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Abstract—Decentralized resource sharing for multiple nonco-
operative underwater acoustic (UWA) communication links is
investigated. Point-to-point links, considered as rational players,
are involved in a noncooperative game in which they compete
to find a transmission strategy satisfying individual Quality-
of-Service (QoS) constraints. Examples of UWA communica-
tion scenarios with direct-sequence-spread-spectrum (DSSS) and
orthogonal-frequency-division-multiplexing (OFDM) systems are
formulated as satisfaction games. The transmitters adapt their
parameters (power, frequency and spreading gain) autonomously
and in a decentralized way, without exchanging any information.
This adaptation is made possible thanks to the feedback of local
information on the channel statistics provided by their receiver.
A blind satisfaction response algorithm (BSRA) is also proposed,
which requires only a 1-bit feedback.

Realistic assumptions are made regarding the environment.
The UWA channel is modeled as random and doubly selective,
its coherence time is much shorter than the propagation delays
and no assumption is made regarding its distribution. The UWA
communication links do not have any prior information about
the interfering waveforms of competing transmitters. Extensive
numerical simulations are provided and comparisons are made
with the Nash equilibrium solution. Results show gains both in
terms of probability of QoS satisfaction and power consumed,
even when a minimal knowledge of the environment is considered.

Index Terms—Underwater acoustic communications, quality-
of-service, interference management, game theory, resource shar-
ing, DSSS, OFDM.

I. INTRODUCTION

THIS paper deals with decentralized resource sharing

methods for underwater acoustic (UWA) communica-

tions. Unlike in radiocommunications, there are no commonly

accepted regulation policies to restrict the use of the underwa-

ter acoustic spectrum. Therefore, the availability of a resource

for a communication link varies with time, frequency as well

as with the location of other acoustic sources in the channel

[1]. Moreover, the physics of the propagation medium makes

the transmission losses increase with both the transmission

range and frequency, thus diminishing the available bandwidth

[2]. The UWA channel offers scarce resources, and heteroge-

neous acoustic sources operating in the same area may anar-

chically interfere with each others. Interference sources can
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be other communications signals as well as sonar waveforms

or marine mammals calls, for instance. Several works in the

past few years have reported cases of UWA communications

jammed by external interferences [3], [4]. It can be expected

that this interference issue between UWA communication links

becomes more problematic as human activities undersea are

being developed. It is thus critical to ensure that sources

from different origins, or devoted to different applications, can

cohabit in the UWA channel thanks to decentralized, automatic

and adaptive resource sharing methods. Although the JANUS

protocol [5] - standardized by NATO in March 2017 [6] - is

a very useful initiative allowing interoperability, proposals of

flexible, adaptive and decentralized resource sharing methods

are still needed.

Some works dealing with adaptive modulations and inter-

ference mitigation [3], [4], [7]–[12] have been proposed in the

past few years. Adaptive modulations are presented in [7]–[11]

for the single-user context. Interference mitigation is studied in

[3], [4] with prior knowledge on the interfering waveforms and

[12] considers a receiver with the ability to decode messages

from interfering transmitters so as to perform successive

interference cancellation. These two assumptions may be valid

in specific scenarios only. Medium access control schemes

(MAC) have also been studied extensively for homogeneous

UWA networks [13]–[17].

Recent works on noncooperative UWA communications

have proposed to formulate a spectrum sharing problem within

the framework of game theory [18]–[20]. By noncooperative,

we mean that the communication links do not have any

information about the interferences from other sources. This

framework has been well investigated in the terrestrial commu-

nication community and a good survey can be found in [21].

However, its use is still very limited in the UWA community.

In [18]–[20], players are UWA transmitter-receiver (TX-RX)

pairs competing to access the same portion of spectrum.

Orthogonal-frequency-division-multiplexing (OFDM) modula-

tion is considered. The players strategies are power vectors

allocated across frequencies and their goal is to maximize

an objective (or utility) function related to their information

rate. The problem is solved according to the Nash Equilibrium

(NE) solution, which consists in a power allocation strategy

from which no player has an incentive to deviate alone. Nash

equilibria are typically reached through the use of iterative,

distributed algorithms [22], [23]. In [18], it is shown how

noncooperative UWA-OFDM links can share the spectrum
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very efficiently with only a local, statistical and possibly

erroneous knowledge of the environment. On the basis of the

theoretical work of [24], the complementary problem has also

been studied in [25] where UWA-OFDM players minimize

their power under a Quality-of-Service (QoS) constraint. These

problems fall into the class of Generalized Nash Equilibrium

problems (GNE) [26], for which solutions may not exist.

A limit of these works are the selfish behaviors inherent to

the NE solutions. Solutions that are Pareto-superior to the NE

can be found if the players adopt less aggressive strategies.

Along this line, the concept of satisfaction games was pro-

posed in [27]. In these games, players are no more interested

in selfishly maximizing their utility (e.g. SINR, information

rate), but only in achieving a utility threshold above which

they consider themselves to be satisfied. This framework has

been developed in the past few years to solve problems of

QoS provisioning in decentralized wireless networks [28]–

[30]. However, the satisfaction equilibrium solution proposed

in [29], [30] requires that all players are simultaneously

satisfied, which may not be achievable in most situations. To

cover the case in which only a subset of players can satisfy

their QoS constraints, the concept of Generalized Satisfaction

Equilibrium (GSE) has been proposed in [28]. This solution

is also reached iteratively, thanks to an algorithm distributed

among the players. Nevertheless, each player must know what

are the strategies that satisfy its QoS constraints given the

strategies played by its opponents. In practice this would

require to feed back several tenth or hundreds of bits from

the receivers, depending on the information considered. Such

a detailed knowledge would not be available to the transmitters

if the feedback link is restricted to one or a few bits.

Our contributions are the following. We demonstrate how

the reliability of point-to-point UWA communications facing

interferences in a competitive, noncooperative environment

can be improved with the GSE solution. Information exchange

is prohibited, the links evolve outside any network structure

and are selfish in the sense they consider only their individ-

ual performance. Several UWA communication scenarios are

formulated under the satisfaction game framework. Practical

situations targeted are any shallow water communication setup

with a small number of TX-RX pairs. Realistic assumptions

regarding the specificity of the UWA environment are made.

The channel is randomly time-varying and frequency selective,

and the attenuation and noise are frequency dependent. The

feedback link required to perform adaptation at the trans-

mitter side is subject to long delays due to the low speed

of UWA waves (1500 m.s−1). The coherence time of the

channel is assumed shorter than the propagation delays, so that

it becomes irrelevant to feedback instantaneous information

on a channel realization. Instead, a statistical information is

considered, with an integration period of several tenths of

seconds. Games with direct-sequence-spread-spectrum (DSSS)

and OFDM modulations are studied. The players are UWA

TX-RX pairs whose transmission strategies are power levels as

well as spreading gains for the DSSS modulations, and power

allocation vectors on the OFDM subcarriers. They are aimed

at finding a strategy satisfying an individual QoS constraint

in a distributed way, and without cooperation or information

exchanges with each others. This constraint is expressed in

terms of a utility function which, for a given link, depends

on the channel statistics and the average level of interferences

from other transmitters. Two types of feedback are consid-

ered. First, receivers feed back statistics on the channel gain

and on the interference plus noise power. The asynchronous

satisfaction response algorithm (ASRA) presented in [28] is

used when transmitters have this detailed knowledge of their

environment. A blind satisfaction response algorithm (BSRA)

is proposed to fit better with the UWA context, where a

low bit-rate feedback link could be preferred due to limited

bandwidths. This algorithm only necessitates that the receiver

feeds back a 1-bit information signal to its transmitter so

as to adapt its transmission strategy. Convergence of both

algorithms in all considered scenarios is discussed. Finally,

a scenario considering heterogeneous systems is evaluated

through simulations by merging UWA DSSS and UWA OFDM

in the same game. The performance at the equilibrium are

evaluated through the probability of satisfaction, the average

power used when satisfied, and the average convergence time

of the algorithms. To the best of our knowledge, this is the first

work of this nature in the UWA context. In addition, BSRA

can constitute a more general contribution.

The paper is organized as follows. Sec. II formally states the

problem under consideration and develops the game-theoretic

models and solutions. Specific UWA scenarios are presented in

Sec. III. Numerical results illustrate the relevance and benefits

of our proposal in Sec. IV. Conclusions are given in Sec. V.

Notation: Throughout this paper, uppercase and lowercase

boldface letters, e.g. A, x, denote matrices and vectors,

respectively. The superscripts T and H denote transposition

and Hermitian transposition, respectively. The entries of a

matrix A are denoted by Ak,n and Tr [·] denotes the trace.

‖ ·‖p designates the ℓp-norm. The Frobenius norm of a matrix

A is defined as ‖A‖F
∆
=

√

tr [AAH ]. The power set P(S)
of a set S is the set of all its subsets, including S itself and

∅. The cardinal of a set S is denoted by |S|. MN×M (K)
denotes the set of matrices with N lines and M columns whose

coefficients belong to K. The Kronecker symbol is denoted

by δn. Probability spaces are denoted by (Ω,B,P) with Ω
the sample space, B the event space, and P the probability

measure. Finally, E {.} denotes expectation.

II. GAME-THEORETIC MODEL AND SOLUTIONS

A. Problem statement

Let I = {1, · · · , I} be a set of noncooperative UWA TX-

RX links competing simultaneously for the use of the same

bandwidth B. Any receiver i ∈ I treats the signals received

from transmitters j 6= i as additive coloured noise. This

corresponds to the interference channel model in information

theory [31]. Each TX-RX link must comply with an individual

QoS constraint expressed relatively to a performance measure.

In the present work, this measure is either the signal-to-

interference-plus-noise ratio (SINR) or the information rate.

Whether the constraint is satisfied or not depends on the choice

of a transmission strategy. This choice must be made individu-

ally through repeated interactions with the environment. In this
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paper, the strategies are transmission powers and/or spreading

gains. The strategic choice of a transmitter impacts inevitably

the performance of the others, and thus their own strategic

choices. The set of TX-RX links is aimed at autonomously

finding an equilibrium strategy in a decentralized manner, each

link having only a local knowledge of its environment. No

communication is allowed between different links, and each

of them considers only its own performance and constraints

when choosing its strategy. Such situations are well formalized

under the framework of game theory [32], and satisfaction

games [27] are particularly well suited to the problem stated.

B. Games in satisfaction form and equilibrium

Based on the work [27]–[30], the main concepts related to

games in satisfaction form are recalled. Refinements are also

presented when needed.

A game in satisfaction form is a tuple

G =
(

I,A, (fi)i∈I , (ϕi)i∈I

)

(1)

where

• I = {1, · · · , I} is the set of players involved in the game,

• A = A1 × · · · × AI where Ai is the strategies set of a

player i ∈ I. A choice of strategy of player i is denoted

ai ∈ Ai. The choice of all players other than i is denoted

by a−i = [a1, · · · , ai−1, ai+1, · · · , ai] ∈ A−i = A \ Ai.

An element a ∈ A is called a strategy profile.

• fi : A → R is a performance or satisfaction measure of

the player i called utility function.

• The satisfaction mapping or correspondence ϕi : A−i →
P(Ai) maps the strategies of all opponents of player

i to a set of strategies that satisfies some performance

constraints.

In the following, the QoS requirements will be expressed

with a mapping ϕi of the form

ϕi(a−i) = {ai ∈ Ai : fi(ai, a−i) ≥ Γi} . (2)

Player i is satisfied if its utility fi is greater than some

threshold Γi. ϕi(a−i) represents the set of strategies that leads

to satisfaction of player i.
The sets Ai are assumed bounded and totally ordered by

an order relation �. We require the sets Ai to have (at least)

a smallest and a largest elements, denoted respectively as ai
and ai. The ordering of strategies can be thought as a cost or

effort that a player must pay to play a given strategy, e.g., the

higher the transmit power, the higher the cost. It is assumed

that for all i ∈ I, fi(ai, a−i) is monotonically increasing in

ai.
1

For any strategy profile a ∈ A, the set of players I is

divided into three disjoint subsets whose union covers I:

IS(a) = {i ∈ I : ai ∈ ϕi(a−i)} , (3)

the satisfied players for whom the chosen strategy satisfies the

constraints,

IN (a) = {i ∈ I : ai /∈ ϕi(a−i), ϕi(a−i) 6= ∅} , (4)

1This is a realistic assumption in many practical scenarios, e.g. when
strategies spaces are powers and utility functions are SINRs or information
rates.

the unsatisfied players with a non-empty set of satisfying

strategies (they can profitably deviate from a),

IU (a) = {i ∈ I : ϕi(a−i) = ∅} , (5)

the unsatisfied players who do not have any satisfying strate-

gies for the strategy profile a.

It is clear that if the players are rational and have common

and complete knowledge of the game [32], none of them would

play an strategy that drives him into the subset IN (a). Thus, at

a satisfaction equilibrium profile a∗, the set IN (a∗) should be

empty, implying that no player can deviate alone profitably. We

have the following definition for the generalized satisfaction

equilibrium [28]:

Definition 1 (Generalized Satisfaction Equilibrium). An strat-

egy profile a∗ = (a∗i )i∈I is a generalized satisfaction equilib-

rium (GSE) if and only if IN (a∗) = ∅.

It is shown in [28, Prop. 1] that if the satisfaction mapping

ϕi can be expressed as in (2), and if the strategy spaces of the

players are finite, then there exists at least one GSE in mixed-

strategies for the game G.2 This is because there exists at least

one Nash Equilibrium (NE) in mixed-strategies in any finite

normal-form game [33], and thus, in the normal-form game

GNE =
(

I,A, (fi)i∈I

)

defined with fi as utility functions to

maximize. This equilibrium is necessarily a GSE: at any NE,

the set of players can be divided as in Def. 1 and no player

can increase its utility function - or be more satisfied - by an

unilateral change of its strategy (by definition of the NE).

In this paper, we are interested in pure-strategies GSE. In

games defined as in (1), where players have utility functions

increasing in their own strategies and satisfaction correspon-

dences defined as in (2), there exists at least a pure GSE.

This equilibrium is the pure NE a∗ = (ai)i∈I of GNE =
(

I,A, (fi)i∈I

)

, where players play their most expensive strat-

egy.

C. Decentralized learning of pure-strategy satisfaction equi-

libria

In practice, satisfaction equilibria have to be learned through

iterative algorithms. The satisfaction response (SR) of a player

i ∈ I to the strategy profile a−i of its opponents is a selection

of strategy in the set returned by the satisfaction correspon-

dence ϕi(a−i). This set, in general, is not a singleton, and the

question of what element to select can be posed. We define the

least effort satisfaction response (LESR) as the less expensive

strategic choice among the satisfying ones:

SRi(a−i)
∆
= min

ai∈ϕi(a−i)
ai. (6)

Let T = {0, 1, 2, · · · } be possible indexes in a set of times

represented by an increasing sequence of real numbers, not

necessarily equally spaced. At any time or iteration t ∈ T , and

while an equilibrium is not reached, some players should play

a satisfaction response ai ∈ ϕ(a−i(t)).
3 We denote by Ti ⊆ T

2Mixed-strategies are probability distributions on the sets of (pure-
)strategies

3Note that the information player i has on the strategies of its opponents
at time t can be outdated.
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the set of times for which player i has to play. Algorithm

1 is proposed as a procedure to learn satisfaction equilibria.

It improves the asynchronous satisfaction response algorithm

proposed in [28] by selecting the least expensive satisfaction

response of each player at each iteration.

Algorithm 1 Asynchronous satisfaction response

1: t = 0
2: a(t) =

(

ai
)

i∈I
3: while IN (a(t)) 6= ∅ do ∀ i ∈ I
4: if t ∈ Ti then

5:

ai(t+ 1) =

{

SRi (a−i (t)) if i ∈ IN (a(t))
ai(t) otherwise

6: end if

7: t = t+ 1
8: end while

Algorithm 1 assumes that the transmitters can determine

whether they belong to IS(a(t)), IU (a(t)), or IN (a(t)) and

also know the set returned by ϕi(a−i(t)). Such assumptions

require that the transmitters have some knowledge on their

environment, e.g., SINR or CSI. Such a knowledge requires

to transmit several tenth or hundreds of bits through a feedback

link. In a UWA context, low signaling overhead is often

required because of the limited bandwidth. To reduce feedback

overheads, a practical policy can consist in providing only a 1-

bit feedback signal informing the transmitter whether it should

play another strategy or not.

D. Blind satisfaction response algorithm (BSRA)

We propose a blind satisfaction response algorithm where

transmitters are not able to evaluate by themselves what their

satisfying strategies are, i.e., they do not have the knowledge

of the set ϕi(a−i(t)). Consequently, they also do not know

which set of players they belong to. Nevertheless, for a given

strategy profile a(t) at time t, an unsatisfied player i has a

profitable deviation if and only if ϕi(a−i(t)) is not empty. In

other words, only the players belonging to the set IN (a(t))
will adapt their strategy during the next steps. By virtue of

the assumptions made in Sec. II-B (ordered and finite strategy

spaces, fi(ai, a−i) increasing in ai, and ϕi(a−i) expressed as

in (2)) we see that, for a given a−i(t), it suffices to test the

condition fi(ai, a−i(t)) ≥ Γi to check the nonemptiness of

ϕi(a−i(t)). Thus, when player i is not satisfied, the receiver

can evaluate whether or not there exists a satisfying strategy

to play next by testing if the most expensive strategy ai
is satisfying and provide a 1-bit feedback to the transmitter

accordingly. The feedback signal has two states, which will

be denoted by ACK or NACK in the following. If a TX-RX

link i belongs to the set IN (a(t)), the receiver can provide

a NACK feedback to inform the transmitter that there exists

a strategy yi, more expensive than ai(t), which is possibly

satisfying after time t. This strategy is ai in the worst case.

Let Yi(t) be the set of strategies strictly more expensive than

the strategy ai(t) played at time t ∈ T ,

Yi(t) = {yi ∈ Ai : ai(t) ≺ yi � ai} . (7)

As the transmitter does not know ϕi(a−i(t)), if it receives a

NACK it randomly chooses a strategy in Yi(t) for the next

iteration of the algorithm. Let

Φ
(i)
t : Ω → Yi(t) (8)

be the random variable modeling this choice. If the transmitter

i receives an ACK from its receiver, the link belongs either to

IS(a(t)) or IU (a(t)) and does not change its strategy since

it would not be a profitable deviation. Algorithm 2 formalizes

this procedure.

Algorithm 2 Blind asynchronous satisfaction response

1: t = 0
2: a(t) =

(

ai
)

i∈I
3: while IN 6= ∅ do ∀ i ∈ I
4: if t ∈ Ti then

5:

ai(t+ 1) =

{

Φ
(i)
t (ω) if TX i has received NACK

ai(t) otherwise

6: end if

7: t = t+ 1
8: end while

Proposition 1 states a sufficient condition for convergence of

the two algorithms. This proposition and its proof are similar

to [28, Proposition 3], but is here completed for Algorithm

2. The following definitions need to be introduced before

Proposition 1. Consider the order relation <A on A defined

by

∀ a, a′ ∈ A2, a <A a′ ⇔ ∀ i ai � a′i, ∃ j aj ≺ a′j . (9)

The mapping φi : A−i → Ai is said to be order-preserving if,

given a−i, a
′
−i ∈ A2

−i such that a−i <A−i
a′−i, we have

φi(a−i) � φi(a
′
−i). (10)

Proposition 1. If in game (1) and ∀ i ∈ I the following

conditions are satisfied:

1) ∀ t ≥ 0, ∃ t′ > t such that t′ ∈ Ti,
2) ∀a−i ∈ A−i, ϕi(a−i) = {ai ∈ Ai : φi(a−i) ≤ ai} ,

where φi : A−i → Ai is order-preserving,

3) ∀ ai ∈ Ai, ∃ ai ∈ Ai such that ai � ai,

then Algorithms 1 and 2 converge to a pure-strategy GSE.

Proof: First, it must be emphasized that condition 1) is

equivalent to assume that at any time, any player will have

an opportunity to play an strategy in the future. This is not a

stringent assumption.

Let t = 0, then a(0) = (ai)i∈I . If IN (a(0)) = ∅ then a(0)
is an equilibrium and the procedure terminates, otherwise there

exists a player with a profitable deviation. Let t ≥ 0 and a(t) ∈
A. If IN (a(t)) 6= ∅ then ∃ i ∈ I such that ϕi(a−i(t)) 6=
∅ and ai(t) /∈ ϕi(a−i(t)), which is equivalent to state that

ai(t) < φi(a−i(t)). Let Yi(t) be the set of strategies defined

in (7). From Assumption 2) of Prop. 1, we have ϕi(a−i(t)) ∈
P(Yi(t)).
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When IN (a(t)) 6= ∅, at least one player i ∈ IN (a(t)) has

to play a satisfaction response so that ϕi(a−i(t)) ∈ P(Yi(t)).
From Assumption 1), we then deduce that, ∀ t ≥ 0,

∃ t′ > t such that a(t) <A a(t′) ≤A a. (11)

Thus, a(t) increases with respect to the order relation <A. By

Assumption 3), a(t) cannot be greater than a, which is a NE

of the normal form game GNE and also a GSE (see Section

II-B). Consequently, both Algorithms 1 and 2 converge to a

GSE which is either a or any a∗ ≤A a such that IN (a(t)) = ∅.

Algorithms 1 and 2 have both a maximum number of

iterations of O (I ×maxi∈I |Ai|) [28]. This case occurs when

all players are initially in IN , play systematically the cheapest

strategy in their satisfaction correspondence, are brought back

again in IN the next time they have to play, and so on until the

most expensive strategy is played. For each communication

link, the extra computational complexity is expected to be

negligible since both algorithms can be built only on few

simple statements.

III. CASE STUDIES

In this section, the use of satisfaction games in noncoop-

erative UWA communication problems is illustrated. Games

with DSSS and OFDM modulations are discussed. DSSS

point-to-point schemes provide processing gain for robust

transmissions [34], [35] and OFDM is commonly used for

high-rate communications [36]. For each game, two types

of feedback are considered: 1-bit or statistical CSI. In the

following games, the set of players I is made of I UWA

TX-RX links communicating at the same time in the same

bandwidth B. The players are embedded with their own private

strategies sets (Ai)i∈I and utility functions (fi)i∈I which

model their transmission parameters and performance metric

respectively. Each of them is aimed at finding, if feasible,

a strategy ai ∈ Ai such that an individual QoS constraint

fi(ai, a−i) ≥ Γi is satisfied.

We consider block transmissions as it encompasses both

OFDM and DSSS schemes. Let xi ∈ CNi be a block of Ni

i.i.d zero mean complex symbols sent by the transmitter i.
For any i ∈ I, the symbols xj 6=i ∈ CNj sent by any other

transmitter j ∈ I, j 6= i, are independent of xi. All the

transmitters are subject to their own power constraints so that

Pmin
i ≤ Pi ≤ Pmax

i ∀ i ∈ I, (12)

where Pi = Tr [Ci] = Tr
[

E
{

xix
H
i

}]

. For all players i ∈ I,

the choice of a transmission strategy ai ∈ Ai impacts the

covariance matrix Ci and thus the signal xi. This will be

translated in terms of powers and spreading gains for DSSS

modulations and in terms of power allocations for OFDM

modulations.

A realization of the block of symbols received by the

receiver i can be written as

yi = Hiixi +
∑

j 6=i

Hjixj +wi (13)

= Hiixi + zi(x−i), (14)

where wi ∼ CN (0, σ2
i INi

) is a Gaussian noise independent of

both xi and xj 6=i, and Hji ∈ MNj×Ni
(C) are channel matri-

ces of time-varying random coefficients between transmitter j
and receiver i. The receiver i only has a statistical knowledge

of its direct channel Hii, which is assumed quasi-wide sense

stationary during L blocks, and of its interference plus noise

term zi(x−i). Nothing is known about Hji or xj for all j 6= i.
L is assumed large enough so that sample means converge to

expectations.

Regarding the only statistical knowledge of the environment

available, the utility functions (fi)i∈I ruling the adaptation

process of each link must be either an averaged criterion or

expressed as a function of these statistics. In order to enable

the transmitter to adapt its parameters, the corresponding

receiver must provide a feedback on its knowledge of the

environment. This knowledge could be either the channel

and interference plus noise statistics or a 1-bit ACK/NACK

feedback indicating if the transmitter should adapt its strategy

or not. In this last case, the state of this 1-bit signal is still

chosen according to the channel and interference statistics

since it depends on a QoS constraint expressed with the

averaged performance criterion previously mentioned. Each

link adapts its transmission strategy periodically. They are

not supposed to be synchronized with each others. Practically,

the receiver would estimate the channel and interference plus

noise statistics during each period. Depending on the feedback

policy chosen, two alternatives are possible at the end of a

period. Let us take the perspective of some given player j ∈ I:

• The receiver j sends directly back the statistics on

the channel Hjj and the interference zj(x−j) to the

transmitter j via a dedicated feedback link. Then, the

transmitter j is able to evaluate the utility fj(aj , a−j)
for any possible aj ∈ Aj and for the given interference,

which depends on a−j . It can deduce - if they exist - what

are the strategies in ϕj(a−j) satisfying the QoS constraint

fj(aj , a−j) ≥ Γj and chooses the least expensive for the

next period. Here, the player j uses the Algorithm 1.

• In the second case, the player uses Algorithm 2. The

receiver j knows the statistics on the channel and

the interference and checks by itself if the constraint

fj(aj , a−j) ≥ Γj is satisfied and if ϕj(a−j) is non-

empty, as in the procedure described in Section II-D. If

the receiver determines it belongs to the set of players

IN (a), it sends a NACK back to inform the transmitter j
that a profitable deviation still exists. Transmitter j does

not know exactly what strategies are profitable deviations

from the actual aj , so it chooses randomly among those

that have a higher rank than aj in its strategies set.

Otherwise, the player belongs either to IS(a) or IU (a),
meaning that no other choice can be profitable. Then, the

receiver sends an ACK back to transmitter.

The impact of the type of information available to the

transmitters is studied through simulations in Section IV.

As stressed in [8], [18], [19], the long propagation delays

typical of UWA channels combined with their random time

variability could very likely lead to outdated knowledge of the

instantaneous CSI/SINR at the transmitter side. As an exam-
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ple, the propagation delay for a 1.5 km range is 1 s, whereas

a lot of UWA channels exhibit coherence times of tenth or

hundreds of milliseconds [37]–[39]. To ensure robustness and

reduce the feedback activity, channels statistics should be

computed on a relatively long period (several seconds or tenth

of seconds, depending on the channel coherence time and

transmission range).

In the next two subsections, the strategies sets and utility

functions of the DSSS and OFDM players are detailed.

A. Model of the DSSS players

In the DSSS communication links, the vectors xi of equa-

tion (13) can be written as xi = Si×ui where ui ∈ C
Ni is a

pseudo-noise (PN) spreading sequence of Ni chips such that
∑N

k=1 ui,ku
∗
i,n−k ≈ Niδn, uH

i ui = Ni, and Si ∈ C is chosen

randomly in an alphabet of equally likely symbols. Thus,

Tr [Ci] = Tr
[

E
{

xix
H
i

}]

= NiPi, where Pi = E
{

|Si|2
}

.

The symbol time is Ti = Ni × Tc where Tc ≈ 1/B is the

duration of one chip ui,n. It is assumed that the length of

the sequence is greater than the delay spread of the channel,

which is assumed to be K chips. Any realization of the channel

matrix Hii has the following form:

Hii =






















h
(0,0)
ii

h
(1,1)
ii h

(0,1)
ii 0...

. . .

h
(K−1,K−1)
ii

. . .

0 h
(K−1,Ni−1)
ii · · · h

(0,Ni−1)
ii























.

(15)

Each coefficient h
(k,n)
ii is a realization at (chip) time n of

a random process modelling the gain of the kth path of the

channel, and whose distribution is unknown by i. It is assumed

that each receiver i is able to estimate the coefficients of Hii

each time it receives a new block of N chips so as to compute

the channel statistics.

The DSSS players have a finite and countable set of param-

eters which are pairs of transmission power Pi and spreading

gain Gi, with Gi = Ni. This set is denoted by

Pi =
{(

P
(1)
i , G

(1)
i

)

, · · · ,
(

P
(ni)
i , G

(ni)
i

)}

. (16)

The set of possible strategies for player i is the indexes

selecting the parameters in Ai. We denote this set by

Ai = {1, · · · , ni} , (17)

thus, to any strategy ai chosen by player i corresponds a

pair
(

P
(ai)
i , G

(ai)
i

)

. This set is ordered in such a way that it

should be more expensive for transmitter i to use more power,

and, when the same power is used, it should also be more

expensive to increase the spreading gain. 4 Note that when

the spreading gain is increased, the chip rate does not change

so the transmission bandwidth is still B. Consequently, the

symbol rate decreases with the spreading gain.

A utility function based on the SINR is proposed. After

despreading, the average SINR of player i is given by5

fi(ai,x−i) =
E

{

‖Hii‖
2
F

}

P
(ai)
i

E

{

‖zi(x−i)‖
2
2

} G
(ai)
i (18)

and the satisfaction correspondence is

ϕi(x−i) = {ai ∈ {1, · · · , ni} : fi(ai,x−i) ≥ Γi} , (19)

where Γi is the minimum SINR levels necessary to satisfy the

QoS constraint.

Although not denoted explicitly, the strategies a−i governs

obviously the power of the interference terms zi(x−i) per-

ceived by the receiver i. It is also clear from Eq. (18) that

there is no need for the player i to know explicitly the strategy

profile of its opponents to adapt its own strategy. Only the

aggregate interference plus noise power is needed.

1) Game with knowledge of the statistical CSI: The receiver

provides the SINR fi(ai,x−i) of Eq. (18) to its transmitter,

through the feedback link. Then, the transmitter can seek

for the satisfying strategy having the minimal index in its

strategies space. For a given interference vector x−i, this

corresponds to its LESR (see (6)). The players use Algorithm

1.

2) Game with 1-bit feedback: The players use Algorithm

2. The receiver is able to compute (18) from the channel

and interference statistics. It is assumed that the receiver is

also able to compute what would be (18) with maximum

transmit power and spreading gain. An ACK is fed back

to the transmitter if the SINR constraint fi(ai,x−i) ≥ Γi

is satisfied, or if the maximum power and spreading gain

does not achieve the target SINR (fi(ni,x−i) < Γi). In this

case, the transmitter does not change its current strategy.

Otherwise, a NACK is sent back and the transmitter chooses

randomly a strategy among those having an higher rank than

the current one.

For the two types of feedback, at least one GSE exists; It

is the NE a = (n1, · · · , nI) where all players play their most

expensive strategy. From Sec. II-B, it is possible to prove that

both Algorithms 1 and 2 converge for DSSS players. This

proof is provided in Appendix A.

4A possible way to obtain such an order for the set Ai is to impose the
following condition:

∀ ai, a
′

i
∈ A2

i
,

xi � a′
i
⇔

{

P
(ai)
i

≤ P
(a′

i)
i

P
(ai)
i

G
(ai)
i

< P
(a′

i)
i

G
(a′

i)
i

.

5For the sake of clarity, the expression of this utility function is kept simple.
However, in practice this utility could be modified to integrate residual inter-
symbol interference.
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B. Model of the OFDM players

For OFDM players, the vectors xi of Eq. (13) are random

symbols on N orthogonal subcarriers and yi is the received

symbol vector after Discrete Fourier Transform and cyclic

prefix removal. The subcarrier spacing of the player i is

∆fi = B/Ni and the symbol duration is Ti = ∆f−1
i + T ′

i

where T ′
i is the cyclic prefix duration. Each symbol xi,n on

each of the Ni subcarriers has a power pi,n = E
{

|xi,n|2
}

,

where n ∈ {1, · · · , Ni}. The power allocated on the whole

bandwidth B is Pi =
∑

n pi,n. Assuming no inter-carrier

interference (ICI)6, the channel matrix Hii is diagonal. Each

of its coefficient (hii,n)
Ni

n=1 is a realization of the channel

gain at the nth subcarrier. The distribution of Hii is unknown

from player i. The performance criterion chosen for the OFDM

systems is related to the information rate. We follow [18] and

define the utility function as

fi(pi,p−i) = αi

Ni
∑

n=1

log (1 + γi,n(p−i)pi,n) . (20)

where αi = (NiTi∆fi)
−1 and γi,n is a statistical CSI on

subcarrier n expressed as

γi,n(p−i)
∆
=

eE{log|hii,n|
2}

σ2
wi,n

+
∑

j 6=i E{|hji,n|2}pj,n
. (21)

The vector pi = [pi(1), · · · , pi(N)]T ∈ RN
+ is the power

allocation strategy on the Ni subcarriers of transmitter i, and

p−i =
[

pT
1 , · · · ,p

T
i−1,p

T
i+1, · · · ,p

T
M

]T
are the strategies of

all the other transmitters. To compute its utility function,

the receiver should estimate the coefficients (hii,n)
Ni

n=1 as

well as the noise plus interference power spectral density

ζi(n) = σ2
wi,n

+
∑

j 6=i E{|hji,n|2}pj,n. In practice, this

is made possible by dedicating some subcarriers to pilots

symbols.

The transmitters are constrained in power so that ∀ i ∈
I, pi ∈ Pi where

Pi
∆
=

{

pi ∈ R
Ni

+ : Pmin
i ≤ ‖pi‖1 ≤ Pmax

i

}

(22)

is the set of feasible power allocations of player i. The possible

power allocation choices depend on what information the

players have about their environment i.e., whether or not the

transmitters know the statistical CSI γi(p−i).

1) Game with knowledge of the statistical CSI: Here, the

players use Algorithm 1 and it is supposed that the receivers

have fed the CSI γi(p−i) back to their respective transmitters

when an update is to be performed. For a transmitter i knowing

its CSI γi(p−i), it can be shown via convex optimization tools

[25], [41] that the unique solution of

minimize
pi∈R

Ni
+

‖pi‖1

subject to fi(pi,p−i) ≥ Γi

(23)

6Considering ICI would not change the problem formalized next. As
discussed in [40], ICI translates into an additional noise term in the utility
function.

is a water-filling solution such that ∀ n ∈ {1, · · · , Ni}

pi,n =

[

λi −
1

γi,n(p−i)

]+

, (24)

where [x]
+

denotes max(0, x) and λi is a Lagrange multiplier

chosen to saturate the constraint fi(pi,p−i) ≥ Γi. If the

constraints are feasible, it can be checked from equation (6)

that the solution of (23) is the unique LESR of i to the

interference profile p−i. Moreover, for a given constraint on

the ℓ1-norm of pi, the water-filling solution is also the unique

maximizer of fi(pi,p−i). Thus, a rational player should

always play a water-filling vector computed on the basis of

its statistical CSI γi(p−i). Any other choice of strategy is

either more expensive (it has a greater norm than necessary

so the transmitter uses more power) or gives less utility (and

thus, less chances of being satisfied). Let

p⋆
i = arg max

pi∈R
Ni
+

fi(pi,p−i)

subject to ‖pi‖1 = Pi

(25)

be the (water-filling) power allocation vector that maximizes

the utility function when the available power is Pi. It is also

true that

Pi = min
pi∈R

Ni
+

‖pi‖1

subject to fi(pi,p−i) = fi(p
⋆
i ,p−i).

(26)

p⋆
i can be written as p⋆

i = Piqi, with qi ∈ R
Ni

+ and ‖qi‖1 =
1. The solutions of problems (23) and (25) are the same vector

p⋆
i if the norm constraint Pi of (25) is chosen such that the

maximum of utility achievable with this norm is equal to the

utility constraint of problem (23) - or, reversely, if the utility

constraint in (23) is such that the solution has a norm equal

to the constraint of problem (25). Considering that the only

power vectors that should be used are those having the water-

filling property form, the strategies sets for this game can be

reduced to the choice of the ℓ1-norm of these vectors. Thus,

Ai =
[

Pmin
i , Pmax

i

]

. (27)

The utility function then satisfies

fi(Pi,p−i) = αi

Ni
∑

n=1

log (1 + Piγi,n(p−i)qi,n) , (28)

with Pi ∈ Ai and the satisfaction correspondence is expressed

by

ϕi(p−i) = {Pi ∈ Ai : fi(Pi,p−i) ≥ Γi)} . (29)

Then, the LESR of player i becomes the smallest power

in Ai for which the water-filling allocation on Ni subcarriers

gives a utility greater than the QoS constraint Γi (see also (6)).

From a practical point of view, it can be evaluated by solving

the problem (23) and checking whether the norm Pi of the

solution is greater than Pmax
i or not. If so, it means that the

set ϕi(p−i) is empty. Otherwise, the water-filling vector with

norm Pi that maximizes fi complies with the QoS constraint

and gives exactly fi(Pi,p−i) = Γi.

Since this game is not finite, in the sense that the players

do not have a finite set of strategies, the existence of a
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GSE cannot be guaranteed from the arguments of Sec. II-B.

However, one can verify that the strategies sets Ai and

utility functions fi from Eq. (27) and (28) are compliant

with the conditions of the Debreu-Glicksberg-Fan theorem

[32, Theorem 1.2]. This theorem states that the existence of

a pure NE is guaranteed in any game whose strategies sets

are non-empty compact and convex sub-sets of an Euclidian

space and whose utility functions fi(ai, a−i) are continuous

in (ai, a−i) and quasi-concave in ai. As any pure NE is

also a GSE, the existence of at least one GSE is guaranteed

for this game. Convergence of Algorithm 1 is discussed in

Appendix B-A.

2) Game with 1-bit feedback: The players use Algorithm

2. In this game, the transmitters do not have access to the

values of the statistical CSI γi(p−i). Instead, they observe

an ACK/NACK signal fed back by the receiver. Since they

cannot compute a water-filling solution, it will be considered

that their choices are reduced to the number of subchannels

on which the transmitter allocate a non-zero, constant power.

The strategies sets are defined as

Ai = {1, · · · , Ni} . (30)

The corresponding power allocation vectors possibly chosen

are

Pi(ai) =
{

pi ∈ {0, Pi}
Ni : ‖pi‖0 = ai

}

(31)

where Pi = Pmax
i /Ni and ai ∈ Ai.

Each transmitter is initialized with its least expensive

strategy, which consists in any vector with only one non-

zero component chosen randomly. According to Algorithm

2, when the transmitter receives a NACK, it means that it

must randomly choose a more expensive strategy than the one

previously played. Here, it will consists in randomly choosing

some subchannels to allocate with power Pi among those that

are not already used. This can be formalized as follows. For

a given power allocation vector pi(t) ∈ Pi(ai(t)), chosen by

player i at time t ≥ 0, let

Ni(t) = {n ∈ {1, · · · , Ni} : pi,n(t) 6= 0} (32)

be the set of subcarriers allocated with power Pi. At time

t+1, this set is extended such that |Ni(t+1)| > |Ni(t)| with

Ni(t) ⊂ Ni(t+ 1).
The existence of at least one pure GSE for this game is

guaranteed by the arguments of Sec. II-A. Similarly to the

DSSS game, this GSE is the pure NE a = (N1, · · · , NI)
where every player transmits at its maximum power. A proof

that Algorithm 2 converges is given in Appendix B-B.

IV. NUMERICAL EXAMPLES

The framework of satisfaction games and GSE learning is

now illustrated with numerical results obtained on synthetic

UWA channels. Considerations for a practical application of

this framework are discussed at the end of this section.

We consider UWA communication links transmitting at the

same time and using the same bandwidth B = 6 kHz, centered

at fc = 12 kHz. First, the DSSS and OFDM scenarios are

studied separately. The two different types of feedback are

|h11(t, f)|
2
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t
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]
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dB

Fig. 1. A channel frequency response from the UWA channel simulator from
[42], [43].

considered, namely, average SINR or statistical CSI and 1-bit

feedback. A last scenario mixing DSSS and OFDM with 1-bit

feedback is also presented. The performance is evaluated in

terms of probability of satisfaction per player. The average

power used per satisfied player at the equilibrium and the

convergence speed to an equilibrium are also considered.

In the simulations, transmitters and receivers are randomly

immersed inside a 1.5 km radius circle. The water depth is

set to 50 meters, and the minimum and maximum immersion

depths are 5 and 20 meters, respectively. For each single game

played, the location and immersion depths are randomly drawn

with a minimal distance of 500 meters between terminals. The

UWA channel simulator described in [42], [43] is used to

produce the time-varying impulse responses of the channels

between each possible TX-RX link. The channels statistics

needed by the players to compute their utility functions

(18) and (28) are extracted from these responses. On this

basis, a game is run for several iterations during which the

players update their transmission strategy according either to

Algorithm 1 or 2, depending on the type of feedback returned

by the RXs. The probability of satisfaction, average power

consumption of the satisfied transmitters and average number

of iterations results from averages over 500 game realizations.

The channel simulator produces synthetic Rice fading7

UWA channels and proceeds as follows: parameters describing

the transmission geometry (ranges and depths) are used as

inputs of a ray-tracing model to obtain a static impulse

response around which time fluctuations are then generated by

entropy maximization of the Doppler spectrum. The channel

fluctuations are parameterized by the mean Doppler spread

σD and the Rice factor of the main path Kmax, given as

constraints of the entropy maximization problem. The Rice

factors of the secondary paths decrease exponentially with

their arrival times. For all the simulation scenarios described

here, the Doppler spread and Rice factor are set to σD = 1 Hz

and Kmax = 20 dB, respectively. The simulator also integrates

7Rice fading is assumed here for the needs of the simulations. This
assumption is made in agreement with [39], [44], [45] but note that there
exists other statistical models for UWA channels [46], [47].



9

physical propagation models for path losses and frequency-

dependent attenuation (given by Thorp’s formula) [2]. A

sample realization of a simulated UWA channel frequency re-

sponse corresponding to the described setup is shown in Figure

1. Other examples can be found in [42, Fig. 2], [19, Fig. 1] or

[18, Fig. 1]. We implicitly assume that the channel statistics

are stationary during a game, or at least until an equilibrium

is reached. This is an approximation as in practice the taps

statistics can be time-varying [39], [48]. This point is discussed

in Sec. IV-D. A reference signal-to-noise ratio (SNR) of 25

dB is set for a 1 km transmission range at maximum power

without interference. If the transmission range changes during

the simulations, the SNR varies accordingly to the path loss.

The noise power spectral density is modelled as a linear decay

of 18 dB/decade on the frequency scale [49].

A. Game 1: DSSS modulation

The minimum SINR to satisfy the QoS constraint (19) is

set to Γ
(dB)
i = 15 dB for all players. Their minimum power is

fixed to Pmin,dB
i = 170 dB ref µPa @ 1m and their strategies

sets are depicted in Table I.

TABLE I
ACTION SPACE OF THE DSSS PLAYERS

ai P
(xi)
i

G
(xi)
i

1 1× Pmin

i
1

2 1× Pmin

i
4

3 4× Pmin

i
4

4 4× Pmin

i
16

5 16× Pmin

i
16

6 16× Pmin

i
64

7 64× Pmin

i
64

Note that the same strategies set is used for all players in the

simulation, but the proposed framework allows heterogeneous

strategies sets. The symbol time is Ti = Ni×Tc with constant

chip rate Tc ≈ 1/B ≈ 166 µs and Ni the size of the PN

sequence. The useful rate depends on Ni and therefore changes

with the strategy chosen.

The NE of this game is aNE = [a1 = 7, · · · , aI = 7], which

corresponds to a situation where all transmitters use the highest

power and spreading gain. In the following, the probability of

satisfaction P [fi(ai, a−i) ≥ Γi] is evaluated and comparison

is made between the NE strategies and the GSE learned

through Algorithms 1 and 2. The two algorithms are initialized

with all players using their minimum power and spreading

gain, i.e. (ai = 1)i∈I . The power used on the average by

satisfied players and the convergence time to a GSE in terms

of iterations are also considered. Results are shown in Fig. 2

and 3.

1) Games with SINR feedback: Results of the DSSS games

with average SINR feedback and Algorithm 1 are shown in

Fig. 2

Fig. 2-(a) depicts the probability of satisfaction for each

player at a GSE and a comparison is made with the NE

strategy profile. An improvement can be seen as the number

of players in the game increases. At the NE, the interference

is maximum since all players transmit at maximum power.

Whereas at a GSE, unsatisfied players are more likely to use

lower levels of power. Therefore, if there are many players in

the game, the specific equilibrium where none of the player

has satisfied its QoS constraint occurs more often when players

learn a NE than when they learn a GSE. For a small number

of players, Fig. 2-(b) shows that for a similar probability of

satisfaction between a NE and GSE, the consumed power at a

GSE is smaller than at a NE. The number of iterations before

convergence translates into convergence time only when put

in relation with the update scheme and the update period.

For instance, consider a sequential update where players start

their transmission at different times and have the same update

period Tobs = 20 seconds.8 They play one after the other and

there are 20 seconds between two updates of a given player.

As shown in Fig. 2-(c) and considering this update scheme,

the corresponding convergence time is then around or below

40 seconds on average. With the exception of the two player

game, players update their strategy not more than once on

average. The same kind of analysis can be conducted for all

the other games.

2) Games with 1-bit feedback: Results of the DSSS games

with 1-bit feedback and Algorithm 2 are shown in Fig. 3.

Except for the one and two player games, no significant

difference can be seen between Fig. 2-(b) and 3-(b). In

games with more than two UA communication systems, the

considered area of 1.5 km radius is small enough to make

the players use their highest strategies to be satisfied, because

of the perceived level of interference. At a GSE, they often

choose ai = 6 or ai = 7. When there are only one or two

systems in the area, they could use less power to satisfy the

constraint but they have less information than in the previous

game. With SINR feedback, the power used is lower because

players choose systematically the least effort strategy. There

is no difference between Fig. 2-(a) and 3-(a) in terms of

successful channel access probability. When the number of

players exceeds two, they converge almost always toward

similar GSEs with maximum powers and spreading gains. The

difference in convergence times between the SINR and the

ACK/NACK feedback is explained by the fact that, in the

second case, players choose a random strategy among those

that are more expensive than the previous one. Consequently,

they may chose an strategy that would not be returned by their

satisfaction correspondence and this slows down the process

of GSE learning. However, using the same sequential update

scheme as presented in Sec. IV-A1, the convergence time is

below 60 seconds on average.

B. Game 2: OFDM modulation

In OFDM games, the bandwidth B = 6 kHz is divided

∀i ∈ I in Ni = N = 256 orthogonal subcarriers so that B =
N ×∆f . The OFDM symbol duration is T = ∆f−1 + T ′ =
57.7 ms where T ′ = 15 ms is the cyclic prefix duration. The

Qos constraint (29) is set to Γi = 1 bit/s/Hz. For the simulation

8This is only a particular case of the asynchronous algorithms formalized
in Sec. II-C
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Fig. 2. DSSS game with SINR feedback and Algorithm 1, Γ
(dB)
i

= 15 dB, ∀i ∈ I . From left to right: probability of satisfaction, average power used by
satisfied players, average number of iterations to a GSE.
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Fig. 3. DSSS game with 1-bit feedback and Algorithm 2, Γ
(dB)
i

= 1is5 dB, ∀i ∈ I . From left to right: probability of satisfaction, average power used by
satisfied players, average number of iterations to a GSE.

Ni = N , ∀i ∈ I, but note that the proposed framework can

account for players with heterogeneous configurations.

1) Games with statistical CSI feedback: In this game, the

strategies set of any player i ∈ I is the power at which

it constrains its water-filling power allocation vector (27).

The minimum and maximum transmission powers Pmin
i and

Pmax
i , ∀ i ∈ I are set to 170 and 190 dB ref. µPa @ 1m,

respectively. Results of the OFDM games with statistical CSI

and Algorithm 1 are depicted in Fig. 4.

In Fig. 4-(a), the performance in terms of successful access

probability is compared to the NE solution which corresponds

to the water-filling power allocation at power Pmax
i . Fig. 4-(a)

and (b) show that the performance gain compared to the NE

solutions is mostly significant in terms of power savings. When

there are less than four players, the probability of satisfaction

obtained at the NE remains high because of the the choice

of the QoS constraints along with the reference SNR and

radius of the transmission area. These factors combined may

allow the systems to comply with their QoS constraint of 1

bits/s/Hz when using the water-filling power allocation with

power Pmax
i , provided that there are not too many interfering

systems in the area. The good performance in terms of power

used (always less than 70% of Pmax
i on average) is not

surprising since Algorithm 1 enforces the transmitters to use

their minimal transmission power. The number of iterations

necessary to converge is quite small, with, on average, two or

three iterations per player.

2) Games with 1-bit feedback: Each player has a differ-

ent number Ni of subchannels, uniformly chosen between

{4, 8, 16, 32} at a new realization of a game. This consists in

dividing the N = 256 previous subcarriers in {8, 16, 32, 64}
groups of adjacent subcarriers. The power allocated by a player

i ∈ I on each subcarrier/subchannel is either Pi or 0, with

Pi = Pmax
i /Ni = Pmin

i . The strategies sets are the number

of subchannels on which a non-zero power is allocated. The

maximum power Pmax
i is set to 190 dB ref. µPa @ 1m,

∀i. Results of the OFDM games with 1-bit feedback and

Algorithm 2 are shown in Fig. 5.

Fig. 5-(a) shows that the probability of satisfaction per

player is significantly improved compared to the NE strategy.

Since less information is available at the TXs, the performance

are not as good as in the game with knowledge of the statistical

CSI. In Fig. 4-(a), the small gap in probability of satisfaction

between NE and SRA, compared to Fig. 5-(a), is explained

by a better correlation of the power allocation strategies to

the channel and to the external interferences for both NE and

SRA. In the 1-bit feedback case, the power allocation vector is

chosen randomly on the sole basis of a one bit information and

the NE of this game is a power allocation with no adaptation

neither to the channel nor to the interferences. As the power
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Fig. 4. OFDM game with CSI feedback and Algorithm 1, Γi = 1 bit/s/Hz, ∀i ∈ I . From left to right : probability of satisfaction, average power used by
satisfied players, average number of iterations to a GSE.
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Fig. 5. OFDM game with 1-bit feedback and Algorithm 2, Γi = 1 bit/s/Hz, ∀i ∈ I . From left to right: probability of satisfaction, average power used by
satisfied players, average number of iterations to a GSE.
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Fig. 6. Game with heterogeneous systems, 1-bit feedback and Algorithm 2, Γ
(dB)
i

= 15 dB for DSSS players and Γi = 1 bit/s/Hz for OFDM players. From
left to right: probability of satisfaction, average power used by satisfied players, average number of iterations to a GSE.

level allocated to a single subcarrier cannot be tuned, it is also

natural that the power used by satisfied players is higher than

in the other game. The results in terms of convergence time

are of the same order.

C. Game 3: heterogeneous systems with 1-bit feedback

In a last setup, we evaluate the performance of Algorithm 2

when implemented with heterogeneous systems. The simula-

tion process is the same as in the previous games and focus is

put on the ACK/NACK feedback. Each time a game is played,

a player is randomly assigned a type between OFDM or DSSS.

Fig. 6 depicts the results obtained. As in the other games,

improvement in terms of probability of satisfaction can be seen

compared to transmission at maximum power. Note that in this

game, DSSS players can benefit from the spreading gain and

will generate a high level of interference to OFDM players.

The average power budget used at the GSE by satisfied players

has the same shape as in the DSSS and OFDM games with

ACK/NACK feedback. Naturally, it seems to be the average

of the two performances since, at each game played, the type
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of players is drawn uniformly. The number of iterations to

converge to an equilibrium is also small, with slightly more

than two iterations per player in the game.

D. Practical aspects

To make the most of the satisfaction game framework, the

channel statistics must remain quite stable while Algorithm 1

or 2 has not reached the equilibrium. With an update period

Tobs = 20 seconds and a sequential update, equilibria can be

reached within 40 to 60 seconds. Assuming (quasi) wide-sense

stationarity over this period of time is often fine for fixed or

slowly drifting acoustic sources. With moving sources such

as AUVs, the channel statistics may fluctuate quicker. In that

case, Tobs can be reduced and/or the utility functions changed

to take into account the non-stationarity of the channel. For

this scenario, the power consumed at the equilibrium may

not be an adequate performance metric. It may be better to

consider the total energy consumed during the whole period

of the game. The period Tobs should also be long compared

to the propagation delays to take advantage of the most recent

strategies updates as well as to avoid outdated knowledge of

the channel statistics at the transmitter side. The ACK/NACK

feedback can be implemented with a robust, low bit-rate link

from the receiver so as to ensure a low error probability. If a

feedback loss occurs in practice, it could be considered as a

NACK after a timer expires at the transmitter side. In this case,

the timeout period should be of the same order of magnitude

as the update period Tobs.

For the sake of clarity, the expressions of the utility func-

tions (18) and (20) have been kept simple. However, the game-

theoretic framework allows these functions to be modified in

order to take into account implementation-specific issues. For

instance, (18) and (20) could be modified to integrate residual

inter-symbol or ICI interference terms.

V. CONCLUSIONS AND PERSPECTIVES

We have shown that efficient decentralized spectrum sharing

is possible for UWA communications within the framework of

satisfaction games. In such games, transmitters are modeled by

players that seek to satisfy their individual QoS constraints.

Each player adapts its transmission strategy based on some

channel knowledge obtained through a feedback link. The

original framework of satisfaction games has been extended

to consider more practical scenarios where transmitters cannot

have perfect knowledge of their satisfaction correspondence.

More precisely, a blind satisfaction response algorithm has

been proposed to deal with situations where only a 1-bit feed-

back is available. Spectrum sharing scenarios with multiple

UWA DSSS and/or UWA OFDM links have been studied in

details. The assumed strategy space for DSSS players has

been the transmit power combined with the spreading gain.

For OFDM players, this space has been the power allocation

vector across frequencies. Depending on the game, the QoS

has been formulated either as a SINR or information rate

constraint. Two types of feedback have been implemented,

namely the channel statistics or a 1-bit ACK/NACK. Both

types of feedback are compatible with the specificity of the

UWA environment. Numerical experiments have shown that

(generalized) satisfaction equilibria leads to Pareto-superior

solutions compared to Nash equilibria where players aim to

maximize their individual benefit. This performance improve-

ment translates into power savings and/or higher probability

of QoS satisfaction. The number of iterations to converge

to a satisfaction equilibrium is also small, with around two

iterations per player in the game. Possible extensions of this

work include considering other strategy spaces (space and/or

time and/or frequency), adapting this framework to highly non

(wide-sense) stationary channels, modeling the interactions

with non-communication UWA systems such as sonars, and

conducting at-sea trials.

APPENDIX A

CONVERGENCE OF ALGORITHMS 1 AND 2 FOR DSSS

PLAYERS

To prove the convergence of Algorithms 1 and 2, it suffices

to check that all the conditions of Prop. 1 are met. Conditions

1) and 3) are true by hypothesis. Now, let φi : A−i → Ai be

defined as

φi(x−i) = inf
ai∈Ai

{ai : fi(ai,x−i) ≥ Γi} , (33)

with fi(ai,x−i) = E
{

‖Hii‖2F
}

P
(ai)
i G

(ai)
i /E

{

‖zi(x−i)‖22
}

.

The satisfaction correspondence ϕi then satisfies

ϕi(x−i) = {ai ∈ Ai : φi(x−i) � ai} . (34)

To prove the convergence of Algorithms 1 and 2, we have to

show that φi is order-preserving.

Since zi(x−i) represents the interference plus noise per-

ceived by player i, x−i < x′
−i implies E

{

‖zi(x−i)‖
2
2

}

≤
E
{

‖zi(x′
−i)‖

2
2

}

, which in turns implies fi(ai,x−i) ≥
fi(ai,x

′
−i). From (33), we therefore conclude that φi(x−i) ≤

φi(x
′
−i) so that φi is order-preserving, i.e. the more the

opponents of i interfere on receiver i, the more expensive the

satisfying strategy of player i needs to be.

�

APPENDIX B

CONVERGENCE OF ALGORITHMS 1 AND 2 FOR OFDM

PLAYERS

A. Case 1: water-filling power allocation

By virtue of the arguments given in Sec. III-B1, the strate-

gies set of any player i are the possible transmission powers

Ai =
[

Pmin
i , Pmax

i

]

, (35)

and the only rational power allocation vectors on Ni subcarri-

ers are water-filling vectors. These vectors are the solution p⋆
i

given by (25) and are such that p⋆
i = Piqi with ‖qi‖1 = 1.

The satisfaction of any player i is then given by

ϕi(p−i) =
{

Pi ∈ Ai : αi

Ni
∑

n=1

log (1 + Piγi,n(p−i)qi,n) ≥ Γi

}

,
(36)

where γi,n(p−i) is defined in (21).
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From Prop. 1, if ϕi(p−i) is expressed with an order-

preserving function φi then Algorithm 1 converges.

Finding a function φi that is order-preserving for any

configuration of the game is not possible. However,

a sufficient condition can be found. More precisely,

the satisfaction correspondence can be written as

ϕi(p−i) = {Pi ∈ Ai : φi(p−i) � Pi} with φi(p−i) =

infPi∈Ai

{

Pi : αi

∑Ni

n=1 log (1 + Piγi,n(p−i)qi,n) ≥ Γi

}

.

In configurations where γi,n(p
′
−i) ≤ γi,n(p−i) for any

‖p−i‖ < ‖p′
−i‖, then φi is order-preserving. Such a situation

occurs when the SINR perceived by player i decreases as

its opponents use more power. Although this happens very

often in practice, such a condition is not always satisfied. For

instance, at a given iteration of Algorithm 1, an opponent of

player i may increase its average power but, as a result of the

water-filling procedure, may also allocate less power in the

frequency band used by player i.
Therefore, for this game we are only able to provide

sufficient conditions for convergence of Algorithm 1. However,

note that during the simulations presented in Sec. IV-B,

Algorithm 1 has always converged.

B. Case 2: ON/OFF power allocation

The strategies set of an OFDM player is the number of

subcarriers allocated with a power Pi = Pmax
i /Ni, i.e.

Ai = {1, · · · , Ni}, (37)

the corresponding possible power allocation vectors are

Pi(ai) =
{

pi ∈ {0, Pi}
Ni : ‖pi‖0 = ai

}

. (38)

We denote the strategic choice of i by ai ∈ Ai and the

corresponding power vector by pi(ai). Accordingly, a−i =
(aj)j∈I,j 6=i

∈ A−i and p−i(a−i) are the strategies and the

corresponding power allocation vectors of the opponents of i.
The utility function given in (20) can be expressed as

fi(ai, a−i) =

Ni
∑

n=1

log (1 + γi,n(p−i(a−i))pi,n(ai)) (39)

with

γi,n(p−i(a−i))
∆
=

eE{log|hii,n|
2}

σ2
wi,n

+
∑

j 6=i E{|hji,n|2}pj,n(aj)
. (40)

The satisfaction correspondence ϕi satisfies

ϕi(a−i) = {ai ∈ Ai : φi(a−i) � ai} (41)

with φi(a−i) = infai∈Ai
{ai : fi(ai, a−i) ≥ Γi}.

For a−i < a′−i, we have γi,n(p−i(a
′
−i)) ≤ γi,n(p−i(a−i)),

i.e. when the opponents of player i increase their number of

allocated subcarriers, the SINR perceived by player i will

decrease or remain the same. In this case, fi(ai, a−i) ≥
fi(ai, a

′
−i) so that φi is order-preserving. Therefore, the con-

ditions of Prop. 1 are satisfied so that Algorithm 2 converges

to a GSE.

�
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