I. Andrade, S. Hormazábal, C. , and V. , Intrathermocline eddies at the Juan Fernandez Archipelago, southeastern Pacific Ocean, Latin American Journal of Aquatic Research, vol.42, issue.4, pp.888-906, 2014.
DOI : 10.3856/vol42-issue4-fulltext-14

R. A. Armstrong, C. Lee, J. I. Hedges, S. Honjo, and S. G. Wakeham, A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals, Deep Sea Research Part II: Topical Studies in Oceanography, vol.49, issue.1-3, pp.219-236, 2002.
DOI : 10.1016/S0967-0645(01)00101-1

L. T. Bach, C. Bauke, K. J. Meier, U. Riebesell, and K. G. Schulz, Influence of changing carbonate chemistry on morphology and weight of coccoliths formed by <i>Emiliania huxleyi</i>, Biogeosciences, vol.9, issue.8, pp.3449-3463, 2012.
DOI : 10.5194/bg-9-3449-2012

K. Baith, R. Lindsay, G. Fu, and C. R. Mcclain, Data analysis system developed for ocean color satellite sensors, Eos, Transactions American Geophysical Union, vol.82, issue.18, pp.202-202, 2001.
DOI : 10.1029/01EO00109

L. Beaufort, I. Probert, T. De-garidel-thoron, E. M. Bendif, D. Ruiz-pino et al., Sensitivity of coccolithophores to carbonate chemistry and ocean acidification, Nature, vol.399, issue.7358, pp.80-83, 2011.
DOI : 10.1038/20859

URL : https://hal.archives-ouvertes.fr/hal-00866853

E. M. Bendif, I. Probert, F. Díaz-rosas, D. Thomas, G. Van-den-engh et al., Recent Reticulate Evolution in the Ecologically Dominant Lineage of Coccolithophores, Frontiers in Microbiology, vol.18, issue.784, 2016.
DOI : 10.1016/0377-8398(91)90004-P

URL : https://hal.archives-ouvertes.fr/hal-01325628

E. T. Buitenhuis, H. J. De-baar, and M. J. Veldhuis, PHOTOSYNTHESIS AND CALCIFICATION BY EMILIANIA HUXLEYI (PRYMNESIOPHYCEAE) AS A FUNCTION OF INORGANIC CARBON SPECIES, Journal of Phycology, vol.35, issue.5, pp.949-959, 1999.
DOI : 10.1046/j.1529-8817.1999.3550949.x

V. Combes, S. Hormazabal, D. Lorenzo, and E. , Interannual variability of the subsurface eddy field in the Southeast Pacific, Journal of Geophysical Research: Oceans, vol.19, issue.3, pp.4907-4924, 2015.
DOI : 10.1016/0198-0149(79)90006-2

J. C. Cubillos, S. W. Wright, G. Nash, D. Salas, M. F. Griffiths et al., Calcification morphotypes of the coccolithophorid Emiliania huxleyi in the Southern Ocean: changes in 2001 to 2006 compared to historical data, Marine Ecology Progress Series, vol.348, pp.47-54, 2007.
DOI : 10.3354/meps07058

URL : https://hal.archives-ouvertes.fr/hal-01245622

A. G. Dickson, Standards for ocean measurements, Oceanography, pp.34-47, 2010.
DOI : 10.5670/oceanog.2010.22

URL : https://tos.org/oceanography/assets/docs/23-3_dickson.pdf

A. G. Dickson and F. J. Millero, A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Res, pp.1733-17430198, 1987.

R. E. Diner, I. Benner, U. Passow, T. Komada, E. J. Carpenter et al., Negative effects of ocean acidification on calcification vary within the coccolithophore genus Calcidiscus, Marine Biology, vol.15, issue.6, pp.1287-1305, 2015.
DOI : 10.1029/2000GB001321

A. G. Dickson, C. Goyet, and . Ornl-/-cdiac-74, DOE: Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water, p.29, 1994.

P. Dassow, Over-calcified forms of the coccolithophore Emiliania huxleyi
URL : https://hal.archives-ouvertes.fr/hal-01758791

A. Engel, I. Zondervan, K. Aerts, L. Beaufort, A. Benthien et al., in mesocosm experiments, Testing the direct effect of CO 2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments, pp.493-507, 2005.
DOI : 10.4319/lo.2005.50.2.0493

URL : https://hal.archives-ouvertes.fr/hal-01460377

G. E. Friederich, J. Ledesma, O. Ulloa, and F. P. Chavez, Air???sea carbon dioxide fluxes in the coastal southeastern tropical Pacific, Progress in Oceanography, vol.79, issue.2-4, pp.156-166, 2008.
DOI : 10.1016/j.pocean.2008.10.001

J. D. Gaitán-espitia, P. A. Villanueva, J. Lopez, R. Torres, J. M. Navarro et al., Spatio-temporal environmental variation mediates geographical differences in phenotypic responses to ocean acidification, Biology Letters, vol.19, issue.2, 2017.
DOI : 10.1242/jeb.054809

K. Hagino, E. M. Bendif, J. R. Young, K. Kogame, I. Probert et al., NEW EVIDENCE FOR MORPHOLOGICAL AND GENETIC VARIATION IN THE COSMOPOLITAN COCCOLITHOPHORE EMILIANIA HUXLEYI (PRYMNESIOPHYCEAE) FROM THE COX1b-ATP4 GENES1, Journal of Phycology, vol.21, issue.5, pp.1164-1176, 2011.
DOI : 10.1093/nar/21.22.5279

URL : https://hal.archives-ouvertes.fr/hal-01258248

D. Harris, W. R. Horwáth, and C. Van-kessel, Acid fumigation of soils to remove carbonates prior to total organic carbon or CARBON-13 isotopic analysis, Soil Science Society of America Journal, vol.65, issue.6, pp.1853-1856, 2001.
DOI : 10.2136/sssaj2001.1853

J. Henderiks, A. Winter, M. Elbrächter, R. Feistel, A. Van-der-plas et al., Environmental controls on Emiliania huxleyi morphotypes in the Benguela coastal upwelling system (SE Atlantic), Environmental controls on Emiliania huxleyi morphotypes in the Benguela coastal upwelling system (SE Atlantic), pp.51-66, 2012.
DOI : 10.3354/meps09535

C. Heraldsson, L. G. Anderson, M. Hassellöv, S. Hulth, and K. Olsson, Rapid, high-precision potentiometric titration of alkalinity in ocean and sediment pore waters, Deep-Sea Res, Pt. I, vol.44, issue.97, pp.2031-2044, 1997.

M. Hofmann and H. Schellnhuber, Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes, Proceedings of the National Academy of Sciences, vol.97, issue.2A, pp.3017-3022, 2009.
DOI : 10.1029/92JC00188

G. E. Hofmann, J. E. Smith, K. S. Johnson, U. Send, L. A. Levin et al., High-Frequency Dynamics of Ocean pH: A Multi-Ecosystem Comparison, PLoS ONE, vol.40, issue.12, p.28983, 2011.
DOI : 10.1371/journal.pone.0028983.t002

M. D. Iglesias-rodríguez, C. W. Brown, S. C. Doney, J. Kleypas, D. Kolber et al., Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids, Global Biogeochemical Cycles, vol.18, issue.10, pp.47-48, 2002.
DOI : 10.1016/0377-8398(91)90004-P

M. D. Iglesias-rodriguez, P. R. Halloran, R. E. Rickaby, I. R. Hall, E. Colmenero-hidalgo et al., Phytoplankton Calcification in a High-CO2 World, Phytoplankton calcification in a high-CO 2 world, pp.336-340, 2008.
DOI : 10.1111/j.0022-3646.1994.00230.x

P. Jin, J. Ding, T. Xing, U. Riebesell, and K. Gao, High levels of solar radiation offset impacts of ocean acidification on calcifying and non-calcifying strains of Emiliania huxleyi, Marine Ecology Progress Series, vol.568, pp.47-58, 2017.
DOI : 10.3354/meps12042

M. D. Keller, R. C. Selvin, W. Claus, and R. R. Guillard, MEDIA FOR THE CULTURE OF OCEANIC ULTRAPHYTOPLANKTON1,2, Journal of Phycology, vol.42, issue.4, pp.633-638, 1987.
DOI : 10.1111/j.1529-8817.1980.tb00724.x

S. A. Krueger-hadfield, C. Balestreri, J. Schroeder, A. Highfield, P. Helaouët et al., Genotyping an Emiliania huxleyi (prymnesiophyceae) bloom event in the North Sea reveals evidence of asexual reproduction, Biogeosciences, vol.5194, issue.1110, pp.5215-5234, 2014.

G. Langer, G. Nehrke, I. Probert, J. Ly, and P. Ziveri, Strain-specific responses of <i>Emiliania huxleyi</i> to changing seawater carbonate chemistry, Biogeosciences, vol.6, issue.11, pp.2637-2646, 2009.
DOI : 10.5194/bg-6-2637-2009

R. B. Lee, D. A. Mavridou, G. Papadakos, H. L. Mcclelland, R. et al., The uronic acid content of coccolith-associated polysaccharides provides insight into coccolithogenesis and past climate, Nature Communications, vol.453, 2016.
DOI : 10.1126/science.1208277

S. C. Lefebvre, I. Benner, J. H. Stillman, A. E. Parker, M. K. Drake et al., Nitrogen source and pCO2 synergistically affect carbon allocation, growth and morphology of the coccolithophore Emiliania huxleyi: potential implications of ocean acidification for the carbon cycle, Global Change Biology, vol.15, issue.2, pp.493-503, 2012.
DOI : 10.1029/2000GB001321

E. Litchman, P. De-tezanos-pinto, K. F. Edwards, C. A. Klausmeier, C. T. Kremer et al., Global biogeochemical impacts of phytoplankton: a trait-based perspective, Journal of Ecology, vol.3, issue.6, pp.1384-1396, 2015.
DOI : 10.1146/annurev-marine-120709-142819

K. T. Lohbeck, U. Riebesell, R. , and T. B. , Adaptive evolution of a key phytoplankton species to ocean acidification, Nature Geoscience, vol.5, issue.5, pp.917-917, 2012.
DOI : 10.1038/nrmicro1751

A. Lorrain, N. Savoye, L. Chauvaud, Y. Paulet, and N. Naulet, Decarbonation and preservation method for the analysis of organic C and N contents and stable isotope ratios of low-carbonated suspended particulate material, Analytica Chimica Acta, vol.491, issue.2, pp.125-133, 2003.
DOI : 10.1016/S0003-2670(03)00815-8

URL : https://hal.archives-ouvertes.fr/hal-00452450

M. J. Mcdonald, D. P. Rice, and M. M. Desai, Sex speeds adaptation by altering the dynamics of molecular evolution, Nature, vol.9, issue.7593, pp.233-236, 2016.
DOI : 10.1371/journal.pgen.1003232

C. Mehrbach, C. H. Culberson, J. E. Hawley, and R. M. Pytkowicz, MEASUREMENT OF THE APPARENT DISSOCIATION CONSTANTS OF CARBONIC ACID IN SEAWATER AT ATMOSPHERIC PRESSURE1, Limnology and Oceanography, vol.18, issue.6, pp.897-907, 1973.
DOI : 10.4319/lo.1973.18.6.0897

J. Meyer and U. Riebesell, Reviews and Syntheses: Responses of coccolithophores to ocean acidification: a meta-analysis, Biogeosciences, vol.12, issue.6, pp.1671-1682, 1671.
DOI : 10.5194/bg-12-1671-2015-supplement

M. N. Müller, T. W. Trull, and G. M. Hallegraeff, Differing responses of three Southern Ocean Emiliania huxleyi ecotypes to changing seawater carbonate chemistry, Marine Ecology Progress Series, vol.531, pp.81-90, 2015.
DOI : 10.3354/meps11309

M. N. Müller, J. Barcelos-e-ramos, K. G. Schulz, U. Riebesell, J. Ka´zmierczakka´zmierczak et al., Phytoplankton calcification as an effective mechanism to alleviate cellular calcium poisoning, Biogeosciences, vol.12, issue.21, pp.6493-6501, 2015.
DOI : 10.5194/bg-12-6493-2015-supplement

M. N. Müller, T. W. Trull, and G. M. Hallegraeff, Independence of nutrient limitation and carbon dioxide impacts on the Southern Ocean coccolithophore Emiliania huxleyi, The ISME Journal, vol.6, issue.8, pp.1777-1787, 2017.
DOI : 10.1007/BF00393106

M. B. Olson, T. A. Wuori, B. A. Love, and S. L. Strom, Ocean acidification effects on haploid and diploid Emiliania huxleyi strains: Why changes in cell size matter, Journal of Experimental Marine Biology and Ecology, vol.488, pp.72-82, 2017.
DOI : 10.1016/j.jembe.2016.12.008

J. C. Orr, V. J. Fabry, O. Aumont, L. Bopp, S. C. Doney et al., Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Anthropogenic ocean acidification over the twentyfirst century and its impact on calcifying organisms, pp.681-686, 2005.
DOI : 10.1126/science.284.5421.1824

URL : https://hal.archives-ouvertes.fr/hal-00124807

E. Paasche, A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions, Phycologia, vol.40, issue.6, pp.503-529, 2002.
DOI : 10.2216/i0031-8884-40-6-503.1

J. L. Padilla-gamiño, J. D. Gaitán-espitia, M. W. Kelly, and G. E. Hofmann, in calcareous algae: an ontogenetic and geographic approach, Evolutionary Applications, vol.144, issue.10, pp.1043-1053, 2016.
DOI : 10.1016/S0176-1617(11)81192-2

A. J. Poulton, J. R. Young, N. R. Bates, and W. M. Balch, Biometry of detached Emiliania huxleyi coccoliths along the Patagonian Shelf, Marine Ecology Progress Series, vol.443, pp.1-17, 2011.
DOI : 10.3354/meps09445

S. Richier, S. Fiorini, M. E. Kerros, P. Von-dassow, and J. P. Gattuso, Response of the calcifying coccolithophore Emiliania huxleyi to low pH/high pCO2: from physiology to molecular level, Marine Biology, vol.272, issue.3, pp.551-560, 2011.
DOI : 10.1016/S0022-0981(02)00037-0

U. Riebesell, I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe et al., Reduced calcification of marine plankton in response to increased atmospheric CO 2, Nature, vol.407, issue.6802, pp.364-367, 2000.
DOI : 10.1038/35030078

U. Riebesell, L. T. Bach, R. G. Bellerby, J. R. Monsalve, T. Boxhammer et al., Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification, Nature Geoscience, vol.159, issue.1, pp.19-23, 1038.
DOI : 10.1007/s00227-012-1945-2

A. Rosas-navarro, G. Langer, and P. Ziveri, Temperature affects the morphology and calcification of <i>Emiliania huxleyi</i> strains, Biogeosciences, vol.13, issue.10, pp.2913-2926, 2016.
DOI : 10.5194/bg-13-2913-2016-supplement

C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee et al., The Oceanic Sink for Anthropogenic CO2, Science, vol.305, issue.5682, pp.367-371, 2004.
DOI : 10.1126/science.1097403

R. Sanders, P. J. Morris, A. J. Poulton, M. C. Stinchcombe, A. Charalampopoulou et al., Does a ballast effect occur in the surface ocean?, Geophysical Research Letters, vol.54, issue.4, pp.1-5, 2010.
DOI : 10.1016/j.dsr2.2006.12.004

L. Schlüter, K. T. Lohbeck, J. P. Gröger, U. Riebesell, R. et al., Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification, Sci. Adv, pp.1501660-1501660, 2016.

A. Sciandra, J. Harlay, D. Lefèvre, R. Lemée, P. Rimmelin et al., Response of coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrogen limitation, Marine Ecology Progress Series, vol.261, pp.111-122, 2003.
DOI : 10.3354/meps261111

D. Shi, Y. Xu, and F. M. Morel, Effects of the pH/<i>p</i>CO<sub>2</sub> control method on medium chemistry and phytoplankton growth, Biogeosciences, vol.6, issue.7, pp.1199-1207, 1199.
DOI : 10.5194/bg-6-1199-2009

R. Torres, D. R. Turner, N. Silva, R. , and J. , High shortterm variability of CO 2 fluxes during an upwelling event off the Chilean coast at 30 ? S, Deep-Sea Res, Pt. I, vol.46, pp.1161-1179, 1999.

R. Torres, D. R. Turner, N. Silva, R. , and J. , High short-term variability of CO2 fluxes during an upwelling event off the Chilean coast at 30??S, Deep Sea Research Part I: Oceanographic Research Papers, vol.46, issue.7, pp.1161-1179, 1999.
DOI : 10.1016/S0967-0637(99)00003-5

R. Torres, P. H. Manriquez, C. Duarte, J. M. Navarro, N. A. Lagos et al., Evaluation of a semi-automatic system for long-term seawater carbonate chemistry manipulation, Revista chilena de historia natural, vol.86, issue.4, pp.443-451, 2013.
DOI : 10.4067/S0716-078X2013000400006

C. A. Vargas, N. A. Lagos, M. A. Lardies, C. Duarte, P. H. Manríquez et al., Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity, Nature Ecology & Evolution, vol.8, issue.4, pp.41559-41576, 2017.
DOI : 10.5194/essd-8-79-2016

V. Dassow, P. Van-den-engh, G. Iglesias-rodriguez, D. Gittins, and J. R. , Calcification state of coccolithophores can be assessed by light scatter depolarization measurements with flow cytometry, Journal of Plankton Research, vol.54, issue.12, pp.1011-1027, 2012.
DOI : 10.1016/j.dsr2.2006.12.004

V. Dassow, P. Diaz-rosas, F. Bendif, E. M. Gaitan-espitia, J. Mella-flores et al., Scanning electron microscopy datasets ? Emiliania huxleyi strains from naturally high and low CO 2 waters responding to high and low CO 2 in the lab, 2018.

J. R. Young and P. Westbroek, Genotypic variation in the coccolithophorid speciesEmiliania huxleyi, Marine Micropaleontology, vol.18, issue.1-2, pp.5-230377, 1991.
DOI : 10.1016/0377-8398(91)90004-P

J. R. Young, M. Geisen, L. Cros, A. Kleijne, C. Sprengel et al., A guide to extant coccolithophore taxonomy, J. Nannoplankt. Res, vol.1, pp.1-125, 2003.

J. R. Young, A. J. Poulton, and T. Tyrrell, Morphology of <i>Emiliania huxleyi</i> coccoliths on the northwestern European shelf ??? is there an influence of carbonate chemistry?, Biogeosciences, vol.11, issue.17, pp.4771-4782, 2014.
DOI : 10.5194/bg-11-4771-2014

I. Zondervan, B. Rost, and U. Riebesell, Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths, Journal of Experimental Marine Biology and Ecology, vol.272, issue.1, pp.55-70, 2002.
DOI : 10.1016/S0022-0981(02)00037-0