
HAL Id: hal-01761180
https://hal.science/hal-01761180

Submitted on 7 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compositional Abstraction-based Synthesis for Cascade
Discrete-Time Control Systems

Adnane Saoud, Pushpak Jagtap, Majid Zamani, Antoine Girard

To cite this version:
Adnane Saoud, Pushpak Jagtap, Majid Zamani, Antoine Girard. Compositional Abstraction-based
Synthesis for Cascade Discrete-Time Control Systems. 6th IFAC Conference on Analysis and Design
of Hybrid System, ADHS 2018, 2018, Oxford, United Kingdom. �10.1016/j.ifacol.2018.08.003�. �hal-
01761180�

https://hal.science/hal-01761180
https://hal.archives-ouvertes.fr


Compositional Abstraction-based Synthesis
for Cascade Discrete-Time Control

Systems ?

.

Adnane Saoud ∗,∗∗, Pushpak Jagtap ∗∗∗, Majid Zamani ∗∗∗,
Antoine Girard ∗

∗ Laboratoire des Signaux et Systemes (L2S) - CNRS, 91192 Gif sur
Yvette, France. (e-mail: {adnane.saoud,
antoine.girard}@l2s.centralesupelec.fr)

∗∗ Laboratoire Spécification et Vérification - CNRS, ENS Paris-Saclay,
94235 Cachan Cedex, France.

∗∗∗ Technical University of Munich, Munich, 80333 Germany (e-mail:
{pushpak.jagtap, zamani}@tum.de).

Abstract: Abstraction-based synthesis techniques are limited to systems with moderate
size. Thus to contribute towards scalability of these techniques, in this paper we propose
a compositional abstraction-based synthesis for cascade interconnected discrete-time control
systems. Given a cascade interconnection of several components, we provide results on the
compositional construction of finite abstractions based on the notion of approximate cascade
composition. Then, we provide a compositional controller synthesis for cascade interconnection.
Finally, we demonstrate the applicability and effectiveness of the results using a numerical
example and compare it with different abstraction and controller synthesis schemes.

Keywords: Symbolic control, Compositional abstraction, Compositional controller synthesis,
Cascade composition, Discrete-time control system.

1. INTRODUCTION

Control and verification of dynamical systems using dis-
crete abstractions and formal methods have been an on-
going research area in recent years (see Tabuada (2009)
and the references therein). In such approaches, a discrete
abstraction (i.e. a dynamical system with finite number
of states) is constructed from the original system. When
the concrete and abstract systems are related by some
behavioral relation such as simulation, alternating sim-
ulation or their approximate versions, the discrete con-
troller synthesized for the abstraction can be refined into
a hybrid controller for the original system. The use of
discrete abstractions principally enables the use of tech-
niques developed in the areas of supervisory control of
discrete event systems (Cassandras and Lafortune (2009))
and algorithmic game theory (Bloem et al. (2012)).

The construction of the discrete abstraction (a.k.a. sym-
bolic model) is often based on a discretization of the
state space. As a result, symbolic control techniques suffer
severely from the curse of dimensionality (the computa-
tional complexity for synthesizing abstractions and con-
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trollers grows exponentially with the state space dimen-
sion).

To tackle this problem, several compositional approaches
were recently proposed. The authors in (Tazaki and Imura
(2009)) proposed a compositional approach for finite state
abstractions of a network of control systems based on the
notion of interconnection-compatible approximate bisim-
ulation. The results in (Pola et al. (2016)) provide com-
positional constructions of approximately bisimilar finite
abstractions for networks of discrete-time control systems
under some incremental stability property. In (Mallik et al.
(2016)), the notion of (approximate) disturbance simula-
tion was used for compositional synthesis of continuous-
time systems, where the states of the neighboring compo-
nents were modeled as disturbance signals. The authors
in (Dallal and Tabuada (2015), Kim et al. (2017), and
Meyer et al. (2015)) use contract based design and assume-
guarantee reasoning to provide compositional construction
of controllers.

In spirit, our work is motivated by the recent work in
(Hussien et al. (2017)) where a compositional abstraction
was proposed for the class of partially feedback linearizable
systems. However, this work is limited to the type of
abstractions proposed in (Zamani et al. (2012)). In our
work, we propose a compositional abstraction framework
for cascade interconnected discrete-time control systems.
Our framework allows the use of different types of abstrac-
tions for individual components in the cascade composition



such as abstractions based on state-space quantization
(Tabuada (2009)), partition (Meyer et al. (2015)), covering
(Reissig (2011)), or without any state space discretization
(Girard (2014)). Moreover, we provide results on the com-
positional controller synthesis as well.

In this paper, we provide a compositional abstraction-
based controller synthesis framework for a cascade com-
position of N discrete-time control systems. The main
contributions of the work are divided into three parts.
First, we introduce the notion of approximate cascade
composition, which enables cascade composition of cor-
responding abstractions (possibly of different types). The
use of different types of abstractions allows for more flexi-
bility in the design of the overall symbolic model because
each component may be suitable for a particular type of
abstraction. Second, with the help of the aforementioned
notion, we provide results on the compositional construc-
tion of abstractions for cascade interconnected systems.
Third, we propose a compositional controller synthesis
procedure for cascade composition of N discrete time
control systems. Finally, we demonstrate the applicability
and effectiveness of the results using a numerical example
and compare it with different abstraction and controller
synthesis schemes.

The paper is organized as follows. In Section 2, we in-
troduce the class of systems considered in this paper. In
Section 3, we introduce the notion of approximate cascade
composition and we show how one can use this notion to
construct abstractions compositionally. In Section 4, we
show how one can synthesize controllers compositionally
for cascade interconnected systems. An example is given
in Section 5 to show the merits of the theoretical results.

2. CONTROL SYSTEMS AND PRELIMINARIES

Notation: The symbols N and R+
0 denote the set of

nonnegative integer and nonnegative real numbers, respec-
tively. For any x1, x2, x3 ∈ X, the map dX : X ×X → R+

0
is a pseudometric if the following conditions hold: (i) x1 =
x2 implies dX(x1, x2) = 0; (ii) dX(x1, x2) = dX(x2, x1);
(iii) dX(x1, x3) ≤ dX(x1, x2) + dX(x2, x3). The closed
ball centered at x ∈ X with radius R is defined by
BR(x) = {y ∈ X | dX(x, y) ≤ R}. Similarly, for X ⊆ X,
BR(X ) =

⋃
x∈X
BR(x). We identify a relation R ⊆ A × B

with the map R : A→ 2B defined by b ∈ R(a) if and only
if (a, b) ∈ R. Given a relation R ⊆ A × B, R−1 denotes
the inverse relation defined by R−1 = {(b, a) ∈ B ×
A | (a, b) ∈ R}.

2.1 Discrete-time control systems

We consider the class of discrete-time control systems as
the following:

Definition 2.1. The discrete-time control system Σ is de-
fined by a tuple Σ = (X,U, f), where X is a set of states,
U is a set of inputs, the map f : X × U→ X is called the
transition function.

Consider the discrete-time control system Σ of the form

x(k + 1) = f(x(k), u(k)), (1)

where x(k) ∈ X and u(k) ∈ U for all k ∈ N

2.2 Transition systems and behavioral relations

We recall the notion of transition system introduced in
(Tabuada (2009)) which later serves as a unified modeling
framework for the discrete-time control systems, their
discrete abstractions, and cascade compositions.

Definition 2.2. A transition system is a tuple S =
(X,X0, U,∆, Y,H) where X is a set of states (possibly
infinite), X0 ⊆ X is a set of initial states, U is a set of
inputs (possibly infinite), ∆ ⊆ X × U ×X is a transition
relation, Y is a set of outputs, and H : X → Y is an
output map.

We denote x′ ∈ ∆(x, u) as an alternative representation
for a transition (x, u, x′) ∈ ∆, where state x′ is called
a u-successor (or simply successor) of state x, for some
input u ∈ U . Given x ∈ X, the set of enabled (admissible)
inputs for x is denoted by Ua(x) and defined as Ua(x) =
{u ∈ U | ∆(x, u) 6= ∅}. A trajectory of the transition
system is a finite or infinite sequence of transitions σ =
(x0, u0), (x1, u1), (x2, u2), . . ., where xi+1 ∈ ∆(xi, ui), for
i ∈ N. The output behavior associated to the trajectory
σ is the sequence of outputs σy = y0, y1, y2, . . . where
yi = H(xi) for all i ∈ N. The set of all output behaviors
of the transition system S is denoted by symbol Y. The
transition system is said to be:

• pseudometric, if the input set U and the output set Y
are equipped with pseudometrics dU : U × U → R+

0

and dY : Y × Y → R+
0 , respectively.

• finite (or symbolic), if X and U are finite.
• deterministic, if there exists at most a u-successor of
x, for any x ∈ X and u ∈ U .

In the sequel, we consider the approximate relationship
for transition systems based on the notion of approximate
(alternating) simulation relation to relate abstractions to
concrete systems. We start by introducing the notion of
approximate simulation relation (Julius et al. (2009)).

Definition 2.3. Let S1 = (X1, X10, U1,∆1, Y1, H1) and
S2 = (X2, X20, U2,∆2, Y2, H2) be two transition systems
such that Y1 and Y2 are subsets of the same pseudometric
space Y equipped with a pseudometric dY and satisfying
Bε(Y1) = Y2 for some ε ∈ R+

0 and U1, U2 are subsets of the
same pseudometric space U equipped with a pseudometric
dU . Let µ ≥ 0. A relation R ⊆ X1 ×X2 is said to be an
(ε, µ)-approximate simulation relation from S1 to S2, if it
satisfies the following conditions:

(i) ∀x20 ∈ X20, ∃x10 ∈ X10 such that (x10, x20) ∈ R;
(ii) ∀(x1, x2) ∈ R, dY (H1(x1), H2(x2)) ≤ ε;

(iii) ∀(x1, x2) ∈ R, ∀u1 ∈ Ua1 (x1), ∀x′1 ∈ ∆1(x1, u1),
∃u2 ∈ Ua2 (x2) with dU (u1, u2) ≤ µ and ∃x′2 ∈
∆2(x2, u2) satisfying (x′1, x

′
2) ∈ R.

We denote the existence of an (ε, µ)-approximate simula-
tion relation from S1 to S2 by S1 4ε,µ S2.
We can see that when µ = 0, we recover the classical
notion of approximate simulation relation introduced in
(Girard and Pappas (2007)) and when µ = ∞, we get
the definition of approximate simulation relation given in
(Tabuada (2009)).
When using non-deterministic abstractions for the original
discrete-time control systems, we need to consider rela-
tionships that explicitly capture the adversarial nature of



nondeterminism. The notion of approximate alternating
simulation relation introduced in (Tabuada (2009)) is suit-
able for this case.

Definition 2.4. Let S1 = (X1, X10, U1,∆1, Y1, H1) and
S2 = (X2, X20, U2,∆2, Y2, H2) be two transition systems
such that Y1 and Y2 are subsets of the same pseudometric
space Y equipped with a pseudometric dY and satisfying
Bε(Y1) = Y2 for some ε ∈ R+

0 and U1, U2 are subsets of the
same pseudometric space U equipped with a pseudometric
dU . Let µ ≥ 0. A relation R ⊆ X1 ×X2 is said to be an
(ε, µ)-approximate alternating simulation relation from S2

to S1, if the following conditions are satisfied:

(i) ∀x20 ∈ X20, ∃x10 ∈ X10 such that (x10, x20) ∈ R;
(ii) ∀(x1, x2) ∈ R, dY (H1(x1), H2(x2)) ≤ ε;
(iii) ∀(x1, x2) ∈ R, ∀u2 ∈ Ua2 (x2), ∃u1 ∈ Ua1 (x1) with

dU (u2, u1) ≤ µ such that ∀x′1 ∈ ∆1(x1, u1), ∃x′2 ∈
∆2(x2, u2) satisfying (x′1, x

′
2) ∈ R.

We denote the existence of an (ε, µ)-approximate alternat-
ing simulation relation from S2 to S1 by S2 4ε,µAS S1.

We can see that when µ = ∞ we recover the classical
notion of approximate alternating simulation relation as
introduced in (Tabuada (2009)), and when µ = ε = 0 the
approximate alternating simulation relation coincides with
the feedback refinement relation given in (Reissig et al.
(2017)).

Remark 2.5. We can see that the definitions of approx-
imate (alternating) simulation relations used in the pa-
per are slightly different from the classical ones. Unlike
classical definitions, in our definitions the choice of the
inputs is constrained by some distance property. However,
these input constraints are not restrictive and the notions
of (alternating) simulation relations used are verified by
different abstraction techniques presented in the literature.

We define a pseudometric transition system associated
with discrete-time control system Σ = (X,U, f) by a tuple
S(Σ) = (X,X0, U,∆, Y,H) where

• X0 ⊆ X, U = U;
• x′ ∈ ∆(x, u) is a transition from state x ∈ X and

input u ∈ U if and only if x′ = f(x, u);
• Y = X, and H : X → Y is given by H(x) = x.

3. APPROXIMATE CASCADE COMPOSITION AND
COMPOSITIONAL ABSTRACTION

In this section, we define the notion of approximate cas-
cade composition of two transition systems which is latter
used for construction of compositional abstractions and
compositional controller synthesis.

Consider a cascade composition of two transition systems
having output of the first system as an input to the
second one. However, this might not be the case for the
cascade composition of their corresponding abstractions.
To mitigate the mismatch between the output of the
abstraction of the first system and the input to the
abstraction of the second system, we introduce the notion
of approximate cascade composition as the following.

Definition 3.1. Let S1 = (X1, X10, U1,∆1, Y1, H1) and
S2 = (X2, X20, U2,∆2, Y2, H2) be two pseudometric tran-
sition systems such that Y1 and U2 are subsets of the

same pseudometric space equipped with a pseudometric
dU2 , and µ ≥ 0. Systems S1 and S2 are said to be
µ-approximate cascade composable if and only if Y1 ⊆
R−1µ (U2), where Rµ ⊆ Y1 × U2 satisfies u2 ∈ Rµ(y1)
if and only if dU2(u2, y1) ≤ µ. The µ-approximate
cascade composition is defined by a tuple S1||µS2 =
(X,X0, U,∆12, Y,H), where

• X = X1 ×X2;
• X0 = X10 ×X20;
• U = U1;
• (x′1, x

′
2) ∈ ∆12(x1, x2, u) if and only if x′1 ∈ ∆1(x1, u)

and there exists u2 ∈ U2 with H1(x1) ∈ R−1µ (u2) and
x′2 ∈ ∆2(x2, u2);

• Y = Y2;
• H(x1, x2) = H2(x2).

Remark 3.2. We can see that the introduced notion of
approximate cascade composition is quite general. In par-
ticular, when Rµ is an identity relation (i.e µ = 0), we find
the cascade composition in its usual sense and we denote
S1||0S2 simply by S1||S2.

In the remaining part of this section, we provide relations
between cascade composition of N-subsystems by using
relations between individual components. First we provide
results for composition of two systems in the following
theorems.

Theorem 3.3. Consider cascade composable pseudometric
transition systems S1, S2 and (µ2 + ε1)-approximate cas-

cade composable pseudometric systems Ŝ1, Ŝ2. If S1 4ε1,µ1

Ŝ1 with a relation R1 and S2 4ε2,µ2 Ŝ2 with a relation R2

then relation R ⊆ X1 ×X2 × X̂1 × X̂2 defined by:

R = {(x1, x2, x̂1, x̂2) ∈ X1 ×X2 × X̂1 × X̂2 | (x1, x̂1) ∈ R1

and (x2, x̂2) ∈ R2} (2)

is an (ε2, µ1)-approximate simulation relation from S1||S2

to Ŝ1||µ2+ε1 Ŝ2, i.e. S1||S2 4ε2,µ1 Ŝ1||µ2+ε1 Ŝ2.

Proof. The first condition of definition 2.3 is directly
satisfied.
Let (x1, x2, x̂1, x̂2) ∈ R. We have dY (H(x1, x2), Ĥ(x̂1, x̂2))

= dY2
(H(x2), Ĥ(x̂2)) ≤ ε2 where the equality comes from

the definition of the output maps for cascade and ap-
proximate cascade compositions and the inequality comes
from the second condition of Definition 2.3. Consider
(x1, x2, x̂1, x̂2) ∈ R and any u1 ∈ Ua(x1, x2). Consider the
transition (x′1, x

′
2) ∈ ∆12(x1, x2, u1) (i.e., x′1 ∈ ∆1(x1, u1)

and x′2 ∈ ∆2(x2, H1(x1))). From definition of the rela-
tion R we have (x1, x̂1) ∈ R1, u1 ∈ Ua1 (x1) and x′1 ∈
∆1(x1, u1), then from the third condition of Definition

2.3, there exists û1 ∈ Ûa1 (x̂1) with dU1
(u1, û1) ≤ µ1 and

there exists x̂′1 ∈ ∆̂1(x̂1, û1) such that (x′1, x̂
′
1) ∈ R1.

Similarly, (x2, x̂2) ∈ R2, and from Definition 3.1 we have
u2 = H1(x1) ∈ Ua2 (x2). Consider x′2 ∈ ∆2(x2, H1(x1)),
then, using the third condition of Definition 2.3 for the
relationR2 there exists û2 ∈ Ûa2 (x̂2) with dU2

(u2, û2) ≤ µ2

and there exists x̂′2 ∈ ∆̂2(x̂2, û2) satisfying (x′2, x̂
′
2) ∈ R2.

Moreover, the condition dU2(u2, û2) ≤ µ2 implies that

dU2
(û2, Ĥ1(x̂1)) ≤ dU2

(û2, u2) + dU2
(u2, Ĥ1(x̂1)) ≤ µ2 +

ε1, hence, Ĥ1(x̂1) ∈ R−1µ2+ε1(û2). Thus condition (iii)
in Definition 2.3 holds and one obtains S1||S2 4ε2,µ1

Ŝ1||µ2+ε1 Ŝ2. 2
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Fig. 1. Illustration of compositional abstraction of N cascade composable transition systems using notion of µ-
approximate cascade composition and (ε, µ)-approximate (alternating) simulation relations as formalized in
Theorems 3.3 and 3.4 .

Theorem 3.4. Consider cascade composable pseudometric
transition systems S1, S2 and (µ2 + ε1)-approximate cas-

cade composable pseudometric systems Ŝ1, Ŝ2. If Ŝ1 4ε1,µ1

AS
S1 with some relation R1 and S2 4ε2,µ2 Ŝ2 with some
relation R2 then the relation R ⊆ X1 × X2 × X̂1 × X̂2

defined by:

R = {(x1, x2, x̂1, x̂2) ∈ X1 ×X2 × X̂1 × X̂2 | (x1, x̂1) ∈ R1

and (x2, x̂2) ∈ R2} (3)

is an (ε2, µ1)-approximate alternating simulation relation

from Ŝ1||µ2+ε1 Ŝ2 to S1||S2, i.e. Ŝ1||µ2+ε1 Ŝ2 4ε2,µ1

AS S1||S2.

Proof. R1 is an approximate alternating simulation rela-
tion and R2 is an approximate simulation relation. Hence,
the first condition of Definition 2.4 follows immediately.
Let (x1, x2, x̂1, x̂2) ∈ R. We have dY (H(x1, x2), Ĥ(x̂1, x̂2))

= dY2
(H(x2), Ĥ(x̂2)) ≤ ε2 where the equality comes from

the definition of the output maps for cascade and ap-
proximate cascade compositions and the inequality comes
from the second condition of Definition 2.3. Consider
(x1, x2, x̂1, x̂2) ∈ R and any û1 ∈ Ûa(x̂1, x̂2). From (3)

we have (x1, x̂1) ∈ R1 and for any û1 ∈ Ûa1 (x̂1) by using
condition (iii) of Definition 2.4, we can pick u1 ∈ Ua1 (x1)
with dU1

(u1, û1) ≤ µ1 such that for all x′1 ∈ ∆1(x1, u1)

there exists x̂′1 ∈ ∆̂1(x̂1, û1) satisfying (x′1, x̂
′
1) ∈ R1.

Now, consider (x′1, x
′
2) ∈ ∆12(x1, x2, u1). From (3), we

have (x2, x̂2) ∈ R2 and from Definition 3.1 we have
u2 = H1(x1) ∈ Ua2 (x2). Consider x′2 ∈ ∆2(x2, u2), then
using the third condition of Definition 2.3 for the relation
R2 there exists û2 ∈ Ûa2 (x̂2) with dU2

(u2, û2) ≤ µ2 and

there exists x̂′2 ∈ ∆̂2(x̂2, û2) satisfying (x′2, x̂
′
2) ∈ R2.

Moreover, the condition dU2(u2, û2) ≤ µ2 implies that

dU2
(û2, Ĥ1(x̂1)) ≤ dU2

(û2, u2) + dU2
(u2, Ĥ1(x̂1)) ≤ µ2 +

ε1, hence Ĥ1(x̂1) ∈ R−1µ2+ε1(û2). Thus condition (iii)

in Definition 2.4 holds and one gets Ŝ1||µ2+ε1 Ŝ2 4ε2,µ1

AS
S1||S2. 2

In next corollaries, we provide generalization of the results
in Theorems 3.3 and 3.4 for cascade composition of N
transition systems. The results are direct consequences of
Theorems 3.3 and 3.4 and thus stated without proofs. An
illustration of these results is given in Figure 1.

Corollary 3.5. Let S1, . . . , SN , Ŝ1, . . . , ŜN be a collections
of 2N pseudometric transition systems satisfying the fol-
lowing assumptions:

(i) for i ∈ {1, . . . , N}, Si 4εi,µi Ŝi;

(ii) for i ∈ {2, . . . , N}, Si−1 and Si are cascade com-

posable and Ŝi−1 and Ŝi are (µi + εi−1)-approximate
cascade composable.

Then we have

S1||S2|| . . . ||SN 4εN ,µ1 Ŝ1||µ2+ε1 Ŝ2||µ3+ε2 . . . ||µN+εN−1
ŜN .

Corollary 3.6. Let S1, . . . , SN , Ŝ1, . . . , ŜN be a collections
of 2N pseudometric transition systems satisfying the fol-
lowing assumptions:

(i) Ŝ1 4ε1,µ1

AS S1;

(ii) for i ∈ {2, . . . , N}, Si 4εi,µi Ŝi;
(iii) for i ∈ {2, . . . , N}, Si−1 and Si are cascade com-

posable and Ŝi−1 and Ŝi are (µi + εi−1)-approximate
cascade composable.

Then we have

Ŝ1||µ2+ε1 Ŝ2||µ3+ε2 . . . ||µN+εN−1
ŜN 4εN ,µ1

AS S1||S2|| . . . ||SN .

4. COMPOSITIONAL CONTROLLER SYNTHESIS

In this section, we provide compositional synthesis ap-
proach for synthesizing controllers enforcing some speci-
fication Yspec ⊆ Y on the output of S1||S2.

Consider system S = (X,X0, U,∆, Y,H) and a memo-
ryless controller C : X → 2U such that for all x ∈ X,
C(x) ⊆ Ua(x). Let dom(C) be the domain of controller
defined by dom(C) = {x ∈ X | C(x) 6= ∅} ⊆ X. We
define a controlled transition system by a tuple SC =
(XC , XC0, UC ,∆C , YC , HC), where XC = X ∩ dom(C),
XC0 = X0 ∩ dom(C), UC = U , YC = Y , HC = H, and
transition x′C ∈ ∆C(xC , uC) if and only if x′C ∈ ∆(xC , uC)
and uC ∈ C(xC).

Given a specification Yspec ⊆ Y on the output set of S, we
say that C is a controller for S enforcing the specification
Yspec if YC ⊆ Yspec where YC is the set of all output
behaviors of the controlled transition system SC . The next
theorem shows the main result of this section.

Theorem 4.1. Let S1 and S2 be two pseudometric tran-
sition systems which are µ-approximate cascade compos-
able. Let C2 be a controller for S2 enforcing some specifi-
cation Yspec on its output Y2. Then S1 is µ-approximate
cascade composable with S2C2

. Moreover, let C1 be a
controller for S1||µS2C2

enforcing specification Yspec on its
output Y2 and let C be a controller for S1||µS2 defined by:

C(x1, x2) =

C1(x1, x2), if ∃u2 ∈ C2(x2)
with H1(x1) ∈ R−1µ (u2);

∅, otherwise.
(4)



Then (S1||µS2)C = (S1||µS2C2
)C1

, and controller C en-
forces Yspec on the output of S1||µS2.

Proof. Since S1 is µ-approximate cascade composable
with S2 and the transition systems S2 and S2C2 have the
same input sets U2C2 = U2, S1 is µ-approximate cascade
composable with S2C2 .
Let (S1||µS2)C = (X12C , X12C0, U12C ,∆12C , Y12C , H12C)
and (S1||µS2C2)C1 = (X12C1C2 , X12C1C20, U12C1C2 ,∆12C1C2 ,
Y12C1C2 , H12C1C2). In order to prove that transition sys-
tems (S1||µS2C2)C1 and (S1||µS2)C are equal we have to
prove corresponding elements of two tuples are equal.
We have:

• Let us prove that X12C = X12C1C2
.

We have X12C = dom(C) = dom(C1) ∩ {(x1, x2) |
∃u2 ∈ C2(x2), H1(x1) ∈ R−1µ (u2)} and dom(C1) ⊆
Ua12(x1, x2C2) ⊆ {(x1, x2) | ∃u2 ∈ C2(x2), H1(x1) ∈
R−1µ (u2)}. Hence, X12C = dom(C1) = X12C1C2

;
• X12C0 = X12C1C20;
• U12C = U1 = U12C1C2

;
• H12C = H12C1C2

;
• Y12C = Y12C1C2

;
• (x′1, x

′
2) ∈ ∆12C(x1, x2, u1) if and only if x′1 ∈

∆1(x1, u1), x′2 ∈ ∆1(x1, u2), u1 ∈ C1(x1, x2),
R−1µ (u2) ∩ H1(x1) 6= ∅ and u2 ∈ C2(x2); which is
equivalent to (x′1, x

′
2) ∈ ∆12C1C2

(x1, x2, u1).

Hence, transition systems (S1||µS2C2)C1 and (S1||µS2)C
are equal and implies that controller C enforces Yspec on
the output of S1||µS2. 2

If we have abstraction Ŝ corresponding to S satisfying
Ŝ 4ε,µAS S with (ε, µ)-approximate alternating simulation

relation R, one can easily synthesize controller Ĉ for Ŝ
enforcing Yspec using various synthesis techniques and this
controller can then be refined to a controller C for the
original system (see Tabuada (2009)).

Next we provide similar result as in Theorem 4.1 for
compositional controller synthesis for cascade composition
of N transition systems.

Corollary 4.2. Let S1, S2, . . . , SN be a collection of N
pseudometric transition systems satisfying the following
assumptions:

(i) for all i ∈ {2, . . . , N}, Si−1 and Si are (µi)-
approximate cascade composable;

(ii) CN is a controller for SN enforcing some specification
Yspec on its output YN and for all i ∈ {1, . . . , N − 1},
Ci is a controller for

Si||µi+1 (. . . (SN−2||µN−1 (SN−1||µNSCN
)CN−1

)CN−2
) . . .)Ci+1

enforcing specification Yspec on the output YN .

Then the controller C defined by: ( u1 ∈ C(x1, x2, . . . , xN )
if and only if u1 ∈ C1(x1, x2, . . . , xN ) and for all
i ∈ {2, . . . , N}, ui ∈ Ci(xi, . . . , xN ) and Hi−1(xi−1) ⊆
R−1µi

(ui)), satisfies

(S1||µ2
S2||µ3

. . . ||µN
SN )C =

(S1||µ2(. . . (SN−2||µN−1
(SN−1||µN

SCN
)CN−1

)CN−2
) . . .)C1

and controller C enforces Yspec on the output of
(S1||µ2

S2||µ3
. . . ||µN

SN )C .

Proof. The proof is similar to the one of Theorem 4.1 and
is omitted here. 2

5. AN EXAMPLE

To show the efficacy of our results, we consider a safety
controller synthesis problem of a cascade composition of
the following discrete-time control systems:

Σ1 : x1(k + 1) = 0.2x1(k) + υ(k),

Σ2 : x2(k + 1) = 1.5x2
2(k) + x1(k).

Although the above example is rather small to show the
effectiveness of compositionality, it is chosen just for the
sake of illustrating the computational advantages of our
proposed compositional scheme in comparison with the
monolithic one (cf. Table 1). Let S1 and S2 be the tran-
sition systems corresponding to Σ1 and Σ2, respectively.
To demonstrate the effectiveness of the proposed results,
we consider three cases: (i) conventional monolithic ab-
straction and monolithic controller synthesis (MAMC),
(ii) compositional abstraction and monolithic controller
synthesis (CAMC), and (iii) compositional abstraction
and compositional controller synthesis (CACC). For con-
ventional monolithic abstraction and controller synthesis,
we used partition based abstraction satisfying alternating
simulation relation as discussed in (Reissig et al. (2017)
and Meyer et al. (2015)). The safety controller synthesis is
also done directly on the monolithic abstraction.
For constructing compositional abstractions, we construct
an ε-approximate bisimilar abstraction of S1 called Ŝ1

using state-space discretization-free abstraction techniques
as discussed in (Girard (2014); Zamani et al. (2017)) and

construct abstraction Ŝ2 of S2 by partitioning the state set.
For constructing Ŝ1 with precisions ε1 = 0.0016 and µ1 =
0, we consider U = {0, 0.2, 0.4, 0.6, 0.8}, length of input
sequence N = 4, and source state xs = 0.5 (For description
and computation of these parameters see (Girard (2014)

and Zamani et al. (2017))). For computation of Ŝ2, we
consider x2(k) ∈ [0, 1] with state quantization parameter
η = 0.01 and input of S2 which is x1(k) ∈ [0, 1] with input
quantization parameter µ = 0.01. Hence, the precisions are
given by ε2 = µ2 =

√
2µ . Using these abstractions and

results in Theorem 3.4, we have Ŝ1||µ2+ε1 Ŝ2 4ε2,µ1

AS S1||S2.
Having compositional abstraction, one can easily synthe-
size safety controller monolithically for Ŝ1||µ2+ε1 Ŝ2 and
the safe set W = [0, 1] using maximal fixed point algorithm
(Tabuada (2009)) and then refine the controller for S1||S2.
For compositional controller synthesis, we first construct
a safety controller Ĉ2 for Ŝ2 . Second, we compute safety
controller Ĉ1 for Ŝ1||µ2+ε1 ŜĈ2

and correspondingly com-

pute Ĉ as shown in (4) which is a safety controller for

Ŝ1||µ2+ε1 Ŝ2. Having Ĉ, one can easily refine it to the origi-
nal interconnected system as discussed in Section 4. Figure
2 shows computed controllers for all three cases. Table 1
gives the computation time for generating the symbolic
models and synthesizing the controllers and the size of
resulting controllers in terms of number of transitions for
all three cases. One can observe that the computation
time for CACC is reduced significantly by around 70%
as compared to MAMC whereas the size of the controller
is reduced only by 3.93%. The numerical implementation
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Fig. 2. Controller using (a) MAMC, (b) CAMC and (c) CACC. Colorbar shows the number of control inputs available.

Table 1. Comparison between different ab-
straction and controller synthesis schemes con-
sidering that all abstractions achieve the same

precision

MAMC CAMC CACC

Computation time
(sec)

432.6 375.49 132.41

Size of the controller
(Number of transitions)

33568 32336 32249

of the example has been done using Matlab on an iMAC
with CPU 3.5 GHz Intel Core i7.

6. CONCLUSION

In this paper, we have proposed a compositional synthesis
methodology for discrete-time cascade interconnected sys-
tems. The introduced notion of approximate cascade com-
position allows to compose different types of abstractions.
Moreover we provided compositional results based on ap-
proximate (alternating) simulation relations, and showed
how this results can been used for the compositional con-
troller synthesis. A numerical example is given to show
the effectiveness of our approach where we used different
abstractions for discrete-time cascade interconnected sys-
tems. In future work, we extend ideas of the paper to more
general interconnections of systems.
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