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Abstract

In this paper, we improve on a previous result by Gagné et al. [11]
for automatically proving the semantic security of symmetric modes of
operation for block ciphers. While we use the same specification language
programming language, we present a richer assertion language that uses
more flexible invariants, and a more complete set of rules for establishing
the invariants. In addition, all our invariants are given a meaningful
semantic definition, whereas some invariants of the previous result relied
on more ad hoc definitions. Our method can be used to verify the semantic
security of all the encryption modes that could be proven secure in [11], in
addition to a few new modes, such as Propagating Cipher-Block Chaining
(PCBC).

1 Introduction

Block ciphers are among the most basic building blocks in cryptography. They
can be used to construct primitives as varied as message authentication codes,
hash functions and, their main application, symmetric encryption. Block ci-
phers are deterministic, and have fixed-size input and output, so protocols,
called modes of operation, are required to encrypt messages of arbitrary length.
The security of these modes of operation is then proven by reduction from the
security of the mode of operation to some security property of the block cipher.

While the security of early modes of operation, such as Cipher Block Chain-
ing (CBC), Cipher Feedback mode (CFB), Output Feedback (OFB), and Counter
mode (CTR), can be proven relatively easily, the same cannot always be said for
more recent modes of operation. Many new modes of operation were designed
in the past decade (IACBC, IAPM [19], XCB [22], TMAC [18, 20], HCTR [6],
HCH [8], EMU [15], EMU* [12], PEP [7], OMAC [16, 17], TET [13], CMC [14],
GCM [23], EAX [5], XEX [24], TAE, TCH, TBC [21, 25] to name only a few),
which often offer security properties that early modes did not possess. However,
these additional properties often come at the cost of an increased complexity of
the mode of operation, which, in turn, increase the complexity of the proof of
security.
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Automated verification tools can help increase our confidence in the security
of these modes of operation by providing an independent argument for their
security (or show us mistakes that had gone unnoticed). Gagné et al. [11] first
initiated the study of automatic verification techniques for symmetric modes
of operation. They presented an assertion language, invariants and rules for a
Hoare logic which can be used to verify the security of most of the traditional
modes of operation. However, due to the rather ad hoc nature of the description
of certain invariants, and to the restrictiveness of their rule set, the resulting
automated verifier was relatively limited.

Contributions: We improve on the result of Gagné et al. [11] by presenting
a Hoare logic with a richer assertion language and invariants, which allow us
to verify the security more modes of operation. For example, our new logic is
able to verify the security of Propagating Cipher-Block Chaining (PCBC) – an
encryption mode that was introduced for Kerberos version 4 – while [11] could
not.

The programming language and assertion language are essentially the same
as [11], but our invariants are much more precise. We use only three predicates:
one that states that the value of a variable is indistinguishable from a random
value, one that states that the block cipher has never been computed at the value
of a variable, and one that keeps track of the most recent value of a counter.
Our predicates are also much more satisfying than those in [11] since they can
all be described using a clear semantic definition, whereas some predicates in
[11] were rather ad hoc, particularly when it came to the predicate used to keep
track of counters.

Using our logic as a set of rules for propagating the invariants though the
code of each mode of operation, we can verify the semantic security of all the
encryption modes which could be shown secure in [11], together with a few more,
such as PCBC.

Related Work: add ref to EasyCrypt The security of symmetric en-
cryption. An extensive discussion on different security notions for symmetric
encryption and a proof of the CBC mode of encryption is presented in [3]. A
security analysis of the encryption mode CBC-MAC is given in [4] and [26].
Many other works present other encryption modes with proofs of security.

Other works try to encode security of symmetric encryption modes as a
non-interference property for programs with deterministic encryption. For ex-
ample, [10] presents a computationally sound type system with exact security
bounds for such programs. This type system has been applied to verify some
symmetric encryption modes.

In [9], the authors proposed an automatic method for proving semantic se-
curity for asymmetric generic encryption schemes. A similar method is used in
[11] to verify the security of symmetric encryption modes. Our work here is a
continuation of these efforts.

Other works in automated verification of cryptographic protocols include [1],
which presents a new logic for reasoning about cryptographic primitives, and
uses this logic to formally analyze the security of the signature scheme PSS, and
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[2], which provides a machine-checked proof of OAEP.
Outline: Section 2 introduces some notation that will be used in the paper,

as well as the definitions of concepts that will be used throughout the paper. In
Section 3, we present our assertion language, invariants, and the set of rules that
is used to propagate those invariants. We apply our method to some examples
in Section 4 and conclude in Section 5.

2 Definitions

2.1 Notation and Conventions

Throughout this paper, we assume that all variables range over domains whose
cardinality is exponential in the security parameter η. We also assume that all
programs have length polynomial in η.

A block cipher is a family of permutations E : {0, 1}k × {0, 1}η → {0, 1}η
indexed with a key K ∈ {0, 1}k. We often denote by EK(x) the application of
the block cipher with key K to the message block x. We generally omit the key
used every time to simplify the notation, but it is understood that a key was
selected at random at the beginning of the experiment and remains the same
throughout.

For a mode of operationM , we denote by EM the encryption function defined
by M using block cipher E .

For a probability distribution D, we denote by x
$←− D the operation of

sampling a value x according to distribution D. If S is a finite set, we denote
by x $←− S the operation of sampling x uniformly at random among the values
in S.

Given two distribution ensembles X = {Xη}η∈N and X ′ = {X ′η}η∈N, an
algorithm A and η ∈ N, we define the advantage of A in distinguishing Xη and
X ′η as the following quantity:

Adv(A, η,X,X ′) = Pr[x $← Xη : A(x) = 1]− Pr[x $← X ′η : A(x) = 1].

Two distribution ensembles X and X ′ are called indistinguishable, denoted
by X ∼ X ′, if Adv(A, η,X,X ′) is negligible as a function of η for every proba-
bilistic polynomial-time algorithm A.

2.2 Grammar

We introduce our language for defining a generic encryption mode. All the
encryption modes that will be verified by our method must be written using
this language. The commands are given by the grammar of Figure 1, where:

• x $←− U denotes uniform sampling of a value and assigning it to x.
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• x := E(y) denotes application of the block cipher E to the value of y and
assigning the result to x.

• x := y ⊕ z denotes application of the exclusive-or operator to the values
of y and z and assigning the result to x.

• x := y||z represents the concatenation of the values of y and z.

• x := y + 1 increments by one the value of y and assigns the result to x.
The operation is carried modulo 2η

• c1; c2 is the sequential composition of c1 and c2

c ::= x
$←− U | x := E(y) | x := y ⊕ z | x := y‖z |

| x := y + 1 | c1; c2

Figure 1: Language grammar

2.3 Generic Encryption Mode

We can now formally define a mode of encryption.

Definition 1 (Generic Encryption Mode). A generic encryption mode M is
represented by EM (m1| . . . |mi, c0| . . . |ci) : var ~xi; ci, where ~xi is the set of vari-
ables used in ci, all commands of ci are built using the grammar described in
Figure 1, each mj is a message blocks, and each cj is a cipher block, both of size
n according to the input length of the block cipher E.

We add the additional block c0 to the ciphertext because encryption modes
are usually generate ciphertexts longer than the message. In all examples in
this paper, c0 will be the initialization vector (IV). The definition can easily be
extended for encryption modes that also add one or more blocks at the end.

In Figure 2, we present the famous encryption mode ECBC for a message of
three blocks.

2.4 Semantics

In addition to the variables in Var,1 we consider a variable LE that records
the values on which E was computed. This variable remains hidden from the
adversary. Thus, we consider states that assign bit-strings to the variables in
Var and lists of pairs of bit-strings to LE . Given a state S, S(LE).dom and
S(LE).res denote the lists obtained by projecting each pair in S(LE) to its first
and second element respectively.

1We denote by Var the complete set of variables in the program, whereas var denotes the
set of variables in the program that are not input or output variables.
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ECBC(m1|m2|m3, IV |c1|c2|c3) :
var z1, z2, z3;

IV
$←− U ;

z1 := IV ⊕m1;
c1 := E(z1);
z2 := c1 ⊕m2;
c2 := E(z2);
z3 := c2 ⊕m3;
c3 := E(z3);

Figure 2: Description of ECBC

The state also contains a table T , which is used to keep track of the variables
used as counters. This table maintains a list of tables. Each new variable x
whose value is sampled at random or obtained from a new query to the block
cipher has its own list called Tx ∈ T with Tx[0] = x. For each i, Tx[i] will
contain a variables whose value is known to be x+ i, or the symbol ⊥. For any
variable y, we denote by T (y) the set {z ∈ Var | ∃x, i, j y = Tx[i] ∧ z = Tx[j]},
that is, the set of all variables that are in the same table as y. These tables are
a history of variables with values are indistinguishable from random and their
‘successors’ obtained with the +1 operation. They will enable us to determine
which values are used as counters, and which variables contain the most recent
increment of a counter.

A program takes as input a configuration (S, E , T ) and yields a distribution
on configurations. A configuration is composed of a state S, a block cipher E
and a table T . Let ΓE denote the set of configurations and Dist(ΓE) the set
of distributions on configurations. The semantics is given in Table 1. In the
table, δ(x) denotes the Dirac measure, i.e. Pr[x] = 1 and LE 7→ S(LE) · (x, y)
denotes the addition of element (x, y) to LE . Notice that the semantic function
of commands can be lifted in the usual way to a function from Dist(ΓE) to
Dist(ΓE). That is, let φ : ΓE → Dist(ΓE) be a function. Then, φ defines a
unique function φ∗ : Dist(ΓE) → Dist(ΓE) obtained by point-wise application
of φ. By abuse of notation we also denote the lifted semantics by [[c]].

A notational convention. It is easy to see that commands never alter E .
Therefore, we can, without ambiguity, write S′ $← [[c]](S, E) instead of (S′, E)

$←
[[c]](S, E).

Here, we are only interested in distributions that can be constructed in
polynomial time. We denote their set by Dist(Γ,F), where F is a family of
block ciphers, and is defined as the set of distributions of the form:

[E $← F(1η);S
$← [[p]](I, E) : (S, E)]

where p is a program with a polynomial number of commands, and I is the
“initial” state, in which all variables are undefined and all lists and sets are
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[[x
$← U ]](S, E) = [u

$← U : (S{x 7→ u, T 7→ T ∪ {Tx}, E)]
[[x := E(y)]](S, E) = δ(S{x 7→ v, T , E) if (S(y), v) ∈ LE

δ(S{x 7→ v, T 7→ T ∪ {Tx},LE 7→ S(LE) · (S(y), v)}, E)
if (S(y), v) 6∈ LE and v = E(S(y))

[[x := y ⊕ z]](S, E) = δ(S{x 7→ S(y)⊕ S(z), T , E)
[[x := y||z]](S, E) = δ(S{x 7→ S(y)||S(z), T , E)
[[x := y + 1]](S, E) ={

δ(S{x 7→ S(y) + 1, T 7→ T ∪ {Tz 7→ Tz[i+ 1] = x}, E) if y = Tz[i] ∧ Tz[i+ 1] = ⊥
δ(S{x 7→ S(y) + 1, T , E) otherwise

[[c1; c2]] = [[c2]] ◦ [[c1]]

Table 1: The semantics of the programming language

empty.

2.5 Security Model

Ideal Cipher Model
We prove the modes of encryption secure in the ideal cipher model. That

is, we assume that the block cipher is a pseudo-random function.2 This is a
standard assumption for proving the security of any block-cipher-based scheme.

The advantage of an algorithmA against a family of pseudo-random function
is defined as follows.

Definition 2. Let P : {0, 1}k × {0, 1}n → {0, 1}n be a family of functions and
let A be an algorithm that takes an oracle and returns a bit. The prf-advantage
of A is defined as follows.

AdvprfA,P = Pr[K $←− {0, 1}k;AP (K,·) = 1]− Pr[R $←− Φn;AR(·) = 1]

where Φn is the set of all functions from {0, 1}n to {0, 1}n.

The security of a symmetric mode of operation is usually proven by first
showing that the mode of operation would be secure if E was a random function
in Φn. As a result, an adversary A against the encryption scheme can be
transformed into an adversary B against the block cipher (as a pseudo-random
function) with a similar running time, such that B’s prf-advantage is similar to
A’s advantage in breaking the encryption scheme.

Encryption Security
Semantic security for a mode of encryption is defined as follows.

2While block ciphers are really families of permutations, it is well known that pseudo-
random permutations are indistinguishable from pseudo-random functions if the block size is
large enough.
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Definition 3. Let EM (m1| . . . |mi, c0| . . . |ci) : var ~xi; ci be a generic encryption
mode. A = (A1, A2) be an adversary and X ∈ Dist(Γ, E). For η ∈ N, let

Advind−CPAA,M (η,X)

= 2 ∗ Pr[(S, E)
$← X;

(x0, x1, p, s)
$← AO1

1 (η); b
$← {0, 1};

S′
$← [[cp]](S{m1| . . . |mp 7→ xb}, E) :

AO2
2 (x0, x1, s, S

′(c0| . . . |cp)) = b]− 1

where O1 = O2 are oracles that take a pair (m, j) as input, where m is a string
and j is the block length of m, and answers using the jth algorithm in EM .
A1 outputs x0, x1 such that |x0| = |x1| and are composed of p blocks. The
mode of operation M is semantically (IND-CPA) secure if Advind−CPAA,M (η,X)
is negligible for any constructible distribution ensemble X and polynomial-time
adversary A.

It is important to note that in this definition, an adversary against the
scheme is only given oracle access to the encryption mode EM , and not to the
block cipher E itself.

Our method verifies the security of an encryption scheme by proving that
the ciphertext is indistinguishable from random bits. It is a classical result that
this implies semantic security.

3 Proving Semantic Security

In this section, we present our Hoare logic for proving semantic (IND-CPA)
security for generic encryption mode defined with our language. We prove that
our logic is sound although not complete. Our logic can be used to annotate
each command of our programming language with a set of invariants that hold
at each point of the program for any execution.

3.1 Assertion Language

We consider new predicates in order to consider properties of symmetric encryp-
tion modes. We use a Hoare Logic based on the following invariants:

ϕ ::= true | ϕ ∧ ϕ | ψ
ψ ::= Indis(νx;V ) | Indis(νx;LE) | E(E ;x;V ) | lcounter(x;V ) |

where V ⊆ Var and x ∈ Var is a variables used in the program. Intuitively:

Indis(νx;V ): means that no adversary has non-negligible probability to dis-
tinguish whether he is given results of computations performed using the
value of x or a random value, when he is given the values of the variables in
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V . In addition to variables in Var, the set V can contain a special variable
LE , in which case the invariant means that no adversary has non-negligible
probability to distinguish whether he is given results of computations per-
formed using the value of x or a random value, when he is given the values
of the variables in V and LE .dom.

E(E ;x;V ): means the probability that the value of x is either in LE .dom or in
V is negligible.

lcounter(x;V ): means that x is the most recent value of a counter that started
at a random value, and that the set V contains all the variables with
previous values of the counter.

More formally, for each invariant ψ, we define that a distribution X satisfies
ψ, denoted X |= ψ as follows:

• X |= true.

• X |= ϕ ∧ ϕ′ iff X |= ϕ and X |= ϕ′.

• X |= Indis(νx;V ) iff [(S, E)
$← X : (S(x, V ), E)] ∼ [(S, E)

$← X;u
$←

U ;S′ = S{x 7→ u} : (S′(x, V ), E)] when LE 6∈ V

• X |= Indis(νx;V ) iff [(S, E)
$← X : (S(x, V ∪ LE .dom), E)] ∼ [(S, E)

$←
X;u

$← U ;S′ = S{x 7→ u} : (S′(x, V ∪ LE .dom), E)] when LE ∈ V

• X |= Indis(νx;LE) iff [(S, E)
$← X : (S(x) ∪ S(LE).dom, E)] ∼ [(S, E)

$←
X;u

$← U ;S′ = S{x 7→ u} : (S′(x) ∪ S′(LE).dom, E)]

• X |= E(E ;x;V ) iff Pr[(S, E)
$← X : S(x) ∈ S(LE).dom∪S(V )] is negligible.

• X |= lcounter(x;V ) iff Indis(x; Var \ V ) and V = T (x).

Notation: For a set V and a variable, we write V, x as a shorthand for
V ∪ {x}, V − x as a shorthand for V \ {x} and we write Indis(νx;V ∪ LE) as a
shorthand for Indis(νx;V ) ∧ Indis(νx;LE). We denote by Var∗ the set Var ∪ LE
and use Indis(νx) as a shorthand for Indis(νx; Var∗).

Lemma 1. The following are true for any set V and variables x, y with x 6= y

1. lcounter(x;V )⇒ Indis(x; Var \ V )

2. Indis(νx;V ∪ LE)⇒ E(E ;x;V \ {x})

3. E(E ;x;V ) ∧ Indis(νx; {y})⇒ E(E ;x;V, y)

4. Indis(νx;V )⇒ Indis(νx;V ′) if V ′ ⊂ V

5. E(E ;x;V )⇒ E(E ;x;V ′) if V ′ ⊂ V
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Proof. 1. This clearly follows from the definition of lcounter(x;V ).

2. We note that, for u $← U and S′ = S{x 7→ u}, the set S′(LE).dom is
equal to S(LE).com because LE is a list of values (not a list of variables).
Therefore, if the probability that S(x) ∈ S(LE).dom is not negligible, it
would be easy to differentiate between S(x) ∪ S(LE).dom and S′(x) ∪
S′(LE).dom because S(x) ∪ S(LE).dom would contain one more collision
than S′(x) ∪ S′(LE).dom with non-negligible probability.

3. If Indis(νx; {y}), then clearly S(x) 6= S(y), otherwise it would be very easy
to distinguish S({x, y}) from S′({x, y}) where S′ = S{x 7→ u}, u $← U .
So from E(E ;x;V ) and Indis(νx; {y}), we have S(x) 6∈ S(LE).dom ∪ S(V )
and S(x) 6= S(y). Thus, S(x) 6∈ S(LE).dom ∪ S(V ) ∪ {y}

4. If an algorithm can differentiate x from a random value given the set V ′,
then clearly it could also differentiate x from a random value given the set
V by simply ignoring the values that are in V but not in V ′.

5. Clearly, Pr[(S, E)
$← X : S(x) ∈ S(LE).dom ∪ S(V ′)] ≤ Pr[(S, E)

$← X :
S(x) ∈ S(LE).dom ∪ S(V )] since V ′ ⊂ V

3.2 Hoare Logic Rules

We present a set of rules of the form {ϕ}c{ϕ′}, meaning that execution of
command c in any distribution that satisfies ϕ leads to a distribution that
satisfies ϕ′. Using Hoare logic terminology, this means that the triple {ϕ}c{ϕ′}
is valid. We group rules together according to their corresponding commands.
those commands are only used during decryption.

In all the rules below, unless indicated otherwise, we assume that t 6∈ {x, y, z}
and x 6∈ {y, z}. In addition, for all rules involving the invariant Indis, LE can be
one of the elements in the set V .

Random Assignment:

• (R1) {true} x $←− U {Indis(νx) ∧ lcounter(x; {x})}

• (R2) {Indis(νt;V )} x $←− U {Indis(νt;V, x)}

• (R3) {E(E ; t;V )} x $←− U {E(E ; t;V, x)}

Increment:
• (I1) {lcounter(y;V )} x := y + 1 {lcounter(x;V, x) ∧ E(E ;x; Var− x)}

• (I2) {Indis(νy;V )} x := y + 1 {Indis(νx;V )} if y 6∈ V

• (I3) {Indis(νt;V )} x := y + 1 {Indis(νt;V )} if x 6∈ V even if t = y

• (I4) {Indis(νt;V, y)} x := y + 1 {Indis(νt;V, x, y)} if x 6∈ V
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• (I5) {lcounter(y;V1) ∧ E(E ; t;V2)} x := y + 1 {E(E ; t;V2, x)} even if t = y

Xor operator:
• (X1) {Indis(νy;V, y, z)} x := y ⊕ z {Indis(νx;V, x, z)} if y 6= z and y 6∈ V

• (X2) {Indis(νt;V )} x := y ⊕ z {Indis(νt;V )} if x 6∈ V , even if t = y or
t = z

• (X3) {Indis(νt;V, y, z)} x := y ⊕ z {Indis(νt;V, x, y, z)}

Due to the commutativity of the Xor operation, the role of y and z can be
reversed in all the rules above.

Block cipher:
• (B1) {E(E ; y; ∅)} x := E(y) {Indis(νx) ∧ lcounter(x; {x})}

• (B2) {Indis(νt;V )∧E(E ; y; ∅)} x := E(y) {Indis(νt;V, x)} provided LE 6∈ V

• (B3) {Indis(νt; {LE , y})} x := E(y) {Indis(νt;LE)}

• (B4) {lcounter(t;V )} x := E(y) {lcounter(t;V )} even if t = y

• (B5) {E(E ; t;V, y)} x := E(y) {E(E ; t;V, y)}

Concatenation:
• (C1) {Indis(νy;V, y, z) ∧ Indis(νz;V, y, z)} x := y‖z {Indis(νx;V, x)} if
y, z 6∈ V

• (C2) {Indis(νt;V, y, z)} x := y‖z {Indis(νt;V, x, y, z)}

• (C3) {Indis(νt;V )} x := y‖z {Indis(νt;V )} if x 6∈ V , even if t = y or t = z

Finally, we add a few rules whose purpose is to preserve invariants that are
unaffected by the command.

Generic preservation rules:
Assume that t 6= x, y, z and c is either x $←− U , x := y‖z, x := y⊕z, or x := w+1:

• (G1) {lcounter(t;V )} c {lcounter(t;V)} if y, z 6∈ V

• (G2) {E(E ; t;V )} c {E(E ; t;V )} if x 6∈ V , even if t = y or t = z

3.3 Minimality of the Rule Set

We now show that our rule set is minimal: whenever a rule has more than one
precondition, both preconditions are needed, and if a rule creates two invariants,
neither implies the other.

• (R1) {true} x $←− U {Indis(νx) ∧ E(E ;x)}
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1. Indisνx does not imply E(E ;x), which can be seen in the following program:

x
$←− U ; y := E(x)

At the end of this program, Indis(νx) still holds, but clearly, E(E ;x) does
not since x has been queried to E .

2. E(E ;x) does not imply Indis(νx), which can be seen in the following pro-
gram:

x
$←− U ; y := x+ 1

At the end of the program, E(E ;x) still holds, but Indisνx does not, since
x can easily be distinguished from a random value when given the value
of y.

• (X1) {Indis(νy;V, y, z)} x := y ⊕ z {Indis(νx;V, x, z)}

The same counterexample as for the previous rule can be used to show that this
rule is minimal.

• (X4) {Indis(x) ∧ E(E ;x)} z := x⊕ y {E(E ; z)} if y 6= z

1. the rule “{Indis(x)} z := x ⊕ y {E(E ; z)} if y 6= z” is false, as can be seen
in the following program:

x
$←− U ; t

$←− U ; y := t⊕ t; w := E(x); z := x⊕ y.

We can easily see that before the last command, Indis(νx) still holds, but
E(E ; z) does not hold after the program because the value in x and the
value in z are the same, and x has been queried to E .

2. the rule “{E(E ;x)} z := x ⊕ y {E(E ; z)} if y 6= z” is false, as can be seen
in the following program:

x
$←− U ; y

$←− U ; t := x⊕ y; u := Et; z := x⊕ y

Clearly, E(E ;x) holds throughout the program since x is sampled at ran-
dom, but E(E ; z) does not hold at the end of the program because the
values in t and z are equal and t has been queried to the block cipher.

• (B2) {E(E ;x) ∧ E(E ; z)} y := E(x) {E(E ; z)} provided z 6= x

1. The rule “{E(E ; z)} y := E(x) {E(E ; z)} provided z 6= x” is false, as can be
seen in the following program:

x
$←− U ; w

$←− U ; y := w ⊕ w; z := x⊕ y; t := E(x)

2. The rule “{E(E ;x)} y := E(x) {E(E ; z)} provided z 6= x” is clearly false.
The command x := E(y) does not involve z, and cannot introduce the
property {E(E ; z)} about every variable.
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• (B3) {E(E ;x) ∧ Indis(z, v)} y := E(x) {Indis(z;V, y)} provided z 6= x

1. The rule “{Indis(z, v)} y := E(x) {Indis(z;V, y)} provided z 6= x” is false,
as can be seen in the following program:

x
$←− U ; w

$←− U ; y := w ⊕ w; z := x⊕ y; t := E(z); u := Ex

2. the rule “{E(E ;x)} y := E(x) {Indis(νz;V, y)} provided z 6= x” is clearly
false. The command x := E(y) does not involve z, and cannot introduce
the property {Indis(νz;V, y)} about every variable.

• (B4) {E(E ; y) ∧ lcounter(z)} x := E(y) {lcounter(z)} (even when z = y)

The same counterexamples as for the previous rule can be used to show that
this rule is minimal since Indis(νx) implies lcounter(x).

4 Examples

As in [11], we apply our method to the traditional encryption modes (CBC),
(CFB), (OFB) and (CTR) in Figure 3, 4, 5 and 6 respectively. We also show
how we can verify the security of the mode PCBC, which could not be proven
secure in [11]. For simplicity, we consider messages consisting of only 3 blocks,
as it should be clear that the same propagation of invariants would continue
for any finite number of blocks. In order to prove IND-CPA security of these
encryption schemes we have to prove that c0 = IV, c1, c2, c3 are indistinguishable
from random bit strings when given m1,m2,m3, c0, c1, c2 and c3. For the sake
of readability, we will only show the invariants that are necessary for the proof
of security. An automated verifier would however derive every possible invariant
by applying every applicable rule at each step. In all the examples, we denote
by, say, (L3) the use of the third part of Lemma 1.

CBC & CFB : In Figure 3 and 4, we describe the application of our set of
rules on CBC and CFB examples. The analysis of these two encryption modes
are similar.

OFB : Note that, contrary to [11], we no longer need to put the commands
describing this mode of operation in a peculiar order to be able to verify its
security, we can now verify OFB with the commands put in the more ‘natural’
order.

CTR : This scheme is the only one of the four encryption modes we have
studied that uses the increment command. The analysis is presented in Figure
6. We can see how the lcounter invariant is used for proving the IND-CPA
security of this mode.
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ECBC(m1|m2|m3, IV |c1|c2|c3)
var IV, z1, z2, z3;

IV
$←− U ; {Indis(νIV )} (R1)

z1 := IV ⊕m1; {Indis(νIV ; Var∗ − z1) ∧ Indis(νz1; Var∗ − IV ) (X1)(X2)
∧ E(E ; z1; Var− IV − z1)} (L2)

c1 := E(z1); {Indis(νIV ; Var− z1) ∧ Indis(νc1)} (B1)(B2)
z2 := c1 ⊕m2; {Indis(νIV ; Var− z1) ∧ Indis(νc1; Var∗ − z2) (X2)(X3)

∧ Indis(νz2; Var∗ − c1) ∧ E(E ; z2; Var− c1 − z2)} (X1)(L2)
c2 := E(z2); {Indis(νIV ; Var− z1) ∧ Indis(νc1; Var− z2) (B2)

∧ Indis(νc2)} (B1)
z3 := c2 ⊕m3; {Indis(νIV ; Var− z1) ∧ Indis(νc1; Var− z2) (X3)

∧ Indis(νc2; Var∗ − z3) ∧ Indis(νz3; Var∗ − c2) (X1)(X2)
∧ E(E ; z3; Var− c2 − z3)} (L2)

c3 := E(z3); {Indis(νIV ; Var− z1) ∧ Indis(νc1; Var− z2) (B2)
∧ Indis(νc2; Var− z3) ∧ Indis(νc3; Var)} (B1)

Figure 3: Analysis of CBC encryption mode

ECFB(m1|m2|m3, IV |c1|c2|c3)
var IV, z1, z2, z3;

IV
$←− U ; {Indis(νIV ) ∧ E(E ; IV ; Var− IV )} (R1)(L1)

z1 := E(IV ); {Indis(νIV ) ∧ Indis(νz1)} (B1)(B2)
c1 := z1 ⊕m1; {Indis(νIV ) ∧ Indis(νc1; Var∗ − z1) (X1)(X3)

∧E(E ; c1; Var− z1 − c1)} (L1)
z2 := E(c1); {Indis(νIV ) ∧ Indis(νc1; Var− z1)} (B2)

∧ Indis(νz2)} (B1)
c2 := z2 ⊕m2; {Indis(νIV ) ∧ Indis(νc1; Var− z1) (X3)

∧ Indis(νc2; Var∗ − z2) ∧ E(E ; c2; Var− z2 − c2)} (X1)(L4)
z3 := E(c2); {Indis(νIV ) ∧ Indis(νc1; Var− z1) (B2)

∧ Indis(νc2; Var− z2) ∧ Indis(νz3)} (B1)
c3 := z3 ⊕m3; {Indis(νIV ) ∧ Indis(νc1; Var− z1) (X3)

∧ Indis(νc2; Var− z2) ∧ Indis(νc3; Var∗ − z3)} (X1)

Figure 4: Analysis of CFB encryption mode
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PCBC : The security of this scheme could not be verified by [11] because it
is necessary to be able to infer that the value of certain variable has not been
queried to the block cipher even after two Xor operations. Our new set of rules
can verify its security as can be seen in Figure 7.

5 Conclusion

We improved on the result of Gagné et al. [11] by proposing a new Hoare logic
with more precise invariants and more complete rule set. This logic can be
used to construct an automated verification tool that can successfully verify the
security of all the symmetric encryption modes that could be verified by [11], in
addition to many more that it could not.

Future directions to this work include the addition of loops to our grammar
to remove the necessity of having a different program for each message length.
We would also like to use a similar system to model other security properties,
such as unforgeability and collision-resistance. We believe that the unforge-
ability property (IND-CTXT) would be of particular interest since, combined
with semantic security, it would allow us to prove the chosen-ciphertext (CCA)
security of certain symmetric encryption modes.
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A Proofs

Notations: We write νx ·X to denote the distribution

[v
$← U ; (S, ~E)

$← X : (S{x 7→ v}, ~E)],

where U is the uniform distribution on the values on which x ranges. Let X be
a family of distributions in Dist(Γ, ~E) and V be a set of variables in Var. By
D(X,V ) we denote the following distribution family (on tuples of bit-strings):
D(X,V )η = [(S, E)

$← X : (S(V ), ~E)]. Here S(V ) is the point-wise application
of S to the elements of V . We say that X and X ′ are V -indistinguishable,
denoted by X ∼V X ′, if D(X,V ) ∼ D(X ′, V ). Hence we have X |= Indis(νx;V1)
iff X ∼V1

νx ·X which is equivalent to the definition given in Section 3.

Lemma 2. For any X,X ′ ∈ Dist(Γ, ~E), any set of variables V , any expression
e constructible from V , and any variable x, if X ∼V X ′ then [[x := e]](X) ∼V,x
[[x := e]](X ′).

Proof. We assume X ∼V X ′. If we suppose that [[x := e]](X) 6∼V,x [[x := e]](X ′),
then there exists A a poly-time adversary that, on input V , x drawn either from
[[x := e]](X) or [[x := e]](X ′), guesses the right initial distribution with non-
negligible probability. We let B be the following adversary against X ∼V X ′:
B(V ):= let x := e in A(V, x). The idea is that B can evaluate in polynomial
time the expression e using its own inputs. Hence it can provide the appropriate
inputs to A. It is clear that the advantage of B is exactly that of A, which would
imply that it is not negligible, although we assumed X ∼V X ′.

Corollary 3. For any X ∈ Dist(Γ, ~E), any sets of variables V , any expression
e constructible from V , and any variable x, z such that z 6∈ {x} ∪ Var(e) if
X |= Indis(νz;V ) then [[x := e]](X) |= Indis(νz;V ). We emphasize that here we
use the notation Var(e) (in its usual sense), that is to say, the variable z does
not appear at all in e.

Proof. X |= Indis(νz;V ) is equivalent to X ∼V νz.X. Using Lemma 2 we
get [[x := e]](X) ∼V [[x := e]](νz.X). Since z 6∈ {x} ∪ Var(e) we have that
[[x := e]](νz.X) = νz.[[x := e]](X) and hence [[x := e]](X) ∼V,x νz.[[x := e]](X),
that is [[x := e]](X) |= Indis(νz;V, x).

Lemma 4. For any X,X ′ ∈ Dist(Γ, ~E), any sets of variables V , and any
variable x, if X ∼V X ′ then X |= Indis(νx;V ) ⇐⇒ X ′ |= Indis(νx;V ).

Proof. By symmetry of indistinguishability and equivalence, the conclusion fol-
lows from a single implication. We assume X ∼V X ′. Hence, νx.X ∼V νx.X ′;
this can be justified by an immediate reduction. Moreover, the hypothesis
X |= Indis(νx;V ) implies X ∼V νx.X. By transitivity of the indistinguisha-
bility relation, we get X ′ ∼V νx.X ′. Thus, X ′ |= Indis(νx;V ).

17



A.0.1 Random Assignment

Proposition 5 (Rule R1). {true} x $←− U {Indis(νx) ∧ lcounter(x; {x})}

Proof. The proof of this rule can be split in two parts {true} x $←− U {Indis(νx)}
and {true} x $←− U {lcounter(x; {x})}. The first rule is immediate from the
definitions of the indistinguishability predicate. As for the second rule, clearly,
Indis(νx; Var−x) is immediate, and looking at the semantics, we find that after
the command x $←− U , T (x) = {x}, which shows that lcounter(x; {x}) holds.

Proposition 6 (Rule R2). {Indis(νt;V )} x $←− U {Indis(νt;V, x)}

Proof. The intuition is that x being completely random, providing its value
to the adversary does not help this latter in any way. We show the result
by reduction. Assume that there exists an adversary B against [[x

$← U ]](X) |=
Indis(νt;V, x) that can distinguish with non-negligible advantage between t and a
random value given the values of V and x. Then, we can construct an adversary
A(V ) playing against X |= Indis(νy;V ) that has the same advantage as B: A(V )
draws a value u at random and runs B(V ), and then returns B’s answer. If B has
non-negligible advantage, then so does A, which contradicts our hypothesis.

Proposition 7 (Rule R3). {E(E ; t;V )} x $←− U {E(E ; t;V, x)}

Proof. Before the command is executed, we have that the probability that S(t) ∈
S(LE).dom∪S(V ) is negligible. Also, by hypothesis, the domain from which x is
being sampled is of exponential size in the security parameter, so the probability
that S(t) = S(x) is negligible. Thus, the probability that S(t) ∈ S(LE).dom ∪
S(V ) ∪ {x} is negligible as well.

A.1 Increment

Proposition 8 (Rule I1). {lcounter(y;V )} x := y + 1 {lcounter(x;V, x) ∧
E(E ;x; Var− x)}

Proof. The proof of this rule is split in 2 parts:
{lcounter(y;V )} x := y + 1 {lcounter(x;V, x)}
{lcounter(y;V )} x := y + 1 {E(E ;x; Var− x)}.
For the first part, we know that before the command is executed, we have
{Indis(νy; Var \ V )}, and V = T (y) by definition of lcounter(y;V ). From the
semantics, we easily find that after the command is executed, T (x) = T (y)∪{x}.
Suppose that {Indis(νx; Var\(V ∪{x})} does not hold after the command. Then
there would exist an algorithm B which, given the values in S(Var\(V ∪{x})) can
differentiate between the value of x and a random value. Using this algorithm,
we could construct an algorithm A that distinguishes y from a random value
given the values in Var\V as follows: A(S(y), S(Var\V )) simply runs B(S(y)+
1, S(Var \ (V ∪ {x}))) and returns its answer. This contradicts our assumption
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that {Indis(νy; Var \ V )}. Therefore, we have that {Indis(νx; Var \ (V ∪ {x})}
holds after the command is executed, hence {lcounter(x;V, x)} holds.

For the second part, first note that since the value of x is independent from
the value of all variables other than T (x), we have that the probability that
the value of x is equal to any value in Var − T (x) is negligible. Also, since
S(x) = S(t) + k for all t ∈ T (x) for k 6= 0, we also have that the value of x
is different from the value of any variable in T (x) save for x itself. Therefore,
the probability that S(x) ∈ S(Var − x) is negligible. Next, we know that since
the starting point in T (x) was random and independent from all other values
in the system, the only value in LE from which the value of x may not be
independent are those values in T (x) on which the block cipher may have been
computed. Thus, the probability that the value of x is already in LE is equal
to the probability that the starting point in T (x) was exactly k away from a
point already in LE , which is negligible since the cardinality of LE is bounded
by a polynomial. Hence, the probability that Sx is in S(Var − x ∪ LE .dom) is
negligible.

Proposition 9 (Rule I2). {Indis(νy;V )} x := y + 1 {Indis(νx;V )} if x, y 6∈ V

Proof. First note that the variable y cannot be in V because the value of x
is easily differentiable from a random value when the value of y is given since
x = y + 1. If there existed an algorithm A that could differentiate x from a
random value given [[x := y+1]]S(V ), then the algorithm B(S(y), S(V )) defined
by running A(S(y)+1, S(V )) = A([[x := y+1]]S(x), [[x := y+1]]S(V )) (because
S(V ) = [[x := y + 1]]S(V ) since x 6∈ V ).

Proposition 10 (Rule I3). {Indis(νt;V )} x := y + 1 {Indis(νt;V )} if x 6∈ V
even if t = y

Proof. Since x 6∈ V , we have that S(V ) = [[x := y + 1]]S(V ), so any adversary
that can distinguish the value of y from a random value given [[x := y⊕ z]]S(V )
could just as easily distinguish the value of y from a random value given S(V ).

Proposition 11 (Rule I4). {Indis(νt;V, y)} x := y + 1 {Indis(νt;V, x, y)} if
x 6∈ V

Proof. This follows from Lemma 3 since y ∈ V and clearly y+1 is constructible
from y.

Proposition 12 (Rule I5). {lcounter(y;V1)∧E(E ; t;V2)} x := y+1 {E(E ; t;V2, x)}
even if t = y

Proof. We know from E(E ; t;V2) that the probability that the value of t is in
LE ∪ V2 is negligible. So, to show that E(E ; t;V2, x) holds, it suffices to show
that the probability that the value of x is equal to the value of t is negligible.
The proof is separated in two parts, depending on whether or not t ∈ V1.
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If t ∈ V1, then since V1 = T (y), we have that S(t) = S(y) − k for some non-
negative value k that is polynomial in the security parameter. Therefore, clearly,
S(t) 6= S(x) = S(y) + 1.
If t 6∈ V1, then by definition of lcounter(), S(t) is indistinguishable from a random
value given S(y). This means, among other things, that with high probability,
S(t) 6= S(y) + 1. Hence, S(t) 6= S(x).

A.2 Xor operator

Proposition 13 (Rule X1). {Indis(νy;V, y, z)} x := y ⊕ z {Indis(νx;V, x, z)}
provided y 6= z and x, y, z 6∈ V

Proof. Let X be a distribution such that X |= Indis(νy;V, y, z), which we can
rewrite X ∼(V,y,z) νy.X. Moreover, y ⊕ z is constructible from (V, y, z). We
apply lemma 2 to obtain [[x := y ⊕ z]](X) ∼V,x,y,z [[x := y ⊕ z]](νy.X), and by
weakening it we get [[x := y ⊕ z]](X) ∼V,x,z [[x := y ⊕ z]](νy.X).

D([[x := y ⊕ z]](νy.X), V ∪ {x, z}) = [S
$← X;u

$← U ;S′ := S{y 7→ u};

S′′
$← [[x := y ⊕ z]](S′) : S′′(V ∪ {x, z})]

= [S
$← X;u

$← U ;S′ := S{y 7→ u};
S′′ := S′{x 7→ u⊕ S(z)} : S′′(V ∪ {x, z})]
and since xor is idempotent we can write:

= [S
$← X; v

$← U ;S′′ := S{x 7→ v; y 7→ v ⊕ S(z)} :

S′′(V ∪ {x, z})]
but changing y is useless since y 6∈ V ∪ {z}

= [S
$← X; v

$← U ;S′′ := S{x 7→ v} :

S′′(V ∪ {x, z})]
= D(νx.X, V ∪ {x, z})

Another way to write this equality of distributions is [[x := y⊕ z]](νy.X) ∼V,x,z
νx.X. Then, by transitivity of indistinguishability, we can conclude that [[x :=
y⊕z]](X) ∼V,x,z νx.X, which we can rewrite [[x := y⊕z]](X) |= Indis(νx;V, x, z).

Proposition 14 (Rule X2). {Indis(νt;V )} x := y ⊕ z {Indis(νt;V )} if x 6∈ V ,
even if t = y or t = z

Proof. Since x 6∈ V , we have that S(V ) = [[x := y ⊕ z]]S(V ), so any adversary
that can distinguish the value of y from a random value given [[x := y⊕ z]]S(V )
could just as easily distinguish the value of y from a random value given S(V ).

Proposition 15 (Rule X3). {Indis(νt;V, y, z)} x := y ⊕ z {Indis(νt;V, x, y, z)}
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Proof. This follows from Lemma 3 since x is clearly constructible from y and
z.

A.3 Block Cipher

Proposition 16 (Rule B1). {E(E ; y; ∅)} x := E(y) {Indis(νx)∧lcounter(x; {x})}

Proof. We use the assumption that E is an ideal cipher, i.e. it is a function
sampled at random among all the functions from {0, 1}η to {0, 1}η. Since, with
overwhelming probability, E(y) has never been computed before, E(y) looks
random and independent from all other values, i.e. until E is computed at
y a second time - which the adversary cannot do on its own - x := E(y) is
indistinguishable from x

$←− U . Therefore, x is assigned the same invariants as
in (R1).

Proposition 17 (Rule B2). {Indis(νt;V )∧E(E ; y; ∅)} x := E(y) {Indis(νt;V, x)}
provided LE 6∈ V

Proof. As above, since, with overwhelming probability, y has never been queried
to the block cipher, then, following the execution of x := E(y), the value of x
is indistinguishable from a random value and independent from all other values
of the system, so x cannot be of any help in distinguishing z from random, as
in the proof of rule (R2).

Proposition 18 (Rule B3). {Indis(νt;V,LE , y)} x := E(y) {Indis(νt;V,LE , x, y)}

Proof. Note that, as a result of the command x := E(y), the value of y gets
added to the set LE .dom, so we need to make sure that t is indistinguishable
from random when the value of y in addition to all the values in LE .dom in
order to preserve its independence from LE .dom. Otherwise, the argument goes
exactly as in the proof of rule B2.

Proposition 19 (Rule B4). {lcounter(t;V )} x := E(y) {lcounter(t;V )} even if
t = y

Proof. From the definition of lcounter(z), we easily see that this is a special case
of Rule B2 since the set T (t) is unchanged by the command x := E(y).

Proposition 20 (Rule B5). {E(E ; t;V, y)} x := E(y) {E(E ; t;V, y)}

Proof. If we have that the probability that either of S(y) or S(z) is in S(LE).dom
is negligible before the execution of x := E(y), then we have that the probability
that S(z) is in S(LE).dom is negligible after its execution if and only if S(y) 6=
S(z). Clearly, if we had that S(y) = S(z), then Indis(νy; {z}) would not hold,
therefore S(y) 6= S(z).
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A.4 Concatenation

Proposition 21 (Rule C1). {Indis(νy;V, y, z) ∧ Indis(νz;V, y, z)} x := y‖z
{Indis(νx;V, x)} if y, z 6∈ V

Proof. X |= Indis(νz;V, y, z) implies X ∼V,y,z νz.X, so that in turn νy.X ∼V,y,z
νy.νz.X. ButX |= Indis(νy;V, y, z) can be written asX ∼V,y,z νy.X. Hence, by
transitivity we get X ∼V,y,z νy.νz.X. Since y||z is constructible from (V, y, z),
we apply lemma 2 to obtain [[x := y||z]](X) ∼V,x,y,z [[x := y||z]](νy.νz.X), and
by weakening we get [[x := y||z]](X) ∼V,x [[x := y||z]](νy.νz.X). Using the
properties of || and that {y, z} ∩ V = ∅, we have D([[x := y||z]](νy.νz.X), V ∪
{x}) = D(νx.X, V ∪ {x}), and hence by transitivity of indistinguishability,
[[x := y||z]](X) ∼V,x; νx.X.

Proposition 22 (Rule C2). {Indis(νt;V, y, z)} x := y‖z {Indis(νt;V, x, y, z)} if
t 6= x, y, z

Proof. Since y||z is constructible from (V, y, z), we apply corollary 3 to obtain
[[x := y||z]](X) |= Indis(νt;V, x, y, z).

Proposition 23 (Rule C3). {Indis(νt;V, y, z)} x := y‖z {Indis(νt;V, x, y, z)} if
t 6= x, y, z

Proof. Since x 6∈ V , we have that S(V ) = [[x := y‖z]]S(V ), so any adversary that
can distinguish the value of y from a random value given [[x := y‖z]]S(V ) could
just as easily distinguish the value of y from a random value given S(V ).

A.5 Generic preservation rules

Let t 6= x, y, z and c be either x $←− U , x := y‖z, x := y ⊕ z or x := y + 1.

Proposition 24 (Rule G1). {lcounter(t;V )} c {lcounter(t;V)} if y, z 6∈ V

Proof. Note that since y, z 6∈ V , then we can see from the semantics that the
command c will not alter T (t). The proof then proceeds exactly as in the proof
of Rule (X3).

Proposition 25 (Rule G2). {E(E ; t;V )} c {E(E ; t;V )} if x 6∈ V , even if t = y
or t = z

Proof. Since x 6∈ V and c is not a computation of the block cipher, the values
in V and LE .dom will be unchanged by the command c. Therefore, if the
probability that S(t) ∈ S(V ∪ LE .dom) was negligible before the execution of
the command, it will remain so after its execution.
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EOFB(m1|m2|m3, IV |c1|c2|c3)
var IV, z1, z2, z3;

IV
$←− U ; {Indis(νIV ) ∧ E(E ; IV ; Var− IV )} (R1)(L2)

z1 := E(IV ); {Indis(νIV ; Var) ∧ Indis(νz1)} (B1)(B2)
c1 := m1 ⊕ z1; {Indis(νIV ; Var) ∧ Indis(νc1; Var∗ − z1) (X1)(X3)

∧ Indis(νz1; Var∗ − c1)} ∧ E(E ; z1; Var− c1 − z1)} (X2)(L2)
z2 := E(z1); {Indis(νIV ; Var) ∧ Indis(νc1; Var− z1) ∧ Indis(νz2)} (B1)(B2)
c2 := m2 ⊕ z2; {Indis(νIV ; Var) ∧ Indis(νc1; Var− z1) (X3)

∧ Indis(νc2; Var∗ − z2) ∧ Indis(νz2; Var∗ − c2) (X1)(X2)
∧ E(E ; z2; Var− c2 − z2)} (L2)

z3 := E(z2); {Indis(νIV ; Var) ∧ Indis(νc1; Var− z1) (B2)
∧ Indis(νc2; Var− z2) ∧ Indis(νz3)} (B1)

c3 := m3 ⊕ z3; {Indis(νIV ; Var) ∧ Indis(νc1; Var− z1)} (X3)
∧ Indis(νc2; Var− z2) ∧ Indis(νc3; Var∗ − z3) (X1)

Figure 5: Analysis of OFB encryption mode
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ECTR(m1|m2|m3, IV |c1|c2|c3)
var IV, ctr1, ctr2, ctr3, z1, z2, z3;

IV
$←− U ; {Indis(νIV ) ∧ lcounter(IV ; {IV })} (R1)

ctr1 := IV + 1; {Indis(νIV ; Var∗ − ctr1) (I3)
∧ lcounter(ctr1) ∧ E(E ; ctr1; Var)} (I1)

z1 := E(ctr1); {Indis(νIV ; Var− ctr1) ∧ Indis(νz1) (B1)(B2)
∧ lcounter(ctr1; {IV, ctr1})} (B4)

c1 := m1 ⊕ z1; {Indis(νIV ; Var− ctr1) ∧ Indis(νc1; Var∗ − z1) (X1)(X3)
∧ lcounter(ctr1; {IV, ctr1})} (G1)

ctr2 := ctr1 + 1; {Indis(νIV ; Var− ctr1− ctr2) (I3)
∧ Indis(νc1; Var∗ − z1) ∧ E(E ; ctr2; Var) (I1)(I4)
∧ lcounter(ctr2; {IV, ctr1, ctr2})}

z2 := E(ctr2); {Indis(νIV ; Var− ctr1− ctr2) (B2)
∧ Indis(νc1; Var∗ − z1) ∧ Indis(νz2) (B1)
∧ lcounter(ctr2; {IV, ctr1, ctr2})} (B4)

c2 := m2 ⊕ z2; {Indis(νIV ; Var− ctr1− ctr2) (X3)
∧ Indis(νc1; Var∗ − z1) ∧ Indis(νc2; Var∗ − z2) (X1)
∧ lcounter(ctr2; {IV, ctr1, ctr2})} (G1)

ctr3 := ctr2 + 1; {Indis(νIV ; Var− ctr1− ctr2− ctr3) (I3)
∧ Indis(νc1; Var∗ − z1) ∧ Indis(νc2; Var∗ − z2)
∧ E(E ; ctr3; Var)} (I1)

z3 := E(ctr3); {Indis(νIV ; Var− ctr1− ctr2− ctr3) (B2)
∧ Indis(νc1; Var∗ − z1)
∧ Indis(νc2; Var∗ − z2) ∧ Indis(νz3; Var) (B1)

c3 := m3 ⊕ z3; {Indis(νIV ; Var− ctr1− ctr2− ctr3) (X3)
∧ Indis(νc1; Var∗ − z1)
∧ Indis(νc2; Var∗ − z2)
∧ Indis(νc3; Var∗ − z3)} (X1)

Figure 6: Analysis of CTR encryption mode
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EPCBC(m1|m2|m3, IV |c1|c2|c3)
var IV, z1, z2, z3, y2, y3;

IV
$←− U ; {Indis(νIV )} (R1)

z1 := IV ⊕m1; {Indis(νIV ; Var∗ − z1) ∧ Indis(νz1; Var∗ − IV ) (X1)(X2)
∧ E(E ; z1; Var− IV − z1)} (L2)

c1 := E(z1); {Indis(νIV ; Var− z1) ∧ Indis(νc1)} (B1)(B2)
y2 := c1 ⊕m1; {Indis(νIV ; Var− z1) ∧ Indis(νc1; Var∗ − y2) (X2)(X3)

∧ Indis(νy2; Var∗ − c1)} (X1)
z2 := y2 ⊕m2; {Indis(νIV ; Var− z1) ∧ Indis(νc1; Var∗ − y2 − z2) (X2)(X3)

∧ Indis(νz2; Var∗ − c1 − y2) ∧ E(E ; z2; Var− c1 − y2 − z2)} (X1)(L2)
c2 := E(z2); {Indis(νIV ; Var− z1) ∧ Indis(νc1; Var− y2 − z2) (B2)

∧ Indis(νc2)} (B1)
y3 := c2 ⊕m2; {Indis(νIV ; Var− z1) ∧ Indis(νc1; Var− y2 − z2) (X3)

∧ Indis(νc2; Var∗ − y3) ∧ Indis(νy3; Var∗ − c2)} (X1)(X2)
z3 := y3 ⊕m3; {Indis(νIV ; Var− z1) ∧ Indis(νc1; Var− y2 − z2) (X3)

∧ Indis(νc2; Var∗ − y3 − z3) ∧ Indis(νz3; Var∗ − c2 − y3) (X1)(X2)
∧ E(E ; z3; Var− c2 − y3 − z3) (L2)

c3 := E(z3); {Indis(νIV ; Var− z1) ∧ Indis(νc1; Var− y2 − z2) (B2)
∧ Indis(νc2; Var∗ − y3 − z3) ∧ Indis(νc3)} (B1)(B2)

Figure 7: Analysis of PCBC encryption mode
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