Deciding the First-Order Theory of an Algebra of Feature Trees with Updates (Extended Version)

Abstract : We investigate a logic of an algebra of trees including the update operation, which expresses that a tree is obtained from an input tree by replacing a particular direct subtree of the input tree, while leaving the rest unchanged. This operation improves on the expressivity of existing logics of tree algebras, in our case of feature trees. These allow for an unbounded number of children of a node in a tree. We show that the first-order theory of this algebra is decidable via a weak quantifier elimination procedure which is allowed to swap existen-tial quantifiers for universal quantifiers. This study is motivated by the logical modeling of transformations on UNIX file system trees expressed in a simple programming language.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01760575
Contributeur : Nicolas Jeannerod <>
Soumis le : vendredi 6 avril 2018 - 14:46:24
Dernière modification le : vendredi 4 janvier 2019 - 17:33:38

Fichier

extended.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01760575, version 1

Collections

Citation

Nicolas Jeannerod, Ralf Treinen. Deciding the First-Order Theory of an Algebra of Feature Trees with Updates (Extended Version). 2018. 〈hal-01760575〉

Partager

Métriques

Consultations de la notice

43

Téléchargements de fichiers

47