) and α ∈ (0, 1).
Then ∫ T

0

(
f(t), gα ∗ f(t)

)
dt ≥ 0.
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3. Riemann fractional derivatives

We will introduce fractional derivatives and weak fractional derivatives, that is,
fractional derivatives in the sense of distributions. Let us start with the well-known
fractional forward and backward derivatives of a function in the sense of Riemann
and Liouville. We refer to [Pod99] for more details on fractional derivatives.

Definition 3.1. Let α ∈ (0, 1), T > 0 and f ∈ L2(0, T ;X). We say that f admits a
(forward) derivative of order α in L2(0, T ;X) if

g1−α ∗ f ∈ H1(0, T ;X).

In this case, its (forward) derivative of order α is the function of L2(0, T ;X) defined
by

RD
α

0,tf :=
d

dt

{
g1−α ∗ f

}
.

Definition 3.2. Let α ∈ (0, 1), T > 0 and f ∈ W 1,1(0, T ;X). Then we say that f
admits a backward derivative of order α in L2(0, T ;X) if

g1−α ∗′
d

dt
f ∈ L2(0, T ;X).

In this case, its backward derivative of order α is the function of L2(0, T ;X) defined
by

RD
α

t,Tf := g1−α ∗′
d

dt
f.

Remark 3.1. If f ∈ H1(0, T ;X) then g1−α ∗′ d
dt
f lies in L2(0, T ;X), according to

(2.2). Hence f admits a fractional backward derivative of order α in L2(0, T ;X).

Proposition 3.1. Let α ∈ (0, 1), f ∈ L2(0, T ;X) and ψ ∈ H1(0, T ). Assume that f
admits a derivative of order α in L2(0, T ;X). Then∫ T

0

Dα
0,tf(t)ψ(t) dt = −

∫ T

0

f(t)RD
α

t,Tψ(t) dt+
[
g1−α ∗ f ψ

]T
0
. (3.1)

Moreover, if, in addition, ψ ∈ D(0, T ) then∥∥∥∫ T

0

f(t)Dα
t,Tψ(t) dt

∥∥∥ ≤ √Tg2−α(T )‖f‖L2(0,T ;X)‖ψ′‖∞,[0,T ]. (3.2)

Proof. Starting to integrate by part, we obtain∫ T

0

Dα
0,tf(t)ψ(t) dt = −

∫ T

0

g1−α ∗ f(t)
d

dt
ψ(t) dt+

[
g1−α ∗ f ψ

]T
0

= −
∫ T

0

f(t)g1−α ∗′
d

dt
ψ(t) dt+

[
g1−α ∗ f ψ

]T
0

(by Rem. 2.1)

= −
∫ T

0

f(t)RD
α

t,Tψ(t) dt+
[
g1−α ∗ f ψ

]T
0

(by Def. 3.2).

In order to prove (3.2), we use Cauchy-Schwarz inequality and the estimate

‖Dα
t,Tψ‖L∞(0,T ) ≤ g2−α(T )‖ψ′‖L∞(0,T ).

�
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That property allows us to define fractional derivative in the sense of distributions.
Indeed, (3.2) shows that the linear map

D(0, T )→ X, ϕ 7→ −
∫ T

0

f(t)RD
α

t,Tϕ(t) dt

is a distribution, whose order is (at most) 1. The set of distributions with values in
X is denoted by D′(0, T ;X). That allows us to set the following definition.

Definition 3.3. Let α ∈ (0, 1) and f ∈ L2(0, T ;X). Then the weak derivative of
order α of f is the vector valued distribution, denoted by RD

α
0,tf , and defined, for

all ϕ ∈ D(0, T ), by

〈RDα

0,tf, ϕ〉 = −
∫ T

0

f(t)RD
α

t,Tϕ(t) dt.

If we want to highlight the duality taking place in the above bracket, we will write

〈RDα

0,tf, ϕ〉D′(0,T ;X),D(0,T )

instead of 〈RDα
0,tf, ϕ〉. The following result states that weak derivative extend frac-

tional derivatives in L2(0, T ;X). That justifies the use of the same notation in
definitions 3.1 and 3.3.

Proposition 3.2. Let α ∈ (0, 1) and f ∈ L2(0, T ;X).
(i) If f admits a derivative of order α in L2(0, T ;X) (in the sense of Definition

3.1) then that derivative is equal to the weak derivative of f .
(ii) If the weak derivative of f belongs to L2(0, T ;X) then f admits a derivative in

L2(0, T ;X) and these two derivatives are equal.

Proof. (i) Let RD
α
0,tf be the derivative of f in L2(0, T ;X). Then, for each ϕ ∈

D(0, T ), Proposition 3.1 leads to∫ T

0

RD
α

0,tf(t)ϕ(t) dt = −
∫ T

0

f(t)RD
α

t,Tϕ(t) dt.

Then Definition 3.3 tells us that RD
α
0,tf is the weak derivative of f .

(ii) Let RD
α
0,tf denote the weak derivative of f (in the sense of Definition 3.3).

Then

〈RDα

0,tf, ϕ〉D′(0,T ;X),D(0,T ) = −
∫ T

0

f(t)g1−α ∗′
d

dt
ϕ(t) dt

= −
∫ T

0

g1−α ∗ f(t)
d

dt
ϕ(t) dt,

by Remark 2.1. Since, by assumption, RD
α
0,tf lies in L2(0, T ;X) we deduce that

g1−α ∗ f is in H1(0, T ;X) and

d

dt

{
g1−α ∗ f

}
= RD

α

0,tf, in L2(0, T ;X).

�
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Proposition 3.3. Let α ∈ (0, 1), V be a real Banach space and f ∈ L2(0, T ;V ′).
We assume that f admits a derivative of order α in L2(0, T ;V ′). Then, for each v
in V , 〈f, v〉V ′,V admits a derivative of order α in L2(0, T ) and

〈RDα

0,tf(·), v〉V ′,V = RD
α

0,t

{
〈f, v〉V ′,V

}
, in L2(0, T ). (3.3)

Above V ′ denotes the dual space of V and 〈·, ·〉V ′,V , the duality between V ′ and
V .

Proof. Let ϕ ∈ D(0, T ). Since, for each v ∈ V , the linear map 〈·, v〉V ′,V is bounded
on V ′, we have (see for instance [ABHN11, Proposition 1.1.6])

I :=

∫ T

0

〈RDα

0,tf(t), v〉V ′,V ϕ(t) dt =
〈 ∫ T

0

RD
α

0,tf(t)ϕ(t) dt, v
〉
V ′,V

.

Then, with Proposition 3.1,

I =
〈
−
∫ T

0

f(t)RD
α

t,Tϕ(t) dt, v
〉
V ′,V

= −
∫ T

0

〈f(t), v〉V ′,V
RD

α

t,Tϕ(t) dt.

Then, we infer from Definition 3.3 that

I =
〈

RD
α

0,t〈f(·), v〉V ′,V , ϕ
〉
D′(0,T ),D(0,T )

.

Hence
〈RDα

0,tf, v〉V ′,V = RD
α

0,t〈f(·), v〉V ′,V , in D′(0, T ).

By assumption, RD
α
0,tf belongs to L2(0, T ;V ′), thus that identity holds in L2(0, T ).

By Proposition 3.2 (ii), we deduce that 〈f(t), v〉V ′,V admits a derivative of order α
in L2(0, T ). That completes the proof. �

Proposition 3.4. Let α ∈ (0, 1) and u ∈ L2(0, T ;X). If u admits a derivative of
order α in L2(0, T ;X), then

u = (g1−α ∗ u)(0)gα + gα ∗ RD
α

0,tu in L1(0, T ;X). (3.4)

Proof. The proof is rather standard; we just emphasize the functional spaces involved.
By integration, we have

g1−α ∗ u = (g1−α ∗ u)(0) + g1 ∗ RD
α

0,tu in H1(0, T ;X).

By [ER18, Proposition 2.6] or [ABHN11, Proposition 1.3.6], we know that

U ∈ H1(0, T ;X) =⇒ gα ∗ U ∈ W 1,1(0, T ;X).

Thus, with (2.1)

g1 ∗ u = (g1−α ∗ u)(0)g1+α + g1+α ∗ RD
α

0,tu in W 1,1(0, T ;X).

By differentiation and using a slight variant of [ER18, Proposition 2.6], we get (3.4).
�

Proposition 3.5. Let α ∈ (0, 1) and u ∈ C([0, T ];X) be such that RD
α
0,tu lies in

C([0, T ];X). Then u(0) = 0.
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Proof. Since u is continuous on [0, T ], there holds (g1−α∗u)(0) = 0. Thus, with (3.4),

u = gα ∗ RD
α

0,tu.

By continuity of RD
α
0,tu, we get u(0) = 0. �

4. Galerkin method for a time fractional PDE

Let d ≥ 1 and Ω be an open bounded subset of Rd. We refer to [Chi00] for the
definition of the standard Sobolev spaces H1

0 (Ω) and H−1(Ω).

Definition 4.1. Let α ∈ (0, 1) and T > 0. Then we denote by

Hα
(
0, T ;H1

0 (Ω), H−1(Ω)
)
,

the set of all functions in L2(0, T ;H1
0 (Ω)) whose weak fractional derivative belongs

to L2(0, T ;H−1(Ω)).

Let f ∈ L2(0, T ;H−1(Ω)) and v ∈ L2(Ω). We will focus on the following model
problem. 

Find u ∈ Hα
(
0, T ;H1

0 (Ω), H−1(Ω)
)

such that
RD

α

0,tu−∆u = f in L2(0, T ;H−1(Ω))

(g1−α ∗ u)(0) = v in L2(Ω).

(4.1)

In (4.1), the initial condition means that

(g1−α ∗ u)(t) −−−→
t→0+

v in L2(Ω).

4.1. Well posedness.

Theorem 4.1. Let f ∈ L2(0, T ;H−1(Ω)) and v ∈ H1
0 (Ω).

(i) If α ∈ (1
2
, 1) then (4.1) has a unique solution.

(ii) If α ∈ (0, 1
2
] then

(a) if v 6= 0 then (4.1) has no solution.
(b) if v = 0 then (4.1) has a unique solution.

Proof. Combining (3.4) and (2.2), we derive that (4.1) has no solution if α ≤ 1/2
and v 6= 0. On the other hand, if v = 0 then the solvability of (4.1) can be achieved
as in the case where α ∈ (1

2
, 1). Thus we will assume in the sequel that α > 1/2.

Existence of a solution. We will implement the Galerkin approximation method.
For, let us introduce some notation. Let V := H1

0 (Ω) and

A : H1
0 (Ω)→ H−1(Ω), u 7→ −∆u.

For k = 1, 2, . . . , let (wk, λk) ∈ H1
0 (Ω)× (0,∞) be a kth mode of A such that (wk)k≥1

forms an hilbertian basis of L2(Ω).
For n = 1, 2, . . . , we denote by Fn the vector space generated by w1, . . . , wn.

Finally, we decompose the initial condition v, by writing

v =
∑
k≥1

bkwk in H1
0 (Ω),

and we set

vn :=
n∑
k=1

bkwk. (4.2)
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Whence vn ∈ Fn and vn → v in H1
0 (Ω).

For each integer n ≥ 1, our approximated problem takes the form
Find un ∈ L2(0, T ;Fn) such that RD

α

0,tun ∈ L2
(
0, T ;H−1(Ω)

)
〈RDα

0,tun, w〉V ′,V + 〈Aun, w〉V ′,V = 〈f, w〉V ′,V in L2(0, T ), ∀w ∈ Fn
(g1−α ∗ un)(0) = vn.

(4.3)

(i) Solvability of the approximated problem. The decomposition and notation

un(t) =
n∑
k=1

xk(t)wk, fk(t) := 〈f(t), wk〉V ′,V ,

lead to the equivalent system:{
RD

α

0,txk + λkxk = fk in L2(0, T )

(g1−α ∗ xk)(0) = bk
, ∀k = 1, . . . , n. (4.4)

Surprisingly, we have not found a well-posedness result for (4.4) in the literature.
However, the local well-posedness in L2(0, τ), for small positive τ can be obtained
by standard fix point method (see [Die10, Chap 5] where another functional setting
is used).

Regarding global well-posedness i.e. well-posedness on [0, T ] for all T > 0, adapting
to our framework, Lemma 4.2 in [ZPAA17] and Theorem 10 of [dCNFJ18], we may
obtain a blow-up alternative. Namely, if the maximal existence time Tm is finite then
the corresponding maximal solution u to (4.4), fulfills

‖u‖L2(0,τ) →∞, as τ → T−m . (4.5)

Let us notice that
sup

τ∈(0,Tm)

‖u‖L2(0,τ) <∞

implies by the monotone convergence theorem, that u lies in L2(0, Tm).
So, in order to get global well-posedness, we assume that Tm is finite. Then, for

each τ ∈ (0, Tm), we have by (4.4), Proposition 3.4 and (2.2),

xk + λkgα ∗ xk = bkgα + gα ∗ fk, in L2(0, τ).

We multiply that equation by xk and integrate on [0, τ ]. By Theorem 2.1,∫ τ

0

xk(t)gα ∗ xk(t) dt ≥ 0.

Thus since λk ≥ 0 and α > 1/2, we get

‖xk‖2
L2(0,τ) ≤ |bk|‖gα‖L2(0,Tm)‖xk‖L2(0,τ) + ‖gα ∗ fk‖L2(0,Tm)‖xk‖L2(0,τ).

Then ‖xk‖L2(0,τ) remains bounded as τ approaches Tm. That contradicts (4.5), so
that Tm =∞. Thus (4.3) admits an unique solution for all positive time T .

(ii) Estimates. Using gα ∈ L2(0, T ) and taking w = vn in (4.3), we derive∫ T

0

〈RDα

0,tun, un−gαvn〉V ′,V dt+

∫ T

0

〈Aun, un−gαvn〉V ′,V dt =

∫ T

0

〈f, un−gαvn〉V ′,V dt.

(4.6)
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Let us show that the first integral above is non negative; this is the key point of
our proof. For, in view of Proposition 3.4, there holds

un − gαvn = gα ∗ RD
α

0,tun in L2(0, T ;H1
0 (Ω)). (4.7)

Thus, setting for simplicity Dα instead of RD
α
0,t,∫ T

0

〈Dαun, un − gαvn〉V ′,V dt

=

∫ T

0

〈Dαun, gα ∗Dαun〉V ′,V dt

=

∫ T

0

dt

∫ t

0

gα(t− y)
〈
Dαun(t), (Dαun)(t− y)

〉
V ′,V

dy

=
n∑
k=1

∫ T

0

dt

∫ t

0

gα(t− y)Dαxk(t)(D
αxk)(t− y)dy,

since 〈wk, wj〉V ′,V = δk,j. By Theorem 2.1, the latter right hand side is the sum of
non-negative numbers. Hence∫ T

0

〈RDα

0,tun, un − gαvn〉V ′,V dt ≥ 0.

Going back to (4.6), we derive∫ T

0

〈Aun, un〉V ′,V dt ≤
∫ T

0

|〈Aun, vn〉V ′,V |gα(t) dt

+

∫ T

0

|〈f, un〉V ′,V | dt+

∫ T

0

|〈f, vn〉V ′,V |gα(t) dt.

Since ∫ T

0

〈Aun, un〉V ′,V dt = ‖un‖2
L2(0,T ;H1

0 (Ω))

and vn → v in H1
0 (Ω), we derive in a standard way that

‖un‖L2(0,T ;H1
0 (Ω)) ≤ C,

where the constant C is independent of n. Then there exists some u ∈ L2(0, T ;H1
0 (Ω))

such that , up to a subsequence,

un ⇀ u in L2(0, T ;H1
0 (Ω))-weak. (4.8)

(iii) Equation of (4.1). Let k ≥ 1 be fixed and n ≥ k. For each ϕ ∈ D(0, T ), we
derive from (4.3) and Proposition 3.1 that〈 ∫ T

0

−un(t)RD
α

t,Tϕ(t) +
(
Aun − f(t)

)
ϕ(t) dt, wk

〉
V ′,V

= 0.

Passing to the limit in n and using Definition 3.3, we get

Dαu+ Au− f = 0 in D′(0, T ;H−1(Ω)).

Since Au and f belong to L2(0, T ;H−1(Ω)), we derive from Proposition 3.2 (ii), that
u lies in Hα

(
0, T ;H1

0 (Ω), H−1(Ω)
)
and

Dαu+ Au = f in L2(0, T ;H−1(Ω)).
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(iv) Initial condition. Let k, n ≥ 1 and ϕ ∈ D(0, T ) with ϕ(T ) = 0. Then, due to
Proposition 3.3 and Proposition 3.1,∫ T

0

〈Dαun(t), wk〉V ′,V ϕ(t) dt

= −
∫ T

0

〈un(t), wk〉V ′,V
RD

α

t,Tϕ(t) dt− 〈g1−α ∗ un(0), wk〉V ′,V ϕ(0)

−−−→
n→∞

−
∫ T

0

〈u(t), wk〉V ′,V
RD

α

t,Tϕ(t) dt− 〈v, wk〉V ′,V ϕ(0),

by (4.8) and (4.2). Moreover, using Proposition 3.1 and Proposition 3.3 once again,
the latter limit is equal to∫ T

0

〈Dαu(t), wk〉V ′,V dt+ 〈g1−α ∗ u(0), wk〉V ′,V ϕ(0)− 〈v, wk〉V ′,V ϕ(0).

Then, we get in a usual way (see for instance [Chi00, Chap 11]) that g1−α ∗u(0) = v.
That completes the proof of the existence part.

Uniqueness of the solution. By linearity, it is enough to prove that any function u in
Hα
(
0, T ;H1

0 (Ω), H−1(Ω)
)
, solution to

RD
α

0,tu−∆u = 0 in L2(0, T ;H−1(Ω))

(g1−α ∗ u)(0) = 0 in L2(Ω),

is trivial. For, testing the above equation with

uα := g1−α ∗ u ∈ L2
(
0, T ;H1

0 (Ω)
)
,

we get ∫ T

0

〈 d

dt
uα, uα〉V ′,V dt+

∫ T

0

∫
Ω

∇u∇uα dx dt = 0.

Moreover, since uα(0) = 0,∫ T

0

〈 d

dt
uα, uα〉V ′,V dt =

1

2
‖uα(T )‖2

L2(Ω)

and, by Theorem 2.1,∫ T

0

∫
Ω

∇u∇uα dx dt =
n∑
k=1

∫
Ω

∫ T

0

∂xku(t, x)g1−α ∗ ∂xku(·, x)(t) dt dx ≥ 0.

Then, for all t ∈ [0, T ], we deduce g1−α ∗ u(t) = 0. Thus, with (2.1)

u(t) =
d

dt
{gα ∗ g1−α ∗ u}(t) = 0.

That completes the proof of the theorem. �
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4.2. Regularity. Similarly to the case α = 1, regularity of the solution to (4.1) is
obtained assuming some smoothness conditions on the data. However, no additional
assumption is made on the domain Ω. Let us recall that the operator A is defined
by

A : H1
0 (Ω)→ H−1(Ω), u 7→ −∆u.

Theorem 4.2. Let α ∈ (0, 1), Ω be an open bounded subset of Rd, f be in L2(0, T ;L2(Ω)),
and v belong to H1

0 (Ω).
(i) If α ∈ (1

2
, 1) then assume that Av lies in L2(Ω);

(ii) If α ∈ (0, 1
2
] then assume that v = 0.

Then the solution u to (4.1) satisfies

Au, RD
α

0,tu ∈ L2(0, T ;L2(Ω))
RD

α

0,tu+ Au = f in L2(0, T ;L2(Ω)).

Remark 4.1. Theorem 4.2 is not a regularity result in H2(Ω). Indeed, we do not
claim that u belongs to L2(0, T ;H2(Ω)). Moreover, since Ω is only assumed to be a
bounded open set, the eigenfuntion wk does not belong to H2(Ω), in general.
H2(Ω)-regularity results may be obtained by assuming for instance, that Ω is

convex (see [Gri85, Theorem 3.2.1.2]).

Proof. Arguing as in the proof of Theorem 4.1, we will focus on the case α > 1
2
. Let

us recall that (wk, λk) ∈ H1
0 (Ω) × (0,∞) denotes a kth mode of A and that vn is

defined by (4.2). Let un be the solution to (4.3). Since Awk = λkwk, it is clear that
A(un(t)− gα(t)vn) belongs to Fn for all t ∈ (0, T ). Thus (4.3) leads to

〈RDα

0,tun, A(un − gαvn)〉V ′,V + 〈Aun, A(un − gαvn)〉V ′,V = 〈f, A(un − gαvn)〉V ′,V .

In view of (4.7), we derive

〈RDα

0,tun(t), A(un(t)− gα(t)vn)〉V ′,V =
n∑
k=1

λkD
αxk(t)gα ∗Dαxk(t).

Then, Theorem 2.1 leads to∫ T

0

〈RDα

0,tun, A(un − gαvn)〉V ′,V dt ≥ 0.

In order to estimate 〈f, gαAvn〉V ′,V , we recall that

〈f, h〉V ′,V =

∫
Ω

f(x)h(x) dx, ∀f ∈ L2(Ω), ∀h ∈ H1
0 (Ω).

Thus ∣∣〈f(t), gα(t)Avn〉V ′,V

∣∣ ≤ gα(t)‖f(t)‖L2(Ω)‖Avn‖L2(Ω).

Moreover, Avn =
∑n

k=1 λkbkwk and Av ∈ L2(Ω), thus Lemma 4.3 below implies that
‖Avn‖L2(Ω) is bounded.

Thus, estimating in a standard way, we obtain that a subsequence of (Aun) con-
verges weakly in L2(0, T ;L2(Ω)). Hence, by the uniqueness of the limit, Au belongs
to L2(0, T ;L2(Ω)). �

The following lemma is used is the proof of Theorem 4.2.
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Lemma 4.3. Let Ω be an open bounded subset of Rd. For each v ∈ H1
0 (Ω) with

v =
∑
bkwk in H1

0 (Ω), one has

Av ∈ L2(Ω)⇔
∑

(bkλk)
2 <∞.

Proof. Let us assume that Av lies in L2(Ω). Since (wk) is an hilbertian basis of
L2(Ω), there exists a sequence (ck)k≥0 ⊂ R such that

Av =
∑
k≥1

ckwk,
∑

(ck)
2 <∞, ck =

∫
Ω

Av(x)wk(x) dx.

Moreover, ∫
Ω

Av(x)wk(x) dx =

∫
Ω

∇v(x)∇wk(x) dx = bkλk.

Hence,
∑

(bkλk)
2 <∞.

Conversely, let vn :=
∑n

k≥1 bkwk. Since Awk = λkwk, we know that Awk is in
L2(Ω). Thus, for 1 ≤ m < n,

‖Avn − Avm‖2
L2(Ω) =

n∑
k=m+1

(bkλk)
2.

By assumption
∑

(bkλk)
2 converges; so that there exists some f ∈ L2(Ω) such that

Avn → f in L2(Ω).

However, vn → v inH1
0 (Ω) and the operatorA is continuous fromH1

0 (Ω) intoH−1(Ω).
Thus Avn → Av in H−1(Ω). Whence Av lies in L2(Ω). �

5. The “` goes to plus infinity” issue

In many physical situations, three dimensional problems are sometimes approxi-
mated by two dimensional problems. That procedure simplifies the mathematical
analysis and decreases the computational cost of discretisation algorithms.

The issue is then to estimate the error made by replacing the solution of the 3D
problem by the solution of some 2D problem. We refer to the books [Chi02], [Chi16]
for more informations on that subject. Basically, if the 3D problem is set on a
cylinder with large height, then the solution will be locally well approximated by the
solution of the “same problem” set on the section of the cylinder.

Regarding fractional derivatives, the paper [CR17] is concerns with the fractional
Laplacian. Here, we will look at linear time fractional diffusion problems. More
precisely, let p < d be positive integers, ω be an open bounded subset of Rd−p and

Ω` := (−`, `)p × ω ⊂ Rp × Rd−p.

We write any x ∈ Ω` as x = (X1, X2), where X1 ∈ Rp and X2 ∈ Rd−p.
For f in L2(0, T ;L2(ω)) and v ∈ H1

0 (ω), we consider the problem
Find u` ∈ Hα

(
0, T ;H1

0 (Ω`), H
−1(Ω`)

)
such that

RD
α

0,tu` −∆u` = f in L2(0, T ;H−1(Ω`))

(g1−α ∗ u`)(0) = v in L2(Ω`).

(5.1)
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Then the problem set on the section ω is
Find u∞ ∈ Hα

(
0, T ;H1

0 (ω), H−1(ω)
)

such that
RD

α

0,tu∞ −∆u∞ = f in L2(0, T ;H−1(ω))

(g1−α ∗ u∞)(0) = v in L2(ω).

(5.2)

Theorem 5.1. Let ω and Ω` as above, α ∈ (0, 1), f belong to L2(0, T ;L2(ω)) and
v ∈ H1

0 (ω).
(i) If α ∈ (1

2
, 1) then assume that Av lies in L2(Ω);

(ii) If α ∈ (0, 1
2
] then assume that v = 0.

Then there exists two positive constants ε and C such that, for all ` > 0, the solutions
u` and u∞ to (5.1) and (5.2) satisfy∫ T

0

∫
Ω`/2

|∇(u` − u∞)|2 dx dt ≤ Ce−ε`. (5.3)

Of course, we deduce from the above result (using also Poincaré inequality) that,
for any fixed `0 > 0,

u` −−−→
`→∞

u∞ in L2
(
0, T ;H1(Ω`0)

)
,

with exponential convergence rate. Let us recall that the Poincaré constant is inde-
pendent of `: see for instance [CR02, Lemma 2.1].

Proof. As in the previous section, we will only study the case where α > 1/2. For
` ≥ 1 and `1 ≤ `− 1, consider a function ρ = ρ`1 : Rp → [0,∞) such that

ρ`1 = 1 on Ω`1 , ρ`1 = 0 on Rp \ Ω`1+1 (5.4)∣∣∇ρ`1(X1)
∣∣ ≤ C, ∀X1 ∈ Rp, (5.5)

where C is independent of X1 and `1. Also, by Theorem 4.2, one has
RD

α

0,t(u` − u∞) + A(u` − u∞) = 0 in L2(0, T ;L2(Ω`)). (5.6)

Moreover, (u` − u∞)ρ is in L2(0, T ;H1
0 (Ω`)) by (5.4). Thus testing (5.6) with this

function, we get∫
Ω`

ρ(X1) dx

∫ T

0

Dα(u` − u∞) (u` − u∞) dt+

∫ T

0

∫
Ω`

|∇(u` − u∞)|2ρ(X1) dx dt

= −
∫ T

0

∫
Ω`1+1\Ω`1

∇(u` − u∞)∇ρ(X1) (u` − u∞) dx dt.

The first integral above is positive due to Theorem 2.1, since u`−u∞ = gα ∗Dα(u`−
u∞), by Proposition 3.4. Next, using |∇ρ

∣∣ ≤ C, Young and Poincaré inequalities, we
get in a standard way, the following bound of the latter integral:

C

∫ T

0

∫
Ω`1+1\Ω`1

|∇(u` − u∞)|2 dx dt.

Thus, since ρ = 1 on Ω`1 , we derive∫ T

0

∫
Ω`1

|∇(u` − u∞)|2 dx dt ≤ C

1 + C

∫ T

0

∫
Ω`1+1

|∇(u` − u∞)|2 dx dt.
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There results (see [Chi16] Section 1.7) that∫ T

0

∫
Ω`/2

|∇(u` − u∞)|2 dx dt ≤ Ce−2ε`

∫ T

0

∫
Ω`

|∇(u` − u∞)|2 dx dt.

There remains to estimate the latter integral. For, using the regularity result of
Theorem 4.2 and testing (5.1) with u` − gα(t)v, we get∫ T

0

∫
Ω`

Dαu`(u` − gα(t)v) dx dt+

∫ T

0

∫
Ω`

|∇u`|2 dx dt

=

∫ T

0

∫
Ω`

f(t,X2)(u` − gα(t)v) dx dt+

∫ T

0

gα(t) dt

∫
Ω`

∇u`∇v dx.

The first term is positive by Theorem 2.1 and Proposition 3.4. Moreover, Young and
Poincaré inequalities yield∣∣∣ ∫ T

0

∫
Ω`

f(t,X2)(u` − gα(t)v) dx dt
∣∣∣ ≤ Cε′(2`)

p‖f‖2
L2(0,T ;L2(ω))

+ ε′C

∫ T

0

∫
Ω`

|∇u`|2 dx dt+
(2`)p

2
‖gα‖2

L2(0,T )‖v‖2
L2(ω).

Choosing the positive constant ε′ sufficiently small, there results that∫ T

0

∫
Ω`

|∇u`|2 dx dt ≤ C`p, ∀` ≥ 1.

Performing the same computation with u∞, we obtain (5.3). That completes the
proof of the Theorem. �
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