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A joint chance-constrained programming
approach for the single-item capacitated
lot-sizing problem with stochastic demand

Céline Gicquel 1 and Jianqiang Cheng 2

Abstract

We study the single-item single-resource capacitated lot-sizing prob-
lem with stochastic demand. We propose to formulate this stochastic
optimization problem as a joint chance-constrained program in which
the probability that an inventory shortage occurs during the planning
horizon is limited to a maximum acceptable risk level. We investigate
the development of a new approximate solution method which can be
seen as an extension of the previously published sample approximation
approach. The proposed method relies on a Monte Carlo sampling of
the random variables representing the demand in all planning periods
except the first one. Provided there is no dependence between the
demand in the first period and the demand in the later periods, this
partial sampling results in the formulation of a chance-constrained
program featuring a series of joint chance constraints. Each of these
constraints involves a single random variable and defines a feasible
set for which a conservative convex approximation can be quite eas-
ily built. Contrary to the sample approximation approach, the par-
tial sample approximation leads to the formulation of a deterministic
mixed-integer linear problem having the same number of binary vari-
ables as the original stochastic problem. Our computational results
show that the proposed method is more efficient at finding feasible
solutions of the original stochastic problem than the sample approxi-
mation method and that these solutions are less costly than the ones
provided by the Bonferroni conservative approximation. Moreover,
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the computation time is significantly shorter than the one needed for
the sample approximation method.

1 Introduction

The present paper deals with a stochastic optimization problem arising in
the context of industrial production planning: the single-item single-resource
capacitated lot-sizing problem with stochastic demand.

Lot-sizing can be defined as the clustering of items for manufacturing at
the same time. Lot-sizing arises in production whenever setup operations
are required in order to prepare the production resource for the processing
of a new product. Setup actions can involve many different operations such
as cleaning, preheating, tool change, machine calibration or test runs. These
operations result in significant costs, the value of which most often does
not depend on the quantity produced afterward. To minimize setup costs
and obtain a more efficient use of production resources, production should
be run using large lot sizes. However, this production policy generates a
significant amount of inventory as the production cannot be synchronized
with the actual demand pattern. Products will namely have to be held in
inventory between the time they are produced and the time they are actually
used to satisfy customer demand. This will incur inventory holding costs
mainly because of tied up capital. The objective of lot-sizing is thus to
provide production plans reaching the best possible trade-off between setup
and inventory holding costs while taking into account both the customer
demand satisfaction and the technical limitations of the production system.

As can be seen from the above description, one of the key pieces of infor-
mation needed to make lot-sizing decisions is the timing and level of customer
demand. Most existing models and solution algorithms assume that the de-
mand is deterministically known and seek to build the best production plan
meeting this demand (see e.g. Jans and Degraeve [11]). However, in prac-
tice, the future customer demand often has to be forecasted so that there
is a significant degree of uncertainty on its value. Not taking into account
forecast uncertainties while planning production may lead to significant or-
ganizational and financial difficulties for a manufacturing company. Namely,
in case the realized demand is larger than the forecasted one, the company
will be faced with stockouts and may have to postpone deliveries or resort
to expensive rush production. On the contrary, in case the realized demand
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is smaller than the forecasted one, the company will be confronted with a
costly higher than needed level of inventory.

There is thus a strong industrial need for decision-aid tools to help pro-
duction managers build production plans where the stochastic nature of the
customer demand is explicitly taken into account. The purpose of the present
paper is to discuss a mathematical model and a solution algorithm, which
could form the basis for such a decision-aid tool.

More precisely, we consider the single-item single-resource capacitated lot-
sizing problem with stochastic demand. We assume that, even if the demand
cannot be deterministically known, a description of the demand uncertainty
is available in terms of a probability distribution. We propose to handle this
problem through the use of a single-stage stochastic programming approach:
we seek to build the production plan before any additional information on
the demand realization becomes available and do not consider the possibility
of updating it as the demand unfolds over time. We consider the case where
the production plan should be feasible for nearly all possible outcomes of the
demand. This leads to the formulation of a joint chance-constrained program
where the probability that an inventory shortage occurs during the planning
horizon is limited to a maximum acceptable risk level.

As the resulting probabilistic mixed-integer program is computationally
difficult to handle, we consider an approximate solution approach based on
the sample approximation approach proposed by Luedtke and Ahmed in [14].
Our main contribution consists in the introduction of a new extension of this
approach which we called the ”partial sample approximation approach”. Sim-
ilarly to the sample approximation approach, the proposed method relies on
a Monte Carlo sampling of the random variables Dt, t = 1...T , representing
the demand in periods 1 to T . However, this sampling is carried out on only
part of the random variables, more precisely on all random variables except
D1. Provided there is no dependence between D1 and the demand in the
later periods, this partial sampling results in the formulation of a chance-
constrained program featuring a series of joint chance constraints. Each of
these constraints involves a single random variable and defines a feasible set
for which a conservative convex approximation can be quite easily built. The
main advantage of the proposed method is that, unlike the sample approxi-
mation approach, it leads to the formulation of a deterministic mixed-integer
linear program (MILP) having the same number of binary variables as the
initial stochastic problem. As will be shown by our computational exper-
iments, the proposed method is more efficient at finding feasible solutions
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of the original stochastic problem than the sample approximation method
and these solutions are less costly than the ones provided by the Bonferroni
conservative approximation. Moreover, the computation time is shorter than
the one needed for the sample approximation method.

The remainder of the paper is organized as follows. We provide in Section
2 an overview of the literature on stochastic lot-sizing. We then describe
in Section 3 the joint chance-constrained programming formulation used to
model the problem under study. We discuss two previously published solution
approaches for this problem: the Bonferroni conservative approximation in
Section 4 and the sample approximation approach in Section 5. Section 6
is devoted to the presentation of the proposed partial sample approximation
approach. Computational results are provided in Section 7.

2 Literature review

Deterministic lot-sizing problems have been extensively studied since the
seminal work of Wagner and Whitin [25]. We refer the reader to the literature
reviews provided by Jans and Degraeve [11] and by Buschkühl et al [4] for a
general introduction to this field and focus in what follows on the lot-sizing
problem with stochastic demand. We do not seek to provide an exhaustive
literature review but rather aim at giving a general overview of the modeling
approaches that have been proposed for this problem.

We propose a classification based on the way in which the consequences
of the uncertainty are dealt with in the model. Namely, as the demand is
stochastic, we cannot ensure that, for any possible realization of the demand,
the computed production plan will be capable of satisfying all the demand
so that stockouts may occur during the planning horizon. Several model-
ing alternatives can be considered to account for this in the optimization
problem.

A first alternative corresponds to single-stage stochastic programming
approaches (sometimes referred to as ”static uncertainty models” in the lot-
sizing literature). In this type of model, the value of all decision variables is
decided upon at the beginning of the planning horizon prior to the realization
of the uncertain demand. This has some organizational advantages as it
fixes the production plan once and for all and allows a good preparation
of the production staff members and supply of raw materials. In this type
of model, stockouts can be managed using two main different ways. One
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possibility is to allow backlogging of the demand in case it cannot be satisfied
on time but to try to limit its use. This can be done either by penalizing
backlogging in the objective function (see e.g. Vargas [24] and Piperagkas
et al [20]) or by setting a maximum acceptable level to its expected value
(see e.g. Tempelmeier and Herpers [23]). The other possibility is the use of
chance constraints imposing that the probability of a stockout stays below
an acceptable risk level defined by the production manager. Disjoint chance
constraints imposing an upper bound on the probability of a stockout within
each planning period have been used e.g. by Bookbinder and Tan [3] and
Chen [6]. As mentioned by Tempelmeier in [22], they correspond to defining a
minimum value to the period α-service level or ready rate often used in supply
chain management. Joint chance constraints imposing an upper bound on
the probability of a stockout within the whole planning horizon have been
used by Beraldi and Ruszczyǹski [1], Küçükyavuz [12] and Zhang et al [26].
They can be understood as a way of defining a minimum value to the horizon
α-service level.

A second alternative corresponds to multi-stage stochastic programming
approaches (also called the ”static-dynamic uncertainty models” in the lot-
sizing literature). This type of model relies on the fact that only part of the
decisions have to be made prior to the realization of the demand and that we
may have the possibility to revise the production plan several times during
the planning horizon in response to the outcomes of the random demand.
This additional flexibility allows a better optimization of the production plan
but the resulting nervousness may create practical problems in case of scarce
production resources. Two main lines of research can be distinguished here.
A first line corresponds to the case where the decisions to be made prior
the realization of the demand (first-stage decisions) pertain to the periods
where production will occur. Production periods are thus fixed once and
for all and the only possible adjustments of the production plan during the
planning horizon consists in modifying the production level at the beginning
of a production period to take into account the realized demand (see e.g.
Bookbinder and Tan [3], Tarim and Kingsman [21] and Tempelmeier [22]).
A second line of research considers that the only first-stage decisions to be
made are the ones related to the first period of the planning horizon and that
all decisions related to the following periods can be decided upon after the
demand has realized. This type of model usually relies on a description of
the uncertainty through a scenario tree and seeks to define the best possible
production policy (see e.g. Di Summa and Wolsey [8], Guan et al [9], Haugen
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et al [10] and Zhang et al [26]).
The present paper makes use of the first modeling alternative. We namely

propose a single-stage stochastic programming approach where all produc-
tion decisions are made once and for all at the beginning of the planning
horizon and we introduce a joint chance-constrained programming formula-
tion to handle the consequences of the uncertainty in the model. We thus
deal with the same problem as the one studied in [1] and [12]. Beraldi and
Ruszczyǹski [1] assume that the demand in each period follows a discrete
probability distribution and propose a solution method based on a partial
enumeration of the p-efficient points of the joint distribution of the random
vector representing the cumulative demand over the planning horizon. We
recall that a point v ∈ Rn is a p-efficient point of the probability distribu-
tion F if F (v) ≥ p and there is no point y ∈ Rn, y 6= v such that y ≤ v
and F (y) ≥ p. Küçükyavuz [12] assumes that the demand in each period
follows a finite discrete probability distribution and reformulates the joint
chance-constrained problem as a mixed-integer linear program. She presents
a new class of valid inequalities for this problem which contains the inequal-
ities proposed by Luedtke et al [15] as a special case and shows that these
inequalities are numerically efficient in strengthening the mixed-integer lin-
ear programming formulation and in reducing the computation time. In the
present paper, we also reformulate the problem as a mixed-integer linear
problem but we investigate another way of reducing the computation time
by relying on a partial sample approximation approach.

3 Joint chance-constrained programming model

We consider the single-item single-resource capacitated lot-sizing problem.
We first briefly describe the deterministic variant of this problem which can
be formulated as a mixed-integer linear program (MILP). We then consider
a stochastic variant of this problem where the customer demand to be sat-
isfied is subject to uncertainty and introduce the joint chance-constrained
programming formulation studied in the present paper.

3.1 Deterministic formulation

We wish to plan production for a single product to be processed on a single
capacitated resource over a planning horizon involving T periods indexed by
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t = 1...T .
All problem parameters are assumed to be deterministically known at

the time when the production plan is built. ft denotes the fixed setup cost
to be paid if production occurs on the resource in period t, ht the inventory
holding cost per unit held in stock at the end of period t and ct the production
capacity available in period t. dt is the demand to be satisfied at the end
of each period t and dct =

∑t
τ=1 dτ is the cumulative demand over interval

[1; t]. The initial inventory level, I0, is set to 0 without loss of generality.
We introduce the following decision variables:

• xt: the quantity produced in period t.

• yt ∈ {0, 1}: the resource setup state in period t. yt = 1 if a setup occurs
in period t, 0 otherwise.

With this notation, the deterministic single-item single-resource capaci-
tated lot-sizing problem can be formulated as follows:

Z∗DET = min
T∑
t=1

ftyt +
T∑
t=1

ht
( t∑
τ=1

xτ − dct
)

(1)

xt ≤ ctyt ∀t = 1...T (2)
t∑

τ=1

xτ ≥ dct ∀t = 1...T (3)

xt ≥ 0 ∀t = 1...T . (4)

yt ∈ {0, 1} ∀t = 1...T . (5)

The objective function (1) corresponds to the minimization of the setup
and inventory holding costs over the planning horizon. Note that

∑t
τ=1 xτ −

dct computes the inventory level at the end of period t as the difference
between the cumulative production up to t and the cumulative demand up
to t. Constraints (2) ensure that, if production takes place in period t, the
corresponding setup costs are incurred and the capacity limit ct is respected.
Constraints (3) are the demand satisfaction constraints: they guarantee that
the cumulative production over each interval [1; t] is large enough to satisfy
the cumulative demand over the same interval, and consequently that the
inventory level at the end of period t,

∑t
τ=1 xτ − dct, is non-negative.
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3.2 Stochastic formulation

We now consider the case where the customer demand to be satisfied in period
t is not perfectly known at the time when the production plan is built. This
might be due among others to the fact that the only available information
on the future demand is based on forecasts (rather than on firm customer
orders) and that forecast inaccuracies are unavoidable. We thus model the
demand in period t as a random variable Dt, the probability distribution of
which is assumed to be known. The cumulative demand over periods 1...t,
denoted by DCt =

∑t
τ=1Dt, is also a random variable. The deterministic

parameter dct is thus replaced by a random variable, DCt, in the stochastic
formulation of the problem.

This has several implications for the problem formulation. First, replacing
dct by its stochastic counterpart DCt implies that the inventory level at the
end of period t is a random variable defined as St = max(

∑t
τ=1 xτ −DCt, 0)

(see e.g. [1]). Hence, the value of the inventory holding cost appearing in
the objective function,

∑T
t=1 htSt, is also a random variable. We therefore

consider minimizing its expected value E
[∑T

t=1 htSt
]

in the stochastic for-
mulation. In the present work, we use the same approximation as the one
used by Bookbinder and Tan [3] and Beraldi and Ruszczyǹski [1] to compute
E
[∑T

t=1 htSt
]
, namely:

E
[ T∑
t=1

htSt

]
= E

[ T∑
t=1

htmax(
t∑

τ=1

xτ −DCt, 0)
]

(6)

≈ E
[ T∑
t=1

ht
( t∑
τ=1

xτ −DCt
)]

(7)

≈
T∑
t=1

ht

( t∑
τ=1

xτ − E[DCt]
)

(8)

With this approximation, our model does not capture the inventory hold-
ing cost exactly: it tends to underestimate it in the periods with a negative
ending inventory. Note that Zhang et al [26] study a model in which the
inventory holding cost is computed exactly through a set of additional con-
straints.

Second, the fact that DCt is stochastic implies that it might be very costly
(and even impossible depending on the support of the probability distribu-
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tions) to build a production plan ensuring that the cumulative production
is large enough to satisfy every possible realization of the demand. We thus
have to consider the eventuality that the demand satisfaction constraints (3)
will be violated for some demand realizations. As explained in Section 2,
a possible way of handling this situation in the optimization problem con-
sists in limiting the probability of these violations through the use of chance
constraints. We define a maximum acceptable risk level ε and impose 1 − ε
as an upper bound either on the probability of a stockout within each plan-
ning period or on the probability of a stockout in all periods of the planning
horizon.

Imposing that the probability of a stockout within each planning period
stays below 1− ε leads to the following program featuring T disjoint chance
constraints.



Z∗DCC = min
T∑
t=1

ftyt +
T∑
t=1

ht

( t∑
τ=1

xτ − E[DCt]
)

(9)

xt ≤ ctyt ∀t = 1...T (10)

Pr
( t∑
τ=1

xτ ≥ DCt

)
≥ 1− ε ∀t = 1...T (11)

xt ≥ 0 ∀t = 1...T . (12)

yt ∈ {0, 1} ∀t = 1...T . (13)

Enforcing a minimum value to the probability that all demand satisfaction
constraints are simultaneously respected leads to the following joint chance-
constrained program denoted SLS in what follows.

Z∗SLS = min
T∑
t=1

ftyt +
T∑
t=1

ht

( t∑
τ=1

xτ − E[DCt]
)

(14)

xt ≤ ctyt ∀t = 1...T (15)

Pr
( t∑
τ=1

xτ ≥ DCt,∀t = 1...T
)
≥ 1− ε (16)

xt ≥ 0 ∀t = 1...T . (17)

yt ∈ {0, 1} ∀t = 1...T . (18)
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t 1 2 3 4 5

xcDCC 30 120 120 210 250 Z = 480

xcJCC 30 120 120 220 320 Z = 560
DC1 80 160 200 210 250

DC2 20 60 120 220 320

DC3 20 55 90 150 200

DC4 15 60 120 140 150

DC5 30 80 90 150 170

Figure 1: Small illustrative example

3.3 Small illustrative example

Before discussing solution approaches for problem SLS in more detail, we
introduce a small example in order to better illustrate the difference between
the disjoint chance constraints (11), imposing a minimum value to the period
α-service level in each period t, and the joint chance constraint (16) imposing
a minimum value to the horizon α-service level.

In this small example, we consider a planning horizon of T = 5 periods.
We set ct = 100, ht = 1, ft = 50 for all periods t = 1...T and ε = 0.20.
We assume that the random demand Dt is described by a set of N = 5
equiprobable scenarios.

Figure 1 provides the numerical values of the cumulative demand DCi
t

for each scenario i and each period t and the cumulative production over 1...t
of two production plans. The first production plan denoted by xcDCC is a
feasible solution of problem (9) - (13). Namely, in each period, there is only a
single scenario (scenario 1 in periods 1 to 3, scenario 2 in periods 4 and 5) in
which the cumulative production xcDCC is smaller than the cumulative de-
mand DCi

t . Hence, the probability of a stockout in each individual period is
0.20 and is thus equal to the maximum acceptable stockout risk ε. However,
the probability that there is no stockout over the whole planning horizon is
only 0.6 as 2 scenarios out of 5 display stockouts with xcDCC . This means
that xcDCC is not a feasible solution for problem SLS. The second production
plan, xcJCC , which incurs stockouts only in a single scenario (scenario 1 in
periods 1 to 3), is the least costly production plan complying with the joint
chance constraint (16).
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In many cases, problem (9) - (13) can be easily solved by replacing each
chance constraint (11) by the deterministic constraint

∑t
τ=1 xτ ≥ F−1

DCt
(1−ε),

where FDCt denotes the cumulative probability distribution of DCt. However,
as explained e.g. by Luedtke and Ahmed [14], mathematical programs involv-
ing a joint chance constraint such as (16) are still largely intractable except for
a few exceptions. This can be explained by two main reasons. First, checking
the feasibility of a given solution requires computing the value of the joint
probability through multidimensional integration, which can be very time-
consuming. Second, the feasible space defined by a joint chance-constraint
is in general not convex. Yet, as mentioned e.g. by Nemirovski and Shapiro
[18], we need both efficient computation of the probability and convexity of
the solution space to efficiently process chance-constraints. This is why a va-
riety of tractable approximations have been proposed for chance-constrained
problems. They rely either on conservative convex approximations (see e.g.
Bonferroni [2], Rockafellar and Uryasev [17], Nemirovski and Shapiro [19])
or on a discretization of the probability distribution through sampling (see
e.g. Calafiore and Campi [5], Luedtke and Ahmed [14]).

In Sections 4 to 6, we first describe the Bonferroni approximation which
provides guaranteed feasible solutions of SLS and requires a limited compu-
tational effort but may lead to overly conservative and expensive solutions.
We then discuss the sample approximation approach developed by Luedtke
and Ahmed [14] before presenting the extension proposed in this work, which
we refer to as the ”partial sample approximation” approach.

4 Bonferroni conservative approximation

Let Et be the random event that there is no stockout at the end of period
t, i.e. that

∑t
τ=1 xτ ≥ DCt and P (Et) be the probability that this event

occurs. The Bonferroni inequality states that:

Pr(∩Tt=1Et) ≥ 1−
T∑
t=1

[1− P (Et)] (19)

By replacing in (16) the joint probability by its lower bound and adjusting
the reliability level appropriately, we can divide the joint chance constraint

into T individual chance constraints: Pr
(∑t

τ=1 xτ ≥ DCt

)
≥ 1 − ε

T
. This
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leads to the following deterministic mixed-integer linear program denoted by
BON:



Z∗BON = min
T∑
t=1

ftyt +
T∑
t=1

ht

( t∑
τ=1

xτ − E[DCt]
)

(20)

xt ≤ ctyt ∀t = 1...T (21)
t∑

τ=1

xτ ≥ F−1
DCt

(
1− ε

T

)
∀t = 1...T (22)

xt ≥ 0 ∀t = 1...T . (23)

yt ∈ {0, 1} ∀t = 1...T . (24)

FDCt is the cumulative probability distribution of the random variable
DCt =

∑t
τ=1Dτ . In the numerical experiments to be presented in Section 7,

the value of F−1
DCt

(
1− ε

T

)
is computed as follows:

• In case D1, ..., DT are independent random variables, each following
a uniform distribution on the same interval [L,U ], we use the fact
that DCt−tL

U−L follows the Irwin-Hall distribution of mean t and standard

deviation
√

t
12

.

• In case D1, ..., DT are independent random variables, each following
a normal distribution N (mt, st), we use the fact that DCt follows a

normal distribution N (
∑t

τ=1mτ ,
√∑t

τ=1 s
2
τ ).

• For other cases, we estimate the value of F−1
DCt

(
1 − ε

T

)
by generating

Nb = 100000 scenarios, ordering them in the decreasing order of DCi
t

and selecting the value in position d ε
T
Ne.

Problem (20)-(24) is a deterministic problem similar to (1)-(5) which can
be solved with a limited computational effort. It provides guaranteed feasible
solutions of SLS. However, as will be shown by the computational results
provided in Section 7, most often, these solutions are overly conservative and
expensive.
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5 Sample approximation approach

The sample approximation approach proposed by Luedtke and Ahmed [14]
aims at providing approximate solutions for joint chance-constrained pro-
grams. The main idea consists in replacing the original continuous proba-
bility distribution of the random vector (the cumulative demand vector DC
in our case) by an empirical discrete finite probability distribution obtained
by Monte Carlo sampling. When randomness appears only on the right-
hand side of the constraints (which is the case in problem SLS), this leads to
the formulation of a large-size mixed-integer linear program, which can be
handled by mixed-integer linear programming techniques.

In this Section, we first present how applying the sample approximation
approach to problem SLS leads to the formulation of such a large-size MILP.
We then investigate two techniques which can be used to ease its resolution
by a standard MILP solver: the strong extended formulation discussed by
Luedtke et al [15] for joint probabilistic programs with random right-hand
sides and the valid inequalities proposed by Leung et al [13] for the deter-
ministic single-item capacitated lot-sizing problem.

5.1 First MILP formulation

Let DC1,.., DCi,..., DCN be a Monte Carlo sample of the random vector
DC. The N sampled scenarios are independent and identically distributed
observations of vector DC so that the probability of each scenario i is con-
sidered to be equal to 1/N .

The sample approximation approach relies on the idea that, given a pro-
duction plan x, the value of the joint probability involved in constraint (16)
can be approximately computed as follows:

Pr
( t∑
τ=1

xτ ≥ DCt,∀t = 1...T
)
≈ 1

N

N∑
i=1

I
( t∑
τ=1

xτ −DCi
t ≥ 0 ∀t

)
(25)

where I
(
.
)

denotes the indicator function taking the value 1 when . is true
and 0 otherwise.

The idea underlying approximation (25) is the following. We check, for
each scenario i, whether all demand satisfaction constraints are respected by
the production plan x. We then count the total number Nsat of scenarios
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where all demand satisfaction constraints are respected and use the ratio
Nsat/N as an estimation of the value of the joint probability. The main
advantage of this approximation is that it enables to reformulate problem
SLS as a mixed-integer linear program.

This is done by introducing a new set of binary variables: αi ∈ {0, 1}. αi
is defined by αi = 1 if at least one demand satisfaction constraint is violated
in scenario i, αi = 0 otherwise.

This leads to the following mixed-integer linear program denoted by SA
in the sequel of the paper.

Z∗SA = min
T∑
t=1

ftyt +
T∑
t=1

ht

( t∑
τ=1

xτ − E[DCt]
)

(26)

xt ≤ ctyt ∀t (27)
t∑

τ=1

xτ ≥ DCi
t(1− αi) ∀t,∀i = 1...N (28)

N∑
i=1

αi ≤ bNεc (29)

xt ≥ 0 ∀t (30)

yt ∈ {0, 1} ∀t (31)

αi ∈ {0, 1} ∀i = 1...N (32)

Constraints (28) make sure that, if αi = 0, the T demand satisfaction
constraints corresponding to scenario i are satisfied by the production plan
x. Constraint (29) is the joint probability constraint: it limits the number
of violated scenarios to bNεc, thus ensuring that the ratio Nsat/N is above
1− ε.

Problem SA is based on an approximate representation of constraint (16)
of problem SLS. As a consequence, there is no definite guarantee that solv-
ing problem SA will provide a feasible solution of problem SLS. However,
Luedtke and Ahmed [14] showed that, when the uncertainty is located only
on the right hand side of the constraints as it is the case here, the proba-
bility that problem SA provides a feasible solution to problem SLS increases
exponentially fast with the sample size N and tends to 1 when N tends to
infinity.

Hence the larger the sample size N , the higher the probability that prob-
lem SA provides a feasible solution to problem SLS. However, using a large
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sample size N means introducing a large number of binary variables αi and of
big-M type constraints (28) in the formulation. Thus, even if problem SA is a
mixed-integer linear program, its resolution by a mathematical programming
solver poses some computational difficulty in practice.

Several mixed-integer linear programming techniques have been recently
proposed to remedy to this difficulty. Valid inequalities exploiting the fact
that, for a given period t, constraints (28) define a mixing set subject to the
additional cardinality constraint (29) are proposed by Luedtke et al [15] and
further improved by Küçükyavuz [12]. Luedtke et al [15] also investigate
the use of a strong extended formulation. We carried out some preliminary
computational experiments on a set of 50 instances with T = 20, f = 50, h =
1, C = 100, D ∼ U [10; 50], ε = 0.05 and N ∈ {100, 500, 1000, 2000, 5000}.
Consistent with the results presented by Luedtke et al [15], our numerical
results indicated that solving problem SA using the extended formulation
leads to a computation time significantly smaller than solving it using the
valid inequalities proposed by Luedtke et al [15] and Küçükyavuz [12]. We
thus used this extended formulation in our computational experiments.

5.2 Strong extended MILP formulation

We describe in this subsection how the strong extended MILP formulation
proposed by Luedtke et al [15] can be used to ease the resolution of problem
SA by a MILP solver.

We first define some additional notations.

• For each period t, the scenarios are sorted in the non-increasing order
of the cumulative demand DCi

t . Let µjt be the index of the scenario in
position j in the ordering corresponding to period t. We thus have:

DC
µ1t
t ≥ DC

µ2t
t ≥ ... ≥ DC

µjt
t ≥ ... ≥ DC

µNt
t .

• Let p = bNεc. p is equal to the maximum number of scenarios in
which one or more demand satisfaction constraints may be violated by
the production plan in any feasible solution.

We then introduce a new set of binary variables denoted by βit . βit is
defined by: βit = 1 if the demand satisfaction constraint in period t is violated
in scenario i, βit = 0 otherwise.

As noted by Luedtke et al [15], in order to obtain a feasible solution
to problem SA, the number of scenarios for which the demand satisfaction
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constraint in period t is violated should stay below p, i.e.
∑N

i=1 β
i
t ≤ p.

Moreover, as DC
µjt
t ≥ DC

µj+1
t

t ,∀j = 1...N , we have: β
µjt
t ≥ β

µj+1
t

t ,∀j =

1...N . This implies that for j = p + 1...N , β
µjt
t must be equal to 0 in any

feasible solution of problem SA. We therefore only introduce in the extended

formulation the pT variables β
µjt
t , t = 1...T, j = 1...p.

Using this notation, problem SA can be reformulated using the following
extended formulation denoted by SAExt. Note that the optimal value of
formulation SAExt, Z∗SAExt, is equal to Z∗SA, the optimal value of formulation
SA.



Z∗SAExt = min
T∑
t=1

ftyt +
T∑
t=1

ht

( t∑
τ=1

xτ − E[DCt]
)

(33)

xt ≤ ctyt ∀t (34)
t∑

τ=1

xτ +

p∑
j=1

(
DC

µjt
t −DC

µj+1
t

t

)
β
µjt
t ≥ DC

µ1t
t ∀t (35)

β
µjt
t ≥ β

µj+1
t

t ∀t,∀j = 1...p(36)

αµ
j
t ≥ β

µjt
t ∀t,∀j = 1...p(37)

N∑
i=1

αi ≤ bNεc (38)

xt ≥ 0 ∀t (39)

yt ∈ {0, 1} ∀t (40)

αi ∈ {0, 1} ∀i = 1...N (41)

β
µjt
t ∈ {0, 1} ∀t,∀j = 1...p(42)

Constraints (35) are the demand satisfaction constraints. They state
that the cumulative production over interval [1; t] should be greater that the

largest possible value for the cumulative demand over this interval, DC
µ1t
t ,

unless some scenarios display a violation in period t. In this latter case,

the term
∑p

j=1

(
DC

µjt
t − DC

µj+1
t

t

)
β
µjt
t computes the corresponding allowed

decrease in the cumulative demand to be satisfied. Constraints (36) ensure
consistency between the variables β corresponding to the same period t.
Constraints (37) link variables α and variables β corresponding to the same
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scenario: they ensure that a scenario is considered as violated as soon as one
of the T corresponding demand satisfaction constraints is violated.

Using formulation SAExt instead of formulation SA to solve the mixed-
integer linear program obtained in the sample approximation approach leads
to a significantly reduced computation time (see Luedtke et al [15]). This is
mainly explained by the fact that the lower bounds provided by the linear
relaxation of SAExt are significantly stronger that the ones provided by the
linear relaxation of SA. As a result, the number of nodes explored by the
Branch & Bound type procedure before finding a guaranteed optimal solution
is significantly reduced.

5.3 Valid inequalities for the deterministic single-item
lot-sizing problem

Formulation SAExt can be further strengthened thanks to the use of valid
inequalities available for deterministic single-item lot-sizing problems.

Namely, constraints (35) imply that
∑t

τ=1 xτ ≥ DC
µp+1
t

t ,∀t. Hence there
is a deterministic non-negative lower bound for the cumulative production
over the interval [1; t], i.e. a minimum deterministic cumulative demand
to be satisfied by the production plan. This deterministic demand can be
used as a starting point to generate valid inequalities as would be done for a
deterministic single-item lot-sizing problem.

The determination of the most relevant valid inequalities to be used to
strengthen formulation SAExt depends on the features of the problem pa-
rameters (more precisely on the costs and production capacity). We refer
the reader to Pochet and Wolsey [16] for a full introduction to this field.

In our computational experiments, we assume a constant production ca-
pacity, i.e. ct = c,∀t and use the valid inequalities proposed by Leung et al
[13] for the deterministic single-item lot-sizing problem with a constant pro-
duction capacity. These valid inequalities are added to formulation SAExt at
the root of the Branch & Bound search tree thanks to a cutting-plane gener-
ation algorithm based on the polynomial separation algorithm described in
[13].
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6 Partial sample approximation approach

As will be shown by the computational results presented in Section 7, the
sample approximation approach, even when using the extended formulation
SAExt strengthened by lot-sizing valid inequalities, fails at providing feasible
solutions of problem SLS for small samples and leads to a significant com-
putation time when the sample size N increases. This is why we propose
in what follows to use a new extension of this approach. This extension is
based on the assumption that the demand in the first period D1 is statisti-
cally independent of the demand in the other periods. Note that D1 plays a
special role in the joint chance constraint (16) as this is the only random vari-
able appearing in all the demand satisfaction constraints. Similarly to the
sample approximation approach, the proposed extension relies on a Monte
Carlo sampling method. However, the sampling is not carried out on all the
random variables involved in the stochastic problem (i.e. on D1, D2, ..., DT )
but only on part of them (more precisely on D2, ..., DT in our case). We
thus refer to it as the partial sample approximation approach.

We first explain in Subsection 6.1 how the proposed method leads to
the formulation of a new chance-constrained program featuring a series of
N joint chance constraints, each one involving a single random variable D1.
We then focus on two special cases: the case where D1 follows a uniform
distribution (see Subsection 6.2) and the case where D1 follows a normal
distribution (see Subsection 6.3). We show how, in both cases, the use of a
conservative convex approximation of the feasible set defined by each of the
N joint chance constraints leads to the formulation of a deterministic MILP
involving the same number of binary variables as the original problem SLS.
We eventually discuss in Subsection 6.4 the definition of non trivial values
for the minimum deterministic cumulative demand and their use to ease the
resolution of the obtained MILP.

6.1 General case

Let ∆C = (0, D2, ...,
∑t

τ=2Dτ , ...,
∑T

τ=2Dτ ) be the random vector represent-
ing the cumulative demand over periods 2 to t, for each period t = 1...T . We
consider a Monte Carlo sample of vector ∆C and denote ∆C1, ..., ∆Ci,...,
∆CN the corresponding N independent and identically distributed sampled
vectors.

The partial sample approximation approach relies on the idea that, given
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a production plan x, the value of the joint probability involved in constraint
(16) can be approximately computed as follows:

Pr
( t∑
τ=1

xτ ≥ DCt,∀t
)

= Pr
( t∑
τ=1

xτ −∆Ct ≥ D1,∀t
)

(43)

= E
[
I
( t∑
τ=1

xτ −∆Ct ≥ D1,∀t
)]

(44)

= E∆CED1

[
I
( t∑
τ=1

xτ −∆Ct ≥ D1,∀t
)]

(45)

= E∆C

[
Pr
( t∑
τ=1

xτ −∆Ct ≥ D1, ∀t
)]

(46)

≈ 1

N

N∑
i=1

Pr
( t∑
τ=1

xτ −∆Ci
t ≥ D1,∀t

)
(47)

Equalities (44) and (46) rely on the fact that the probability of an event
is equal to the expected value of an indicator function that is one if the event
has occurred and zero otherwise. Equality (45) makes use of the assumption
that D1 is statistically independent of ∆C to decompose the computation
of the expected value in two parts. The expected value appearing in (46) is
then approximately computed via a sample average approximation in (47).
The idea underlying the proposed partial sample approximation approach
can thus be understood as follows. For each scenario i, the probability πi =

Pr
(∑t

τ=1 xτ − ∆Ci
t ≥ D1,∀t

)
that no stockout occurs during the whole

planning horizon in case the realized demand over periods 2 to T corresponds
to the sampled vector ∆Ci is computed. The expected value of πi over all
scenarios, i.e.

∑N
i=1 π

i/N , is then used as an estimation of the value of the
joint probability. We refer the reader to Cheng et al [7] for a more thorough
mathematical discussion on this approximation of the joint probability.

This approximation enables us to reformulate problem SLS as a new
joint chance-constrained program. This is done by introducing the decision
variables πi, i = 1...N . πi ∈ [0; 1] represents the probability that no stock-out
occurs during the whole planning horizon in case the realized demand over
periods 2 to T is equal to the sampled vector ∆Ci. Note that, contrary to
what is done in the sample approximation where a binary variable αi has to
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be introduced for each scenario i, the variables πi introduced in the partial
sample approximation approach are continuous variables.

This leads to the following chance-constrained program denoted by PSA
in the sequel of the paper.



Z∗PSA = min
T∑
t=1

ftyt +
T∑
t=1

ht

( t∑
τ=1

xτ − E[DCt]
)

(48)

xt ≤ ctyt ∀t (49)

πi = Pr
( t∑
τ=1

xτ −∆Ci
t ≥ D1,∀t = 1...T

)
∀i = 1...N (50)

1

N

N∑
i=1

πi ≥ 1− ε (51)

xt ≥ 0 ∀t (52)

yt ∈ {0, 1} ∀t (53)

πi ∈ [0; 1] ∀i = 1...N (54)

Constraints (50) compute the probability that all demand satisfaction
constraints are satisfied by the production plan x in the scenario i. (51) is
the joint probability constraint ensuring that the expected value of πi over
all scenarios is above the minimum acceptable value.

We note that, similarly to the sample approximation approach, problem
PSA is based on an approximate representation of constraint (16) of prob-
lem SLS. There is thus no definite guarantee that it will provide feasible
solutions of problem SLS. However, Cheng et al [7] show that the partial
sample approximation approach has the same convergence properties as the
sample approximation approach. For instance, under certain conditions, the
optimal value of problem PSA converges to the optimal value of problem SLS
with probability one when N tends to infinity.

Moreover, we would like to point out that formulation PSA involves a
series of N joint chance-constraints (50). However, contrary to the initial
constraint (16), these constraints involve a single random variable D1 and
thus may be easier to handle, depending on the probability distribution of D1.
We refer the reader to Cheng et al [7] for a general discussion on how to handle
the probabilistic constraints (50) for a variety of probability distributions and
focus in what follows on two special cases.
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6.2 Special case: D1 ∼ U [L1;U1]

We assume here that the random variable D1 follows a uniform distribution
on an interval denoted by [L1;U1]. In this case, problem PSA can be re-
formulated as an equivalent deterministic mixed-integer linear program (see
Subsection 6.2.1) but this requires the introduction of N additional binary
variables. We thus consider solving a conservative approximation of prob-
lem PSA in which no additional binary variables are needed (see Subsection
6.2.2). This approximation relies on the use of a convex conservative approxi-
mate representation of the feasible set defined by each joint chance-constraint
(50).

6.2.1 Equivalent deterministic mixed-integer linear program

When D1 ∼ U [L1;U1], the value of the probability πi can be computed as
follows:

πi =



0 if min
t

(
∑t

τ=1 xτ −∆Ci
t) < L1

min
t

(
∑t

τ=1 xτ −∆Ci
t)− L1

U1 − L1

if min
t

(
∑t

τ=1 xτ −∆Ci
t) ∈ [L1;U1]

1 if min
t

(
∑t

τ=1 xτ −∆Ci
t) > U1

We introduce a new set of binary variables γi defined by: γi = 1 if
mint(

∑t
τ=1 xτ −∆Ci

t) < L1 and γi = 0 otherwise. This leads to the formu-
lation of a deterministic mixed-integer linear program equivalent to problem
PSA. This formulation is denoted by PSA U in the sequel of the paper.
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

Z∗PSA U = min

T∑
t=1

ftyt +
T∑
t=1

ht

( t∑
τ=1

xτ − E[DCt]
)

(55)

xt ≤ ctyt ∀t (56)

πi ≤
∑t

τ=1 xτ −∆Ci
t − L1

U1 − L1

+
∆Ci

t + L1

U1 − L1

γi ∀i = 1...N, ∀t(57)

πi ≥ 0 ∀i = 1...N (58)

πi ≤ 1− γi ∀i = 1...N (59)
t∑

τ=1

xτ ≥ (∆Ci
t + L1)(1− γi) ∀i = 1...N, ∀t(60)

1

N

N∑
i=1

πi ≥ 1− ε (61)

xt ≥ 0 ∀t (62)

yt ∈ {0, 1} ∀t (63)

γi ∈ {0, 1} ∀i = 1...N (64)

Constraints (57)-(59) compute the value of the probability πi for each
scenario i. In case γi = 0, constraints (57) and (59) make sure that

πi ≤ min
(

mint(
∑t
τ=1 xτ−∆Cit−L1

U1−L1
); 1
)
. In case γi = 1, constraints (57) be-

come inactive and constraints (58)-(59) guarantee that πi = 0. Constraints
(60) ensure that γi = 1 if mint(

∑t
τ=1 xτ −∆Ci

t) < L1 and γi = 0 otherwise.
Similarly to formulation SA, formulation PSA U can be strengthened

by using disaggregated decision variables defined as: δit = 1 if
∑t

τ=1 xτ −
∆Ci

t − L1 < 0, δit = 0 otherwise. Let (ν1
t , ..., ν

j
t , ..., ν

N
t ) be an ordering of

the scenarios in the non-decreasing order of the cumulative demand ∆Ci
t .

Using the same considerations as in Subsection 5.2, we can set δ
νjt
t to 0 for

all j = p+ 1...N .
This leads to the following extended formulation denoted by PSAExt U

. Note that its optimal value, Z∗PSAExt U , is equal to the optimal value of
formulation PSA U, Z∗PSA U .
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

Z∗PSAExt U = min

T∑
t=1

ftyt +
T∑
t=1

ht

( t∑
τ=1

xτ − E[DCt]
)

(65)

xt ≤ ctyt ∀t (66)

πi ≤
∑t

τ=1 xτ −∆Ci
t − L1

U1 − L1

+
∆Ci

t + L1

U1 − L1

γi ∀i = 1...N,∀t(67)

πi ≥ 0 ∀i = 1...N (68)

πi ≤ 1− γi ∀i = 1...N (69)
t∑

τ=1

xτ +

p∑
j=1

(
∆C

νjt
t −∆C

νj+1
t
t

)
δ
νjt
t ≥ ∆C

ν1t
t + L1 ∀t (70)

δ
νj+1
t
t ≤ δ

νjt
t ∀j = 1...p,∀t(71)

δ
νjt
t ≤ γν

j
t ∀j = 1...p,∀t(72)

1

N

N∑
i=1

πi ≥ 1− ε (73)

xt ≥ 0 ∀t (74)

yt ∈ {0, 1} ∀t (75)

γi ∈ {0, 1} ∀i = 1...N (76)

δ
νjt
t ∈ {0, 1} ∀j = 1...p,∀t(77)

As will be shown by the computational results presented in Section 7, for-
mulation PSAExt U requires prohibitively long computation times for large
sample sizes. We thus investigate in the next subsection a conservative ap-
proximation of problem PSA, in which no additional binary variable is intro-
duced.

6.2.2 Conservative approximate deterministic mixed-integer lin-
ear program

The proposed conservative approximation of problem PSA relies on the fol-
lowing approximate computation of probability πi:
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πi ≈ π̃i =


min
t

(
∑t

τ=1 xτ −∆Ci
t)− L1

U1 − L1

if min
t

(
∑t

τ=1 xτ −∆Ci
t) ≤ U1

1 if min
t

(
∑t

τ=1 xτ −∆Ci
t) > U1

Note that in this approximation, the value of the probability is computed
exactly (i.e. πi = π̃i) in case min

t
(
∑t

τ=1 xτ −∆Ci
t) ≥ L1 and underestimated

(i.e. π̃i ≤ πi) in case min
t

(
∑t

τ=1 xτ −∆Ci
t) < L1. Namely, in this latter case,

π̃i has a negative value whereas πi is equal to 0.
Thanks to the use of this approximate computation of probability πi, it

is possible to reformulate problem PSA as a mixed-integer linear program
without introducing the binary variables γi. This problem is denoted by
PSACons U in the sequel of the paper.



Z∗PSACons U = min
T∑
t=1

ftyt +
T∑
t=1

ht

( t∑
τ=1

xτ − E[DCt]
)

(78)

xt ≤ ctyt ∀t (79)

π̃i ≤
∑t

τ=1 xτ −∆Ci
t − L1

U1 − L1

∀i,∀t (80)

π̃i ≤ 1 ∀i (81)

1

N

N∑
i=1

π̃i ≥ 1− ε (82)

xt ≥ 0 ∀t (83)

yt ∈ {0, 1} ∀t (84)

Note that problem PSACons U is a conservative (safe) approximation
of problem PSA U. Namely, any feasible solution of problem PSACons U
(x, y, π̃) provides a feasible solution (x, y, π) of problem PSA U by putting
πi = 0 for each scenario i such that π̃i < 0. As we have πi ≥ π̃i, ∀i = 1...N ,
we have 1

N

∑N
i=1 π

i ≥ 1
N

∑N
i=1 π̃

i. Hence, a production plan (x, y) which
satisfies constraint (82) also satisfies constraint (61) and (x, y, π) is a feasible
solution of problem PSA U.
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6.3 Special case : D1 ∼ N (m1, s1)

We now consider the case where D1 follows a normal distribution with mean
m1 and standard deviation s1. The normal distribution is widely used to
represent the demand and the forecasting errors in standard inventory man-
agement and forecasting models although it has the drawback of placing
some probability on unrealistic negative demand values. The standard mod-
els usually assume that this probability is sufficiently small to be negligible.
Namely, the probability of getting a negative value with a normal distribu-
tion is at most 2.5% when the ratio m1/s1 is equal to 2 and falls below 0.15%
when m1/s1 is greater than 3. In practice, such large values of m1/s1 can be
found for high volume products displaying a demand with a large expected
value and a low variability.

In this subsection, we discuss a conservative convex approximation of
problem PSA in the case where D1 follows a normal distribution. This ap-
proximation makes use of the fact that the cumulative probability function
FD1 is convex over ]−∞;m1] and concave over the interval [m1,+∞[.

This conservative piecewise linear approximation of FD1 , denoted by
F̃D1(X), uses a set of B + 1 breakpoints φb, b = 0...B such that φ0 = m1,
φb > φb−1,∀b = 1...B. We define:

FD1(X) ≈ F̃D1(X) =


σ0X + θ0 if X ≤ φ0 (85)

σbX + θb if X ∈ [φb−1;φb], ∀b = 1...B (86)

σBφB + θB if X ≥ φB (87)

where the slope and intercept of each segment are computed as follows:


σ0 = F ′D1

(φ0) and θ0 = FD1(φ0)− σ0φ0 (88)

σb =
FD1(φb)− FD1(φb−1)

φb − φb−1

and θb = FD1(φb)− σbφb ∀b = 1...B(89)

Note that we have FD1(X) ≥ F̃D1(X), ∀X. Namely:

• [X 7→ σ0X + θ0] is the tangent line to the curve [X 7→ FD1(X)] at
point m1. As FD1 is convex over ] − ∞;m1], we have: FD1(X) ≥
σ0X + θ0, ∀X ≤ φ0.
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• [X 7→ σbX + θb], b = 1...B are chords between two points φb−1 and
φb belonging [m1,+∞[. As FD1 is concave over this interval, we have:
FD1(X) ≥ σbX + θb,∀X ≥ φ0,∀b = 1...B.

• FD1 is strictly increasing over R. This implies FD1(X) ≥ FD1(φB) =
σBφB + θB,∀X ≥ φB.

This allows us to reformulate problem PSA as the following mixed-integer
linear program denoted by PSACons N.



Z∗PSACons N = min
T∑
t=1

ftyt

+
T∑
t=1

ht

( t∑
τ=1

xτ − E[DCt]
)

(90)

xt ≤ ctyt ∀t (91)

π̃i ≤ σb
( t∑
τ=1

xτ −∆Ci
t

)
+ θb ∀i, ∀t,∀b = 0...B (92)

π̃i ≤ σBφB + θB ∀i (93)

1

N

N∑
i=1

π̃i ≥ 1− ε (94)

xt ≥ 0 ∀t (95)

yt ∈ {0, 1} ∀t (96)

Note how constraints (92)-(93) compute the value of the probabilities in
the approximation, π̃i, via a set of linear inequalities.

6.4 Formulation improvements

We now investigate the determination of a non trivial value for the minimum
deterministic cumulative demand to be satisfied by any feasible solution of
problem SLS. This information will be used to ease the resolution of prob-
lems PSAExt U, PSACons U and PSACons N by a MILP solver through:
(i) the reduction of the MILP size thanks to the early detection of redun-
dant constraints, (ii) the formulation strengthening through valid inequalities
available for deterministic single-item capacitated lot-sizing.
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Consider a production plan (x, y) feasible for problem SLS. Let FD1 be
the cumulative probability distribution of the random variable D1.

• for t = 1, we have:

x1 ≥ F−1
D1

(1− ε) (97)

• for a given period t ∈ [2;T ]
Let (ν1

t , ..., ν
j
t , ..., ν

N
t ) be an ordering of the scenarios in the non-

decreasing order of the cumulative demand ∆Ci
t .

Let kt be the index of the first scenario in this ordering such that:

N∑
i=1

FD1

(
F−1
D1

(1− ε) + ∆C
ν
kt
t
t −∆Ci

t

)
< N(1− ε) (98)

We have:
t∑

τ=1

xτ ≥ F−1
D1

(1− ε) + ∆C
ν
kt
t
t (99)

See appendix.
Proposition 1 defines a minimum deterministic cumulative demand

dcmint = F−1
D1

(1 − ε) + ∆C
ν
kt
t
t which has to be satisfied by any feasible pro-

duction plan.
This can first be used to significantly reduce the size of the MILP to be

solved as some constraints or variables become redundant. More precisely,

• In formulation PSAExt U, we can set to 0 all binary variables δit such
that dcmint −∆Ci

t − L1 ≥ 0 and all binary variables γi such that δit =
0,∀t.

• In formulation PSACons U, in each period t, constraints (80) and (81)

are redundant for all scenarios i such that
dcmint −∆Cit−L1

U1−L1
≥ 1.

• In formulation PSACons N, for each period t and each segment b, con-
straints (92) are redundant for all scenarios i such that dcmint −∆Ci

t ≥
φb.

Second, similarly to what is done to strengthen formulation SAExt for
the sample approximation approach, the minimum deterministic cumulative
demand dcmint can be used as a starting point to generate valid inequalities
such as the ones proposed by Leung et al [13] for the deterministic single-item
lot-sizing problem with a constant production capacity.

27



7 Numerical results

We discuss in this Section the results of some computational experiments
carried out on small to medium size instances of the problem. The main
objective of these experiments is to assess the effectiveness of the proposed
partial sample approximation approach by comparing it with the Bonferroni
conservative approximation and the sample approximation approach.

7.1 Instances

We generated test problems by considering a planning horizon of T ∈
{10, 20, 30} periods. In each problem, the inventory holding and setup costs
are assumed to be time-independent and are set to h = 1 and f ∈ {25, 50, 75}.
Similarly, the production capacity is assumed to be time-independent and is
set to c ∈ {50, 100, 150}.

Four different cases are considered for the random demands Dt, t = 1...T .

• Dt, t = 1...T are statistically independent of one another and follow:

– a uniform distribution on the interval [L,U ] ∈
{[20; 40], [10; 50], [0; 60]}.

– a normal distribution of parameter m = 30 and s ∈ {5, 10, 15}.

• Dt, t = 1...T are statistically dependent and are generated according
to an autoregressive process of type AR1: Dt = ρDt−1 + χ(1 − ρ) +
r(t) where ρ ∈ {−1,−0.5, 0, 0.5, 1} is the first order autocorrelation
coefficient, χ = 30 and the residual r(t) follows:

– a uniform distribution on the interval [L,U ] = [−20, 20].

– a normal distribution with mean m = 0 and standard deviation
s = 10.

The size of the sample obtained by the Monte Carlo method, N , is varied
between 100 and 5000 scenarios: N ∈ {100, 500, 1000, 2000, 5000}. Note that,
when the demand is generated from a normal distribution, it may happen
in a few cases that the sampled value Di

t takes a negative value. When this
happens, we set the value of Di

t to 0 to avoid introducing unrealistic negative
demands in the sampled scenarios.
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Five possible values are considered for the maximum acceptable risk level:
ε ∈ {0.15, 0.10, 0.05, 0.02, 0.01}.

We defined two reference sets of 10 instances in which T = 20, h = 1, f =
50, c = 100, N = 1000, ε = 0.05, Dt, t = 1...T are statistically independent
and follow either a uniform distribution on the interval [10, 50] or a normal
distribution with mean m = 30 and s = 10. We then created additional
sets of instances, each time changing the value of a single parameter in order
to assess its impact on the problem resolution. For each considered set, 10
samples of scenarios, i.e. 10 instances, were randomly generated, leading to
a total of 420 instances.

All tests were run on an Intel Core i5 (2.6 GHz) with 4 Go of RAM,
running under Windows 7. We used the mathematical programming solver
CPLEX 12.6 with the default settings to solve the problem using the MILP
formulations discussed in Sections 4 to 6. The piecewise linear approximation
of FD1 used in formulation PSACons N was built with B = 4, φ0 = m1,
φ1 = m1 + 0.5s1, φ2 = m1 + s1, φ3 = m1 + 1.5s1 and φ4 = m1 + 3s1.

7.2 Numerical results: independent random variables
Dt, t = 1...T

We first focus on the case where the random variables Dt, t = 1...T are sta-
tistically independent of one another and follow either a uniform distribution
or a normal distribution. The instances in which Dt, t = 1...T follow a uni-
form distribution are solved using formulations BON, SAExt, PSAExt U and
PSACons U. The instances in which Dt, t = 1...T follow a normal distribu-
tion are solved using formulations BON, SAExt and PSACons N.

Tables 1 to 6 display the corresponding results. Each line corresponds to
the average value over the corresponding 10 instances. We provide for each
set of 10 instances:

• Bin: the average number of binary variables in the formulation.

• Cons: the average number of constraints in the formulation.

• Cost: the average value of the optimal solution of the corresponding
MILP.

• Prob: the average value of the probability Pr
(∑t

τ=1 x
∗
τ ≥ DCt,∀t =

1...T
)

where x∗ is the optimal solution of the MILP formulation. Prob
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corresponds to a post-optimization estimation of the joint probability.
It is is obtained by using a sample of Nc = 100000 scenarios different
from the ones used in the optimization phase. For each instance, we
count the number Ns of scenarios for which all demand satisfaction
constraints are satisfied by the corresponding production plan x∗. Prob
is then computed as the proportion Ns/Nc of scenarios for which there
is no violation. We consider that x∗ is a feasible solution of problem
SLS in case Prob is greater or equal to 1− ε and an infeasible solution
otherwise.

• Feas: the number of instances (out of the 10 corresponding ones) for
which the production plan x∗ is a feasible solution of problem SLS (i.e.
is such that Prob ≥ 1−ε). Note that Feas is not defined for formulation
BON as this formulation does not use the sampled scenarios.

• Time: the average computation time needed to solve to optimality the
MILP formulation.

Results from Tables 1 to 6 first show that, whether D1 follows a uniform
or a normal distribution, formulation BON based on the Bonferroni approxi-
mation is capable of providing feasible solutions of problem SLS within very
short computation times (less than 1s in most cases). However, these so-
lutions are rather conservative. The value of Prob is namely significantly
higher than the required value 1− ε in all cases. As a result, these solutions
are significantly more expensive than the solutions provided by the other
formulations: for instance, the solutions of formulation BON are on average
24% more expensive than the ones of formulation SAExt.

Second, for the case where D1 follows a uniform distribution, problem
PSA can be reformulated into an equivalent deterministic mixed-integer lin-
ear program. This enables us to carry out a comparison between formulation
SAExt, which is based on the sample approximation approach, formulation
PSAExt U, which solves problem PSA exactly, and formulation PSACons U,
which is a conservative approximation. The numerical results displayed in
Tables 1 to 6 show that, out of the 140 studied instances for which PSAExt U
could be solved to optimality within the time limit of 3600s, a feasible so-
lution was found for 1 instance with formulation SAExt, 44 instances with
formulation PSAExt U and 81 instances with formulation PSACons U. We
thus note that the partial sample approximation method gives more reliable
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solutions than the sample approximation method, even without using a con-
servative approximation of FD1 . This might be explained by the fact that the
partial approximation uses an exact representation of the cumulative prob-
ability distribution of D1, FD1 , whereas the sample approximation relies on
a discrete approximation obtained by sampling. Moreover, we observe that
formulation PSACons U is significantly more conservative than formulation
PSAExt U as it finds feasible solutions of the stochastic problem for a num-
ber of instances nearly twice as large as formulation PSAExt U. However, the
average cost increase when using formulation PSACons U instead of formu-
lation PSAExt U stays below 2%, which seems an acceptable threshold. In
terms of computation time, formulation PSAExt U requires prohibitive long
computation times and might not be usable in practice. But, the average
computation time when using formulation PSACons U is only 10.5s whereas
it is 83.3s when using formulation SAExt. This might be explained by the
fact that formulation PSACons U involves a number of binary variables sig-
nificantly smaller than formulation SAExt.

Third, for the case where D1 follows a normal distribution, there is no
equivalent mixed-integer linear programming formulation of problem PSA.
We thus focus on the comparison between formulations SAExt and formula-
tion PSACons N which is based on a conservative approximation of problem
PSA. We first note that formulation SAExt fails at providing feasible solu-
tions of problem SLS for the sample sizes considered in this work. This can
be seen by the facts that only 1 of the 170 instances considered in Tables
1 to 6 has a solution satisfying the joint probability constraint (16) when
solved with SAExt and that the average value of Prob is below the targeted
value 1− ε in all cases. In contrast, using formulation PSACons N, feasible
solutions of problem SLS are obtained for 139 out of the 170 instances and
Prob is above the targeted value 1− ε in most cases. Moreover, the average
computation time is decreased from 128.5s when using formulation SAExt to
43.6s when using formulation PSACons N. However, we note that the solu-
tions provided by PSACons N might be too conservative. Namely, in some
cases, the value of Prob is significantly larger than 1− ε. This might indicate
the existence of less expensive feasible solutions of problem SLS which none
of the studied approaches is capable of finding.

Finally, results from Tables 1 to 6 also enable us to assess the impact of
the various parameters on the problem resolution. They namely show that:

• The computation time of the sample approximation and the partial
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sample approximation approaches significantly increases with the sam-
ple size N . However, a minimum sample size is required to ensure a
good approximation of the joint probability and to obtain feasible solu-
tions of problem SLS. For the partial sample approximation approach,
the value N = 1000 seems to be an acceptable trade-off. But for the
sample approximation approach, a sample size of at least 5000 scenarios
seems to be necessary.

• When the value of the maximum acceptable risk level ε decreases, the
size of the mixed-integer linear programs obtained with the sample
approximation and the partial sample approximation approaches de-
creases, leading to an overall decrease in the computation time. How-
ever, it appears that the smaller ε, the more difficult it is to find feasible
solutions of problem SLS.

• The horizon length T also has a direct impact of the size of the mixed-
integer linear programs so that increasing T leads to longer computa-
tion times.

• The values of the ratio f
h
, of the production capacity c and of the

standard deviation of D1 appear to have a limited impact on both the
number of feasible solutions obtained and the computation time.

7.3 Numerical results: dependent random variables
Dt, t = 1...T

We now consider the case where there are statistical dependencies between
the demand from different periods. Note that the partial sample approxima-
tion can take into account any correlations between D2, ..., Dt as they will
be reflected in the generation of the scenarios representing possible realiza-
tions of ∆C2, ...∆CT . However, this approach requires the assumption that
D1 is statistically independent of D2, ..., Dt. In this subsection, we seek to
evaluate whether the partial sample approximation can still be useful in the
presence of correlations between D1 and D2, ..., Dt.

To achieve this, we use a set of instances in which Dt is assumed to follow
an autoregressive model of type AR1, i.e. to depend linearly on its previous
value Dt−1 and on a stochastic term. More precisely, we first randomly
generated the value of D1, assuming either a uniform distribution on [10, 50]
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Table 1: Impact of the sample size N
D1 N Formulation Bin Cons Cost Prob Feas Time

Uniform 100 SAExt 220 241 2100.6 0.842 0 1.3s
PSAExt U 38 477 2297.7 0.921 1 3.5s
PSACons U 20 418 2315.1 0.924 1 1.0s

500 SAExt 1020 1041 2317.8 0.926 0 5.0s
PSAExt U 136 2093 2395.9 0.947 3 58.5s
PSACons U 20 1830 2403.3 0.949 5 2.4s

1000 SAExt 2020 2041 2343.7 0.934 0 17.1s
PSAExt U 241 4149 2395.9 0.949 5 2423.1s
PSACons U 20 3651 2411.0 0.951 5 7.7s

2000 SAExt 4020 4041 2342.6 0.938 0 72.0s
PSAExt U 473 8208
PSACons U 20 7188 2407.4 0.952 7 19.8s

5000 SAExt 10020 10041 2363.4 0.943 0 634.1s
PSAExt U 1158 20501
PSACons U 20 17898 2407.4 0.952 9 54.2s

Normal 100 SAExt 220 241 1933.0 0.856 0 1.3s
PSACons N 20 1108 2162.1 0.932 1 1.8s

500 SAExt 1020 1041 2100.9 0.919 0 6.3s
PSACons N 20 5102 2252.9 0.955 8 8.9s

1000 SAExt 2020 2041 2140.8 0.934 0 20.3s
PSACons N 20 10362 2265.8 0.958 10 25.1s

2000 SAExt 4020 4041 2150.6 0.937 0 114.8s
PSACons N 20 20706 2254.2 0.957 9 28.1s

5000 SAExt 10020 10041 2181.1 0.945 1 695.1s
PSACons N 20 51443 2265.2 0.960 10 309.3s

” ”indicates that no guaranteed optimal solution could be found within one hour of computation.
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Table 2: Impact of the maximum acceptable risk level ε
D1 ε Formulation Bin Cons Cost Prob Feas Time

Uniform 0.15 BON 20 40 2738.7 0.971 NA 0.5s
SAExt 4020 6041 1987.0 0.833 1 307.6s

PSAExt U 1006 9056 2012.4 0.849 3 2611.8s
PSACons U 20 6825 2057.9 0.864 9 17.4s

0.10 BON 20 40 2845.4 0.979 NA 0.5s
SAExt 3020 4041 2128.9 0.883 0 67.5s

PSAExt U 599 6671 2169.2 0.900 4 2535.3s
PSACons U 20 5373 2199.5 0.907 8 9.3s

0.05 BON 20 40 3016.5 0.989 NA 0.5s
SAExt 2020 2041 2343.7 0.934 0 17.1s

PSAExt U 241 4149 2395.9 0.949 5 2423.1s
PSACons U 20 3651 2411.0 0.951 5 7.7s

0.02 BON 20 40 3221.5 0.995 NA 0.5s
SAExt 1420 841 2556.6 0.968 0 5.1s

PSAExt U 76 2502 2631.5 0.977 2 23.4s
PSACons U 20 2363 2637.6 0.978 4 4.1s

0.01 BON 20 40 3363.7 0.997 NA 0.5s
SAExt 1220 441 2670.6 0.977 0 2.6s

PSAExt U 41 1901 2772.3 0.987 0 14.2s
PSACons U 20 1839 2776.0 0.987 0 2.4s

Normal 0.15 BON 20 40 2346.1 0.966 NA 0.5s
SAExt 4020 6041 1817.9 0.832 0 555.2s

PSACons N 20 47153 1931.3 0.880 10 233.0s
0.10 BON 20 40 2437.2 0.976 NA 0.5s

SAExt 3020 4041 1951.4 0.882 0 137.9s
PSACons N 20 17959 2068.8 0.920 10 53.6s

0.05 BON 20 40 2584.1 0.987 NA 0.5s
SAExt 2020 2041 2140.8 0.934 0 20.3s

PSACons N 20 10362 2265.8 0.958 10 25.1s
0.02 BON 20 40 2771.2 0.994 NA 0.5s

SAExt 1420 841 2346.5 0.964 0 5.1s
PSACons N 20 5420 2498.0 0.982 8 11.3s

0.01 BON 20 40 2897.6 0.997 NA 0.5s
SAExt 1220 441 2492.8 0.979 0 3.3s

PSACons N 20 3377 2658.2 0.990 5 6.3s
”NA” stands for ’not applicable’.
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Table 3: Impact of the planning horizon length T
D1 T Formulation Bin Cons Cost Prob Feas Time

Uniform 10 BON 10 20 1074.7 0.982 NA 0.2s
SAExt 1510 1021 942.2 0.937 0 1.8s

PSAExt U 61 2725 962.6 0.951 7 11.0s
PSACons U 10 2619 964.0 0.951 7 2.5s

20 BON 20 40 3016.5 0.989 NA 0.5s
SAExt 2020 2041 2343.7 0.934 0 17.1s

PSAExt U 241 4149 2395.9 0.949 5 2423.1s
PSACons U 20 3651 2411.0 0.951 5 7.7s

30 BON 30 60 6303.9 0.993 NA 1.1s
SAExt 2530 3061 3903.4 0.924 0 222.7s

PSAExt U 469 5568
PSACons U 30 4519 4100.4 0.950 5 16.2s

Uniform 10 BON 10 20 999.0 0.984 NA 0.3s
SAExt 1510 1021 882.7 0.941 0 2.4s

PSACons N 10 6586 918.0 0.960 10 10.3s
20 BON 20 40 2584.1 0.987 NA 0.5s

SAExt 2020 2041 2140.8 0.934 0 20.3s
PSACons N 20 10362 2265.8 0.958 10 25.1s

30 BON 30 60 4567.9 0.988 NA 1.1s
SAExt 2530 3061 3659.8 0.929 0 554.1s

PSACons N 30 13240 3928.5 0.959 10 63.6s
”NA” stands for ’not applicable’.
” ”indicates that no guaranteed optimal solution could be found within one hour of computation.
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Table 4: Impact of the ratio f/h
D1 f/h Formulation Bin Cons Cost Prob Feas Time

Uniform 25 BON 20 40 2627.9 0.984 NA 0.5s
SAExt 2020 2041 2004.6 0.936 0 8.9s

PSAExt U 255 4138 2086.2 0.948 1 1933.1s
PSACons U 20 3584 2107.9 0.951 7 4.8s

50 BON 20 40 3016.5 0.989 NA 0.5s
SAExt 2020 2041 2343.7 0.934 0 17.1s

PSAExt U 241 4149 2395.9 0.949 5 2423.1s
PSACons U 20 3651 2411.0 0.951 5 7.7s

75 BON 20 40 3266.4 0.990 NA 0.5s
SAExt 2020 2041 2583.2 0.936 0 19.8s

PSAExt U 246 4166 2635.2 0.949 3 1691.2s
PSACons U 20 3644 2656.3 0.952 7 10.4s

Normal 25 BON 20 40 2231.2 0.983 NA 0.5s
SAExt 2020 2041 1815.0 0.923 0 13.9s

PSACons N 20 10441 1941.3 0.954 8 17.0s
50 BON 20 40 2584.1 0.987 NA 0.5s

SAExt 2020 2041 2140.8 0.934 0 20.3s
PSACons N 20 10362 2265.8 0.958 10 25.1s

75 BON 20 40 2834.1 0.986 NA 0.5s
SAExt 2020 2041 2396.5 0.933 0 20.9s

PSACons N 20 10208 2519.1 0.958 10 35.3s
”NA” stands for ’not applicable’.
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Table 5: Impact of the capacity c
D1 c Formulation Bin Cons Cost Prob Feas Time

Uniform 50 BON 20 40 3127.9 0.985 NA 0.5s
SAExt 2020 2041 2451.7 0.933 0 9.7s

PSAExt U 255 4152 2510.6 0.949 3 2385.9s
PSACons U 20 3007 2534.6 0.953 7 5.1s

100 BON 20 40 3016.5 0.989 NA 0.5s
SAExt 2020 2041 2343.7 0.934 0 17.1s

PSAExt U 241 4149 2395.9 0.949 5 2423.1s
PSACons U 20 3651 2411.0 0.951 5 7.7s

150 BON 20 40 3016.5 0.989 NA 0.5s
SAExt 2020 2041 2322.5 0.932 0 22.0s

PSAExt U 247 4107 2378.5 0.946 2 714.5s
PSACons U 20 3636 2398.5 0.950 5 8.4s

Normal 50 BON 20 40 Unf. NA NA NA
SAExt 2020 2041 2364.8 0.931 1 4.8s

PSACons N 20 10304 2794.6 0.969 9 7.4s
100 BON 20 40 2584.1 0.987 NA 0.5s

SAExt 2020 2041 2140.8 0.934 0 20.3s
PSACons N 20 10362 2265.8 0.958 10 25.1s

150 BON 20 40 2584.1 0.987 NA 0.5s
SAExt 2020 2041 2148.4 0.933 0 31.5s

PSACons N 20 10224 2266.1 0.958 10 20.6s
”NA” stands for ’not applicable’.
”Unf.” stands for ’unfeasible’.
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Table 6: Impact of the standard deviation
D1 [L1, U1] Formulation Bin Cons Cost Prob Feas Time

Uniform [20;40] BON 20 40 1908.2 0.989 NA 0.5s
SAExt 2020 2041 1560.6 0.932 0 9.8s

PSAExt U 251 4151 1591.6 0.969 4 1015.1s
PSACons U 20 3651 1601.7 0.952 8 6.5s

[10;50] BON 20 40 3016.5 0.989 NA 0.5s
SAExt 2020 2041 2343.7 0.934 0 17.1s

PSAExt U 241 4149 2395.9 0.949 5 2423.1s
PSACons U 20 3651 2411.0 0.951 5 7.7s

[0;60] BON 20 40 4118.7 0.988 NA 0.5s
SAExt 2020 2041 3088.2 0.933 0 9.5s

PSAExt U 244 4149 3171.9 0.949 6 1353.0s
PSACons U 20 2633 3204.4 0.952 8 6.0s

D1 s1 Formulation Bin Cons Cost Prob Feas Time
Normal 5 BON 20 40 1692.1 0.987 NA 0.5s

SAExt 2020 2041 1469.1 0.934 0 9.1s
PSACons N 20 10456 1529.4 0.958 10 21.1s

10 BON 20 40 2584.1 0.987 NA 0.5s
SAExt 2020 2041 2140.8 0.934 0 20.3s

PSACons N 20 10362 2265.8 0.958 10 25.1s
15 BON 20 40 3478.1 0.986 NA 0.5s

SAExt 2020 2041 2733.3 0.918 0 8.6s
PSACons N 20 10459 2958.2 0.952 1 22.2s

”NA” stands for ’not applicable’.
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or a normal distribution distribution with mean 30 and standard deviation
10. We then generated the value of Dt, for periods 2...T, following the model
Dt = ρDt−1 +χ(1− ρ) + r(t) where ρ ∈ {−1,−0.5, 0, 0.5, 1}, χ = 30 and r(t)
follows either a uniform distribution on the interval [L,U ] = [−20, 20] or a
normal distribution with mean 0 and standard deviation 10. ρ is the first
order autocorrelation coefficient. ρ = 0 means that there is no correlation
between Dt−1 and Dt, ρ = 1 (resp. ρ = −1) indicates that there is a total
positive (resp. negative) correlation between Dt−1 and Dt.

The corresponding numerical results are displayed in Table 7. They first
show that the presence of positive or negative correlations between variables
Dt, t = 1...T , seems to have a limited impact on both the Bonferroni approx-
imation and the sample approximation approaches.

Second, for the case where D1 follows a uniform distribution, we note
that formulation PSAExt U, which is equivalent to problem PSA, fails at
providing feasible solutions of problem SLS when there are positive correla-
tions between variables Dt. This might be explained as follows. When D1 is
positively correlated with Dt, t = 2...T , the probability that the cumulative
demand DC takes very large values is higher than when there is no correla-
tion. In formulation PSAExt U, this is not taken into account so that the
stockout risk is underestimated. Conversely, formulation PSAExt U tends
to provide more conservative solutions when there are negative correlations
between variables Dt. This is due to the fact that the probability that DC
takes very large values is smaller in case of negative correlations than in case
of no correlation, so that in formulation PSAExt U, the stockout risk tends
to be overestimated.

As for the conservative approximations of problem PSA, PSACons U and
PSACons N, the effects described in the previous paragraph are counterbal-
anced by the fact that the approximation tends to be more (resp. less) con-
servative when there are positive (resp. negative) correlations. Namely, in
the presence of positive (resp. negative) correlations, the number of scenarios
for which the value of the probability π̃i is negative, i.e. is underestimated,
is larger (resp. smaller) than the number of such scenarios in the absence of
correlations.

We thus conclude that, in the presence of correlations between D1 and
Dt, t = 2...T , formulations PSACons U and PSACons N might be useful to
find feasible solutions of problem SLS within a reduced computation time.
However, these solutions might be overly conservative. Thus, in case a close-
to-optimal solution is required, the use of formulation SAExt with a large
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sample size might be more appropriate.

7.4 Numerical results: assessment within a rolling
horizon framework

In practice, production planning is often carried out within a rolling horizon
framework. In such a framework, the production plan is computed for a
planning horizon of T periods but only the decisions pertaining to the rolling
horizon window, i.e. to the first Trh periods, are actually implemented. At
the end of period Trh, a new production plan is computed for the T following
periods taking into account the realization of the stochastic demand over
periods 1 to Trh and the updated probabilistic information on the demand
over periods Trh + 1...Trh + T .

In this subsection, we thus simulate the implementation of the produc-
tion plans computed either with the sample approximation or with the partial
sample approximation within a rolling horizon framework. We seek to eval-
uate the actual cost and the actual stockout risk of these approaches when
used in a rolling horizon planning environment. Note that the cost consid-
ered here is not the objective function of the MILP formulation but the sum
over time of the actual costs incurred when applying the production planning
decisions on the periods belonging to the rolling horizon window. Similarly,
the actual stockout risk is not estimated by computing the value of Prob
as done in the previous subsections but by checking whether applying the
production planning decisions on the rolling horizon window with the actual
value of the demand leads to a stockout.

More precisely, we use the rolling horizon simulation procedure described
as Algorithm 1. Running the simulation once means solving an MILP several
times. Moreover, in order to get a good statistical evaluation of the true
cost and stockout risk, we run the simulation 500 times. In view of this
significant computational effort, we focus in our experiments on the reference
data set in which T = 20, h = 1, f = 50, c = 100, N = 1000, ε = 0.05
and the demands Dt are independent of one another and follow a uniform
distribution on [10, 50]. We considered three values of the rolling horizon
window: Trh ∈ {5, 10, 15}. We also considered the value Trh = 20 in order to
simulate a static planning environment.

The corresponding numerical results are displayed in Table 8. For each
value of Trh, we provide the average value of RHCost over the 500 simulation
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Table 7: Impact of correlations between D1 and D2, ..., Dt

r(t) ρ Formulation Bin Cons Cost Prob Feas Time
Uniform 1 BON 20 40 10219.9 0.983 NA 0.7s

SAExt 2020 2041 8521.5 0.931 0 3.5s
PSAExt U 740 3883 8521.4 0.933 0 1825.7s
PSACons U 20 2130 9158.4 0.955 8 1.2s

0.5 BON 20 40 4385.9 0.984 NA 0.6s
SAExt 2020 2041 3471.9 0.933 0 11.9s

PSAExt U 474 3883 3489.9 0.937 0 2054.5s
PSACons U 20 2761 3642.4 0.950 6 3.2s

0.0 BON 20 40 3016.5 0.989 NA 0.5s
SAExt 2020 2041 2343.7 0.934 0 17.1s

PSAExt U 241 4149 2395.9 0.949 5 2423.1s
PSACons U 0 3651 2411.0 0.951 5 7.7s

-0.5 BON 20 40 2183.0 0.985 NA 0.7s
SAExt 2020 2041 1897.6 0.935 0 13.4s

PSAExt U 126 4491 2003.9 0.959 10 108.5s
PSACons U 20 4253 2007.6 0.960 10 8.8s

-1 BON 20 40 2161.9 0.986 NA 0.7s
SAExt 2020 2041 1881.7 0.933 0 6.9s

PSAExt U 121 4512 2040.9 0.956 10 43.3s
PSACons U 20 4282 2042.0 0.956 10 8.9s

Normal 1 BON 20 40 11984.5 0.991 NA 0.5s
SAExt 2020 2041 9219.7 0.939 1 2.7s

PSACons N 20 4466 10569.3 0.970 10 1.5s
0.5 BON 20 40 4029.5 0.987 NA 0.5s

SAExt 2020 2041 3143.9 0.934 0 14.7s
PSACons N 20 7308 3382.7 0.957 8 14.6s

0.0 BON 20 40 2584.1 0.987 NA 0.5s
SAExt 2020 2041 2140.8 0.934 0 20.3s

PSACons N 20 10456 1529.4 0.958 10 21.1s
-0.5 BON 20 40 2052.3 0.986 NA 0.5s

SAExt 2020 2041 1757.8 0.932 0 18.9s
PSACons N 20 12642 1909.1 0.966 10 48.7s

1 BON 20 40 2068.8 0.987 NA 0.5s
SAExt 2020 2041 1770.7 0.933 0 7.6s

PSACons N 20 12409 1941.9 0.961 10 46.8s
”NA” stands for ’not applicable’.
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Algorithm 1 Rolling horizon simulation procedure

Set RHCost = 0, Stockout = 0 and I0 = 0.
for it in 0... b T

Tf
c do

Generate a sample of N scenarios based on the current probabilistic
information on Dt, for t ∈ [1 + it× Trh;T + it× Trh].
Compute the optimal production plan (x∗t , y

∗
t ) over [1+ it×Trh;T + it×

Trh] using either formulation SAExt or PSACONS U and taking into
account the initial inventory I0.
Set RHW = [1 + it × Trh; min(T ; (it + 1)Trh)] as the rolling horizon
window.
Generate a ’true demand’ truedt representing the actual realization of
the demand over periods t ∈ RHW .

Update RHCost as RHCost+ =
∑

t∈RHW

[
fy∗t + h

(
I0 +∑t

τ=1+it×Trh(x∗τ − truedτ )
)]

.

Update Stockout as:
for t in RHW do
if I0 +

∑t
τ=1+it×Trh(xτ − truedτ ) < 0 then

Set Stockout = 1.
end if

end for
Set I0 = max(I0 +

∑
τ∈RHW (xτ − truedτ ); 0)

end for
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Table 8: Assessment within a rolling horizon framework
Demand Trh Formulation RHCost RHProb
Uniform 5 SAExt 1833.1 0.968

PSACons U 1902.8 0.986
10 SAExt 2055.0 0.942

PSACons U 2093.6 0.966
15 SAExt 2145.6 0.960

PSACons U 2221.2 0.966
20 SAExt 2350.1 0.948

PSACons U 2434.1 0.968

replications and RHProb the percentage of replications in which there is no
stockout during the planning horizon.

Results from Table 8 first show that, in a rolling horizon framework, the
actual cost is lower than the cost of the optimal solution obtained with a
static planning horizon. Moreover, the shorter the rolling horizon window,
the larger the cost reduction. This might be explained as follows. During
iteration it of the rolling horizon planning procedure, the inventory level at
the end of period (it + 1)Trh, which is computed based on the actual real-
ization of the demand over the rolling horizon window, becomes the initial
inventory for the iteration it+ 1. When this initial inventory is strictly posi-
tive, it is possible to use it in the resolution of the MILP formulations SAExt
or PSACons U in order to reduce the production quantities while ensuring
the same service level over the next T periods. The shorter the rolling hori-
zon window, the more frequently the initial inventory can be updated and
the more frequently the production plan can be readjusted to take it into
account.

Regarding the actual stockout risk, we can see from the results in Table 8
that it tends to be lower in a rolling horizon framework than in a static plan-
ning horizon. Note however that this conclusion should be taken carefully as
the limited number of replications (500) in our simulation may not enable us
to get a good statistical evaluation of the stockout risk, especially as stockouts
occur only for very large and statistically infrequent values of the cumulative
demand. A possible explanation for this decrease in the stockout risk might
be that in the solutions obtained by formulations SAExt or PSACons U , the
stockout risk is much higher in the last periods of the horizon than in the
first periods. For example, let us consider the optimal solutions of formula-
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tion SAExt for the 10 instances of the reference data set. For each instance,
we focus on the bNεc = 50 scenarios displaying a stockout (i.e. such that
α∗i = 1). We note that only 21% of the stockouts are planned to occur during
periods 1 to 10 and 79% are planned to occur during periods 10 to 20. As, in
a rolling horizon framework, only the first periods of the production plan are
implemented before readjusting the plan, the actual stockout risk observed
in a rolling horizon framework may be smaller than the one observed in a
static planning environment.

8 Conclusion and perspectives

We studied the single-item single-resource capacitated lot-sizing problem
with stochastic demand and proposed to handle this problem using a single-
stage stochastic programming approach. More precisely, we formulated this
stochastic problem as a joint chance-constrained program where the probabil-
ity that an inventory shortage occurs during the planning horizon is limited
to a maximum acceptable risk level.

As the resulting probabilistic mixed-integer program is computationally
difficult to handle, we investigated the development of an approximate solu-
tion method which can be seen as an extension of the previously published
sample approximation approach. This extension is based on the assump-
tion that the demand in the first period is statistically independent of the
demand in the other periods. Similarly to the the sample approximation
approach presented by Luedtke et al [15], the proposed extension relies on
a Monte Carlo sampling method. However, this sampling is carried out on
only part of the random variables, more precisely on all random variables
except D1. Provided there is no correlation between D1 and the demand in
the later periods, this partial sampling results in the formulation of a chance-
constrained program featuring a series of joint chance constraints. Each of
these constraints involves a single random variable and defines a feasible set
for which a conservative convex approximation can be quite easily built. The
main advantage of the proposed partial sample approximation approach lies
in the fact that it leads to the formulation of a deterministic mixed-integer
linear problem having the same number of binary variables as the original
problem. Our computational results show that the proposed solution method
is more efficient at finding feasible solutions of the original stochastic prob-
lem than the sample approximation method and that these solutions are less

44



costly than the ones provided by the Bonferroni conservative approximation.
Moreover, the computation time is significantly shorter than the one needed
for the sample approximation method.

Among the possible directions for future research suggested by the present
work, it might be worth investigating whether the partial sample approxima-
tion approach might be extended to solve a joint chance-constraint lot-sizing
problem in a dynamic (multi-stage) decision making context such as the one
considered by Zhang et al [26]. Moreover, in many industrial cases, the
available production resource is not dedicated to the production of a single
product but rather shared by several various products. Another possible
extension of the present work which could help close the gap between the
current state of the art and the industrial need would thus be to consider the
multi-item capacitated lot-sizing problem with stochastic demand.
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Appendix 1: Proof of Proposition 1

We first note that constraints (50) can be written as:

πi = Pr
(

min
t=1...T

( t∑
τ=1

xτ−∆Ci
t

)
≥ D1

)
= FD1

(
min
t=1...T

( t∑
τ=1

xτ−∆Ci
t

))
(100)

which implies that:

πi ≤ FD1(
t∑

τ=1

xτ −∆Ci
t), ∀t = 1...T. (101)

The proof of Proposition 1 is done by contradiction.
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• for t = 1
Assume that we have x1 < F−1

D1
(1− ε). This implies that:

∀i = 1...N , πi ≤ FD1(x1) < FD1(F
−1
D1

(1− ε)) < 1− ε.
We thus have:

∑
i πi < N(1− ε). Hence the corresponding production

plan violates constraint (51).

This means that any feasible solution of problem PSAConsDet satisfies
constraint (97).

• for t ∈ [2;T ]

Assume that
∑t

τ=1 xτ < F−1
D1

(1− ε) + ∆C
ν
kt
t
t . We have:

N∑
i=1

πi ≤
N∑
i=1

FD1

( t∑
τ=1

xτ −∆Ci
t

)
(102)

≤
N∑
i=1

FD1

(
F−1
D1

(1− ε) + ∆C
ν
kt
t
t −∆Ci

t

)
(103)

< N(1− ε) (104)

Inequality (102) is obtained by using constraints (101) for period t.
(103) makes use of the assumption mentioned above. By definition of
kt, the left hand side of inequality (103) is strictly less that N(1 − ε),
which gives (104). Thus, the corresponding production plan violates
constraint (51).

This implies that any feasible solution of problem PSA satisfies con-
straint (99).
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