Numerical solutions of a 2D fluid problem coupled to a nonlinear non-local reaction-advection-diffusion problem for cell crawling migration in a discoidal domain

Abstract : In this work, we present a numerical scheme for the approximate solutions of a 2D crawling cell migration problem. The model, defined on a non-deformable discoidal domain, consists in a Darcy fluid problem coupled with a Poisson problem and a reaction-advection-diffusion problem. Moreover, the advection velocity depends on boundary values, making the problem nonlinear and non local. \par For a discoidal domain, numerical solutions can be obtained using the finite volume method on the polar formulation of the model. Simulations show that different migration behaviours can be captured.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01760518
Contributeur : Christèle Etchegaray <>
Soumis le : mercredi 11 avril 2018 - 14:04:13
Dernière modification le : jeudi 31 mai 2018 - 09:12:02

Fichiers

Proc_ASud.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

  • HAL Id : hal-01760518, version 1
  • ARXIV : 1804.04904

Collections

Citation

Christèle Etchegaray, Nicolas Meunier. Numerical solutions of a 2D fluid problem coupled to a nonlinear non-local reaction-advection-diffusion problem for cell crawling migration in a discoidal domain. 2017. 〈hal-01760518〉

Partager

Métriques

Consultations de la notice

91

Téléchargements de fichiers

28