
HAL Id: hal-01758502
https://hal.science/hal-01758502

Submitted on 4 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Requirements Engineering
Amel Bennaceur, Thein Than Tun, Yijun Yu, Bashar Nuseibeh

To cite this version:
Amel Bennaceur, Thein Than Tun, Yijun Yu, Bashar Nuseibeh. Requirements Engineering. Hand-
book of Software Engineering, 2018. �hal-01758502�

https://hal.science/hal-01758502
https://hal.archives-ouvertes.fr

Requirements Engineering

Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

Abstract Requirements Engineering (RE) aims to ensure that systems meet the
needs of their stakeholders including users, sponsors, and customers. Often consid-
ered as one of the earliest activities in software engineering, it has developed into a
set of activities that touch almost every step of the software development process.
In this chapter, we reflect on how the need for RE was first recognised and how its
foundational concepts were developed. We present the seminal papers on four main
activities of the RE process, namely (i) elicitation, (ii) modelling & analysis, (iii) as-
surance, and (iv) management & evolution. We also discuss some current research
challenges in the area, including security requirements engineering as well as RE
for mobile and ubiquitous computing. Finally, we identify some open challenges
and research gaps that require further exploration.

Key words: requirements, goal modelling, requirements quality assurance, require-
ments evolution,

1 Introduction

This chapter presents the foundational concepts of Requirements Engineering (RE)
and describes the evolution of RE research and practice. RE has been the subject
of several popular books [48, 59, 61, 95, 103, 108] and surveys [20, 87]; this chap-
ter clarifies the nature and evolution of RE research and practice, gives a guided
introduction to the field, and provides relevant references for further exploration
of the area.

Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh
The Open University, Milton Keynes, UK, e-mail: firstname.lastname@open.ac.uk

Bashar Nuseibeh
Lero The Irish Software Research Centre, Limerick, Ireland e-mail: bashar.nuseibeh@
lero.ie

1

firstname.lastname@open.ac.uk
bashar.nuseibeh@lero.ie
bashar.nuseibeh@lero.ie

2 Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

The target readers are students interested in the main theoretical and practical
approaches in the area, professionals looking for practical techniques to apply, and
researchers seeking new challenges to investigate. But first, what is RE?

“Requirements engineering is the branch of software engineering con-
cerned with the real-world goals for, functions of, and constraints on soft-
ware systems. It is also concerned with the relationship of these factors
to precise specifications of software behaviour, and to their evolution over
time and across software families.” – Zave [112]

Zave’s definition emphasises that a new software system is introduced to solve
a real-world problem and that a good understanding of the problem and the associ-
ated context is at the heart of RE. Therefore, it is important not only to define the
goals of the software system, but also to specify its behaviour, and to understand
the constraints and the environment in which this software system will operate. The
definition also highlights the need to consider change, which is inherent in any real-
world situation. Finally, the definition suggests that RE aims to capture and distill
the experience of software development across a wide range of applications and
projects.

Although Zave’s definition identifies some of the key challenges in RE, the nature
of RE itself has been changing. First, although much of the focus in this chapter is
given to software engineering, which is the subject of the book, RE is not specific
to software alone but to socio-technical systems in general, of which software is
only a part. Software today permeates every aspect of our lives and therefore, one
must not only consider the technical but also the physical, economical, and social
aspects. Second, an important concept in RE is stakeholders, that is, individuals or
organisations who stand a gain or loss from the success or failure of the system to
be constructed [87]. Stakeholders play an important role in eliciting requirements as
well as in validating them.

The chapter covers both the foundations and the open challenges of RE. When
you have read the chapter you will:

• Appreciate the importance of RE and its role within the software engineering
process;

• Recognise the techniques for eliciting, modelling, documenting, validating, and
managing requirements for software systems; and

• Understand the challenges and open research issues in RE.

The chapter is structured as follows. Section 2 introduces the fundamental con-
cepts of RE including the need to make explicit the relationship between require-
ments, specifications, and environment properties; the quality properties of require-
ments; and the main activities with the RE process. Section 3 presents seminal work
in requirements elicitation, modelling, assurance, and management. It also discusses
the RE techniques that address cross-cutting properties, such as security, that in-
volves a holistic approach across the RE process. Section 4 examines the challenges
and research gaps that require further exploration. Section 5 concludes the chapter.

Requirements Engineering 3

2 Concepts and Principles

In the early days of software engineering, approximately from 1960s up to around
1980s, many software systems used by organisations were largely, if not completely,
constructed in-house, by the organisations themselves. There were serious problems
with these software projects: software systems were often not delivered on time and
on budget. More seriously, their users did not necessarily like to use the constructed
software systems. Brooks [19] assessed the role of requirements engineering in such
projects as follows:

“The hardest single part of building a software system is deciding precisely
what to build. No other part of the conceptual work is as difficult as estab-
lishing the detailed technical requirements. No other part of the work so
cripples the resulting system if done wrong. No other part is more difficult
to rectify later.”

Although it was fashionable to argue that users do not really know what their
requirements are (and so it was difficult for software engineers to construct sys-
tems users would want to use), it was also true that software engineers did not re-
ally know what they mean when they say requirements. Much confusion abounds
around the term requirements. In fact, Brooks himself talked about “detailed tech-
nical requirements” and “product requirements” in the same paper without really
explaining what they mean. Elsewhere, people were also using terms like “system
requirements”, “software requirements”, “user requirements” and so on. Obviously
people realised that when they say requirements to each other, they might be talk-
ing about very different things, hence the many modifiers. The need to give precise
meanings to the terms was quite urgent. In the following, Section 2.1 starts by intro-
ducing Jackson and Zave’s framework for requirements engineering [113], which
makes explicit the relationship between requirements, specifications, and environ-
ment properties. Section 2.2 defines the desirable attributes of requirements. Finally,
Section 2.3 introduces the main activities within the RE process.

2.1 Fundamentals: The World and the Machine

Zave and Jackson [113] propose a set of criteria that can be used to define re-
quirements and differentiate them from other artefacts in software engineering.
Their work is closely related to the “four-variable model” proposed by Parnas and
Madey [90], which defines the kinds of content that documents produced in the
software engineering process should contain.

Central to the proposal of Zave and Jackson is the distinction between the ma-
chine and the world. Essentially the machine is the software system. The portion of
the real world where the machine is to be deployed and used is called the environ-
ment. Hence, scoping the problem by defining the boundary of the environment is
paramount. The machine and the environment are described in terms of phenomena,

4 Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

such as events, objects, states and variables. Some phenomena belong to the world,
and some phenomena belong to the machine. Since the world and the machine are
connected, their phenomena overlap (Fig. 1).

Environment Phenomena Machine Phenomena

Requirements (R)
Domain Properties(D)

Program (P)Specification (S)

Fig. 1 World, machine, and specification phenomena

Typically the machine observes some phenomena in the environment, such as
events and variables, and the machine can control parts of the environment by means
of initiating some events. This set of machine observable and machine controllable
phenomena sits at the intersection between the machine and the world, and they are
called specification phenomena (S). There are also parts of the environment that the
machine can neither control nor observe directly. Indicative statements that describe
the environment in the absence of the machine or regardless of the machine are often
called assumptions or domain properties (D). Optative statements expressing some
desired properties of the environment that are to be brought about by constructing
the machine are called requirements (R). Crucially, requirement statements are never
about the properties of the machine itself. In fact, Zave and Jackson assert that all
statements made during RE should be about the environment. That means that dur-
ing RE, the engineer has to describe the environment without the machine, and the
environment with the machine. From these two descriptions, it is possible to derive
the specification of the machine systematically [51].

Accordingly, Zave and Jackson suggest that there are three main kinds of arte-
facts that engineers would produce during the RE process:

(i) statements about the domain describing properties that are true regardless of
the presence or actions of the machine,

(ii) statements about requirements, describing properties that the users want to be
true of the world in the presence of the machine, and

(iii) statements about the specification describing what the machine needs to do in
order to achieve the requirements.

These statements can be written in natural language, formal logic, semi-formal lan-
guages, or indeed in some combination of them, and Zave and Jackson are not pre-
scriptive about that. What is important is their relationship, which is as follows:

The specification (S), together with the properties of the domain (D),
should satisfy the requirements (R): S,D ` R.

Requirements Engineering 5

Returning to the issue of confusion about what requirements mean, is the term
any clearer in the light of such research work? It seems so. For example, a statement
like “The program must be written in C#” is not a requirement because this is not a
property of the environment, it is rather an implementation decision, that unneces-
sary constrain potential system specifications. Statements like “A library reader is
allowed borrow up to 10 different books at a time” is a requirement, but “Readers
always return their loans on time” is an assumed property of the environment, that
is a domain property.

Hence, RE is grounded in the real-world, it involves understanding the environ-
ment in which the system-to-be will operate and defining detailed, consistent speci-
fication of the software system-to-be. This process is incremental and iterative as we
will see in Section 2.3. Zave and Jackson [113] specify five criteria for this process
to complete:

1. Each requirement R has been validated with the stakeholders.
2. Each domain property D has also been validated with the stakeholders.
3. The requirement specification S does not constrain the environment or refer to

the future.
4. There exists a proof that an implementation of S satisfies R in environment W ,

that is S,W ` R holds.
5. S and D are consistent, that is S,D 6` false.

The ideas proposed by Zave and Jackson are quite conceptual: they help clarify our
thinking about requirements and how to work with the requirements productively
during software development. There are many commercial and non-commercial
tools that use some of the ideas: REVEAL [5] for example helps address the im-
portance of understanding the operational context through domain analysis.

2.2 Qualities

Requirements errors and omissions are relatively more costly than those introduced
in later stages of development [13]. Therefore, it is important to recognise some of
the key qualities of requirements, which include:

• Measurability. If a software solution is proposed, one must be able to demon-
strates that it meets its requirements. For example, a statement such as “response
time small enough” is not measurable and any solution cannot be proven to sat-
isfy it or not. A measurable requirement would be “response time smaller than
two seconds”. Agreement on such measures will then reduce potential dispute
with stakeholders. Having said that requirements such as response time are eas-
ier to quantify than others such as requirements for security.

• Completeness. Requirements must define all properties and constraints of the
system-to-be. In practice, completeness is achieved by complying with some

6 Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

guidelines for defining the requirements statements such as ensuring that there
are no missing references, definitions, or functions [13].

• Correctness (sometimes also referred to as adequacy or validity). The stakehold-
ers and requirements engineer have the same understanding of what is meant by
the requirements. Practically, correctness often involves compliance with other
business documents, policies, and laws.

• Consistency. As the RE process often involves multiple stakeholders holding dif-
ferent views of the problems to be addressed, they might be contradictory at the
early stages. Through negotiation [15] and prioritization [11], the conflicts be-
tween these requirements can be solved and an agreement may be reached.

• Unambiguity. The terms used within the requirement statements must mean the
same both to those who created it and those who use it. Guidelines to ensure
unambiguity include using a single term consistently and including a glossary to
define any term with multiple meanings [45].

• Pertinence. Clearly defining the scope of the problem to solve is fundamental
in RE [95]. Requirements must be relevant to the needs of stakeholders without
unnecessarily restricting the developer.

• Feasibility. The requirements should be specified in a way that they can be im-
plemented using the available resources such as budget and schedule [13].

• Traceability. Traceability is about relating software artefacts. When requirements
change and evolve over time, traceability can help identity the impact on other
software artefacts and assess how the change should be propagated [24].

These qualities are not necessarily exhaustive. Other qualities that are often high-
lighted include comprehensibility, good structuring, modifiability [59]. Considera-
tions of these quality factors guide the RE process. Indeed, since RE is grounded in
the physical world, it must progress from acquiring some understanding of organisa-
tional and physical settings, to resolving potential conflicting views about what the
software system-to-be is supposed to do, and to defining a specification of the soft-
ware system-to-be that satisfies the above properties. This process is often iterative
and incremental with many activities.

Robertson & Robertson [95] define the Volere Template as a structure for the effec-
tive specification of requirements (See Fig. 2) and propose a method called quality
Gateway to focus on atomic requirements and ensure “each requirement is as close
to perfect as it can be”. IEEE 830-1998: IEEE Recommended Practice for Software
Requirements Specifications [45] provides some guidance and recommendations
for specifying software requirements and details a template for organising the dif-
ferent kinds of requirements information for a software product in order to produce
a Software Requirements Specification (SRS).

Requirements Engineering 7

Requirement ID: Requirement Type:

Event/use case:

Description:

Rationale:

Source:

Customer satisfaction
/dissatisfaction:

Fit criterion:

Supporting materials:

History: Date that the requirement was first raised, dates of changes, date of
deletion, dates of consolidation of the requirement

Additional material that is important to the requirements

A measure (1-5) of how pleased/dipleased the client will be
if the product delivers an implementation of the requirement

Quantified goals that the product has to meet

The person or group who raised the requirement

The reason behind the requirement’s existence

A natural language statement as to what is required

The context of the requirement is broken into smaller pieces
using business events in use cases

Categorise the requirement Unique identifier	

Fig. 2 Volere Template (adapted from [95]) Double check permissions to reproduce the template

2.3 Processes

Requirements often permeate throughout many parts of systems development (see
Fig. 3). At the early stages of system development, requirements have a signifi-
cant influence on system feasibility. During system design, requirements are used to
inform decision-making about different design alternatives. During systems imple-
mentation, requirements are used to enable system function and sub-system testing.
Once the system has been deployed, requirements are used to drive acceptance tests
to check whether the final system does what the stakeholders originally wanted.
In addition, requirements are reviewed and updated during the software develop-

System
feasibility

Requirements
Engineering

Design

Implementation

Running
System

Architecture choice

Testing &
Prototyping

Acceptance testing
Evolution

The problem space The solution space

Fig. 3 RE and software development activities

8 Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

• Scoping the problem
• Discovering the real needs of stakeholders
• Exploring alternative specifications

• Validation
 - Adequacy of requirements and assumptions.
 - Specification meets the needs of stakeholders
 • Verification
 - Check quality criteria of the specification

• Managing conflicting requirements
• Reusing requirements
• Dealing with change

• Selecting the appropriate technique
• Constructing the model
• Reasoning

Elicitation1 Modelling & Analysis2

Assurance3 Management & Evolution4

Fig. 4 Main activities of RE

ment process as additional knowledge is acquired and stakeholders needs are better
understood. Each step of the development process may lead the definition of ad-
ditional requirements through a better understanding of the domain and associated
constraints. Nuseibeh [86] emphasise the need to consider requirements, design,
and architecture concurrently and highlight that this is often the process adopted by
developers.

While the definition of the requirements helps delimit the solution space, the
requirement problem space is less constrained, making it difficult to define the envi-
ronment boundary, negotiate resolution of conflicts, and set acceptance criteria [20].
Therefore, several guidelines are given to define and regulate the RE processes in
order to build adequate requirements [95]. Fig. 4 summarises the main activities of
RE:
¶ Elicitation. Requirements elicitation aims to discover the needs of stakeholders
as well as understand the context in which the system-to-be will operate. It may
also explore alternative ways in which the new system could be specified. A num-
ber of techniques can be used including: (i) traditional data gathering techniques
(e.g., interviews, questionnaires, surveys, analysis of existing documentation), (ii)
collaborative techniques (e.g., brainstorming, RAD/JAD workshops, prototyping),
(iii) cognitive techniques (e.g., protocol analysis, card sorting, laddering), (iv) con-
textual techniques (e.g., ethnographic techniques, discourse analysis), and (v) cre-
ativity techniques (e.g. creativity workshops, facilitated analogical reasoning) [114].
Section 3.1 is dedicated to elicitation.
· Modelling and Analysis. The results of the elicitation activity often need be de-
scribed precisely, and in a way accessible by domain experts, developers, and other
stakeholders. A wide range of techniques and notations can be used for require-
ments specification and documentation, ranging from informal to semi-formal to
formal methods. The choice of the appropriate method often depends on the kind of

Requirements Engineering 9

analysis or reasoning that needs to be performed. Section 3.2 is dedicated to mod-
elling and analysis.
¸ Assurance. Requirements quality assurance seeks to identify, report, analyse and
fix defects in requirements. It involves both validation and verification. Validation
aims to check the adequacy of the specified and modelled requirements and domain
assumptions with the actual expectations of stakeholders. Verification covers a wide
range of checks including quality criteria of the specified and modelled requirements
(e.g., consistency). Section 3.3 is dedicated to assurance.
¹ Management and Evolution. Requirements management is an umbrella term
for the handling of changing requirements, reviewing and negotiating the require-
ments and their priorities as well as maintaining traceability between requirements
and other software artefacts. Section 3.4 discusses some of the issues of managing
change and the requirements-driven techniques to address them.

These RE activities happen rarely in sequence since the requirements can rarely
be fully gathered upfront and changes occur continuously. Instead, the process is
iterative and incremental and can be viewed, like the software development pro-
cess, as a spiral model [14]. In the following section, we present the seminal work
associated with each of the activities in the RE process.

3 Organised Tour: Genealogy and Seminal Works

RE is multi-disciplinary nature. As a result, different techniques for elicitation, mod-
elling, assurance, and management often co-exist and influence one another without
a clear chronological order. This section presents the key techniques and approaches
within each of the RE activities shown in Fig. 5. We begin with requirements elici-
tation techniques and categorise them. Next, we describe techniques for modelling
and analysing requirements, followed by the techniques for validating and verifying
requirements. We then explore techniques for dealing with change and uncertainty
in requirements and their context. Finally, we discuss properties such as security and
dependability that require a holistic approach that cuts across the RE activities.

3.1 Elicitation

Requirements elicitation aims at acquiring knowledge and understanding about the
system-as-is, the system-to-be, and the environment in which it will operate. First,
requirements engineers must scope the problem by understanding the context in
which the system will operate and identifying the problems and opportunities of the
new system. Second, they also need to identify the stakeholders and determine their
needs. These needs may be identified through interaction with the stakeholders, who
know what they want from the system and are able to articulate and express those
needs. There are also needs that the stakeholders do not realise are possible but that

10 Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

RE

Modelling
& Analysis

Natural
Language

Structural
Modelling

Behavioural
Modelling

Goal
Modelling

Assurance

Validation

Verification

Management
& Evolution

Tradeo↵ &
Negotiation

Agile
Methods

Reuse Adaptation

Traceability

Elicitation
Data

Gathering

CollaborativeCognitive

Contextual

Creativity

Fig. 5 Classification of Key RE techniques

can be formulated through invention and creative thinking [73]. Finally, elicitation
also aims to explore alternative specifications for the system-to-be in order to ad-
dress those needs.

However, eliciting requirements is challenging for a number of reasons. First, in
order to understand the environment, requirements engineers must access and col-
lect information that is often distributed across many locations and consult a large
number of people and documents. Communication with stakeholders is paramount,
especially for capturing tacit knowledge and hidden needs, and for uncovering bi-
ases. These stakeholders may have diverging interests and perceptions and can pro-
vide conflicting and inconsistent information. Key stakeholders may also be not easy
to contact or interested in contributing. Finally, changing socio-technical context
may lead to reviewing priorities, identifying new stakeholders, or revising require-
ments and assumptions.

Requirements Engineering 11

Table 1 Summary of Requirements Elicitation Techniques

Category Main Idea Example Techniques

Data gathering Collecting data by analysing existing docu-
mentation and questioning stakeholders

• Background study
• Interviews

Collaborative Leveraging group dynamics to foster agree-
ments

• Brainstorming
• RAD/JAD workshops

Cognitive Acquiring domain knowledge by asking
stakeholders to think about, characterise,
and categorise domain concepts

• Repertory Grids
• Card sorting

Contextual Observing stakeholders’ and users perform-
ing tasks in context

• Observation
• Protocol analysis

Creativity Inventing requirements • Creativity workshops
• ContraVision

A range of elicitation techniques have been proposed to address some of those
challenges. An exhaustive survey of those techniques is beyond the scope of this
chapter. In the following, we present the main categories and some representative
techniques as summarised in Table 1. We refer the interested reader to the survey by
Zowghi and Coulin [114] for further details.

3.1.1 Data Gathering

This category includes traditional techniques for collecting data by analysing exist-
ing documentation and questioning relevant stakeholders.

Background study. Collecting, examining, and synthesising existing and related
information about the system-as-is and its context is a useful way to gather early re-
quirements as well as gain an understanding of the environment in which the system
will operate. This information can originate from studying documents about busi-
ness plans, organisation strategy, and policy manuals. It can also come from surveys,
books, and reports on similar systems. It can also derive from the defect and com-
plaint reports or change requests. Background study enables requirements engineers
to build up the terminology and define the objective and policies to be considered. It
can also help them identify opportunities for reusing existing specifications. How-
ever, it may require going through a considerable amount of documents, processing
irrelevant details, and identifying inaccurate or outdated data.

Interviews. Interviews are often considered as one of the most traditional and com-
monly used elicitation techniques. It typically involves requirements engineers se-
lecting specific stakeholders, asking them questions about particular topics, and
recording their answers. Analysts then prepare a report from the transcripts and

12 Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

validate or refine it with the stakeholders. In a structured interview, analysts would
prepare the list of questions beforehand. Through direct interaction with stakehold-
ers, interviews allow requirements engineers to collect valuable data even though
the data obtained might be hard to integrate and analyse. In addition, the quality of
interviews greatly depend on the interpersonal skills of the analysts involved.

3.1.2 Collaborative

This category of elicitation techniques takes advantage of the collective ability of a
group to perceive, judge, and invent requirements either in an unstructured manner
such as with brainstorming or in a structured manner such as in Joint Application
Development (JAD) workshops.

Brainstorming. Brainstorming involves asking a group of stakeholders to generate
as many ideas as possible to improve a task or address a recognised problem, then
to jointly evaluate and choose some of these ideas according to agreed criteria. The
free and informal style of interaction in brainstorming sessions may lead to gener-
ate many, and sometimes inventive, properties of the system-to-be as well as tacit
knowledge. The challenge however is to determine the right group composition to
avoid unnecessary conflicts, bias, and miscommunication.

Joint Application Development (JAD) Workshops. Similarly to brainstorming,
JAD involves a group of stakeholders discussing both the problems to be solved and
alternative solutions. However, JAD often involves specific roles and viewpoints for
participants and discussions are supported by a facilitator. The well-structured na-
ture of these facilitated interactions and the collaboration between involved parties
can lead to rapid decision making and conflict solving.

3.1.3 Cognitive

Techniques within this category aims to acquire domain knowledge by asking stake-
holders to think about, characterise, and categorise domain concepts.

Card sorting. Stakeholders are asked to sort into groups a set of cards, each of
which has the name of some domain concept written or depicted on it. Stakeholders
then identify the criteria used for sorting the cards. While the knowledge obtained
is at a high level of abstraction, it may reveal latent relationships between domain
concepts.

Repertory Grids. Stakeholders are given a set of domain concepts for which they
are asked to assign attributes, which results in a concept×attribute matrix. Due to
their finer-grained abstraction, repertory grids are typically used to elicit expert
knowledge and to compare and detect inconsistencies or conflict in this knowl-
edge [85].

Requirements Engineering 13

3.1.4 Contextual

Techniques within this category aim to analyse stakeholders in context to capture
knowledge about the environment and ensure that the system-to-be is fit for use in
that environment.

Observation. Observation is an ethnographic technique whereby the requirements
engineers observe actual practices and processes in the domain without interfer-
ence. While observation can reveal tacit knowledge, it requires significant skills and
effort to gain access to the organisation without disrupting the normal behaviour
of participants (stakeholders or actors) as well as to interpret and understand these
processes.

Protocol Analysis. In this technique, requirements engineers observe participants
undertaking some tasks and explaining them out loud. This technique may reveal
specific information and rational for the processes within the system-as-is. However,
it does not necessarily reveal enough information about the system-to-be.

3.1.5 Creativity

Most of the aforementioned elicitation techniques focus on distilling information
about the environment and existing needs of the stakeholders. Creativity elicitation
techniques emphasise the role of requirements engineers to bring about innovative
change in a system, which would give a competitive advantage. To do so, creativity
workshops introduce creativity techniques within a collaborative environment. An-
other technique consists in using futuristic videos, or other narrative forms, in order
to engage stakeholders in exploring unfamiliar or controversial systems.

Creativity Workshops. Creativity workshops [72] encourage a fun atmosphere so
that the participants are relaxed and prepared to generate and voice novel ideas.
Several techniques are used to stimulate creative thinking. For example, facilitated
analogical reasoning can be used to import ideas from one problem space to an-
other. Domain constraints can be removed in order to release the cognitive blocks
and create new opportunities for exploring innovative ideas. Building on combi-
natorial creativity, requirements engineers can swap requirements between groups
of participants so as to generate new properties of the systems-to-be by combining
proposed ideas from each group in novel ways.

ContraVision. ContraVision [75] uses two identical scenarios that highlight the
positive and negative aspects of the same situation. These scenarios use a variety
of verbal, musical and visual codes as a powerful tool to trigger intellectual and
emotional responses from the stakeholders. The goal of ContraVision is to elicit
a wide spectrum of stakeholders reactions to potentially controversial or futuristic
technologies by providing alternative representations of the same situation.

14 Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

3.1.6 Choosing and Combining Elicitation Techniques

Requirements elicitation remains a difficult challenge. The problem is not a lack
of elicitation techniques, since a wide range already exists, each with its strengths
and weakness. But taken in isolation, none is sufficient to capture complete require-
ments. The challenge is then to select and plan a systematic sequence of appropriate
techniques to apply. ACRE framework [74] supports analysts for selecting elicita-
tion techniques according to their specified features and building reusable combi-
nations of techniques. Empirical studies have also been conducted to identify most
effective elicitation techniques, best practices, and systematic ways for combining
and applying them [27, 30].

3.2 Modelling & Analysis

While requirements elicitation aims to identify the requirements, domain proper-
ties, and the associated specifications, modelling aims to reason about the interplay
and relationships between them. There is a wide range of techniques and notations
for modelling and analysing requirements, each focusing on a specific aspect of the
system. The choice of the appropriate modelling technique often depends on the
kind of analysis and reasoning that need to be performed. Indeed, while the natural
language provides a convenient way of representing requirements early in the RE
process, semi-formal and formal techniques are often used to conduct more system-
atic and rigorous analysis later in the process. This analysis may also lead to the
elicitation of additional requirements.

Table 2 shows the main categories of requirements modelling and analysing tech-
niques. When discussing these techniques, we will use as our main example, a sys-
tem for scheduling meetings [60]. In this example, a meeting initiator proposes a
meeting, specifying a date range within which the meeting should take place as well
as potential meeting location. Participants indicate their availability constraints, and
the meeting scheduler needs to arrange a meeting that satisfies as many constraints
as possible.

3.2.1 Natural Language

At the early stages of RE, it is often convenient to write requirements in a natural
language, such as English. Although natural languages are very expressive, state-
ments can be imprecise and ambiguous. Several techniques are used to improve
the quality of requirements statements expressed in natural languages, and they in-
clude: (i) stylistic guidelines on reducing ambiguity in requirement statements [4],
(ii) requirement templates for ensuring consistency, such as Volere [94], (iii) con-
trolled syntax for simplifying and structuring the requirements statements, such as

Requirements Engineering 15

Table 2 Summary of Requirements Modelling Techniques

Category Main Idea Example Techniques

Natural language Guidelines and templates to write
requirements statements

• MoSCoW
• EARS

Structural Delimiting the problem world by
defining its components and their in-
terconnections

• Problem frames
• Class diagrams

Behavioural Interactions between actors and the
system-to-be

• Scenarios
• State machines

Goal modelling Desired states of actors, relation to
tasks goal

• KAOS
• i*

the Easy Approach to Requirements Syntax (EARS), and (iv) controlled syntax for
requirements prioritization using predefined imperatives, such as MoSCoW [17].

EARS. The Easy Approach to Requirements Syntax (EARS) [80] define a set of
patterns for writing requirements using natural language as follows:

1. Ubiquitous requirements: define properties that the system must maintain.
For example, the meeting scheduler shall display the scheduled meetings.

2. State-driven requirements: designate properties that must be satisfied while a
pre-condition holds.
For example, WHILE the meeting room is available, the meeting scheduler shall
allow the meeting initiator to book the meeting room.

3. Event-driven requirements: specifies properties that must be satisfied once a
condition holds.
For example, WHEN the meeting room is booked, the meeting scheduler shall
display the meeting room as unavailable.

4. Option requirements: refer to properties satisfied in the presence of a feature.
For example, WHERE a meeting is rescheduled the meeting scheduler shall in-
form all participants.

5. Unwanted behaviour requirements: defines the required system response to an
unwanted external event.
For example, IF the meeting room is unavailable THEN the meeting scheduler
shall forbid booking this meeting room.

MoSCoW. Requirements are often specified in standardisation documents using
a set of keywords, including MUST, MUST NOT, SHOULD, SHOULD NOT, and MAY.
The meaning of these words was initially specified in the IEFC RFC 2119 [17].
These terms designates priority levels of requirements and are often used to deter-
mine which requirements need to be implemented first. Although controlled syntax

16 Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

is a step towards clarity, natural language remains inherently ambiguous and not
amenable to automated, systematic, or rigorous reasoning and analysis.

3.2.2 Structural Modelling

Structural modelling techniques focus on delimiting the problem world by defining
its components and their interconnections. These components might be technical or
social. This category of techniques is often semi-formal; that is, the main concepts
of the technique and the relationships are defined formally but the specification of
individual components is informal, that is, in natural language. In the following
we present two structural modelling techniques: Problem Frames, which specify
relationships between software specifications, domains, and requirements; and Class
Diagrams, which define interconnections between classes.

Problem Frames. Jackson [49] introduced the Problem Frames approach which
emphasises the importance of structural relationships between the software (called
the machine), and the physical world context in which the software is expected to
operate. Descriptions of the structural relationships include (i) relevant components
of the world (called the problem world domains); (ii) events, states and values these
components share, control and observe (called the shared phenomena), and (iii) the
behaviours of those components (how events are triggered, how events affect prop-
erties, and so on). Requirements are desired properties of the physical world, to be
enacted by the machine (see Section 2.1).

Meeting
Scheduler

Participant
Availability

Scheduled
Meeting

Scheduler
Terminal

Meeting
Initiator

R

d

c

b
a

r

s

t

Interface Phenomena
a MI!{Date, Loc}
b ST!{Date, Loc}
c PA!{Excl sets, Pref sets, Locs}
d MS! {Date, Time, Loc}
r MI!{Meeting Request}
s PA!{Avails, Prefs}
t SM!{Schedule}

Legend

Machine

Problem World Domain

Requirement

Fig. 6 Problem Diagram: Schedule a meeting

Requirements Engineering 17

Such structural relationships are partially captured using semi-formal diagrams
called a problem diagram. Fig. 6 shows the problem diagram for a requirement in
the meeting scheduler problem.

The problem world domains are components in the environment that the machine
(Meeting Scheduler) interacts with. They are:

• Meeting Initiator: the person who wants to schedule a meeting with other par-
ticipant(s);

• Scheduler Terminal: the display terminal meeting initiator uses to schedule a
meeting;

• Participant Availability: a database containing availability of all potential par-
ticipants. Availability includes the exclusion set, preference set and location re-
quirement of every participant; and

• Scheduled Meeting: a date, time and location of a meeting scheduled.

The solid lines a, b, c and d are domain interfaces representing shared variables
and events between the domains and the machine involved. For example, at the
interface a, the variables Date and Loc are controlled by Meeting Initiator (as
denoted by MI!), and can be observed by the Scheduler Terminal. In other words,
when the meeting initiator enters the data and location information of a new meeting
to schedule, the terminal will receive that information. The same information is
passed to the machine via the interface b. At the interface c, the machine can read
the exclusion set, preference set and location requirement of each participant. At
the interface d, the machine can write the date, time and location of a scheduled
meeting.

In the diagram, the requirement is denoted by R in the dotted oval, which stands
for “schedule a meeting”. More precisely, the requirement means that when the
meeting initiator makes a meeting request at the interface r, the meeting scheduler
should find a date, time and location for the meeting (t) such that the date and time
is not in the exclusion set of any participant, the date and time is in the largest pos-
sible number of preference sets, and the location is the same as the largest possible
number of location requirements of the participants (s). In other words, the require-
ment is a desired relationship between a meeting request, participant availability and
scheduled meeting.

Having described the requirement, the problem world domains, and the relation-
ships among them, the requirement engineer can then focus on describing the be-
haviour of Meeting Scheduler (called the specification).

The main advantage of this structural modelling approach is that it allows the
requirements engineer to separate concerns initially, to check how they are related,
and to identify where the problem lies when the requirement is not satisfied.

Class Diagrams. A Class Diagram is a graph that shows relationships between
classes where a class may have one or more instances called objects. In RE, a class
is used to represent a type of real-world objects. A relationship links one or more
classes (a class can be linked to itself) and can also be characterised by attributes.
The multiplicity on one side of a relationship specifies the minimum and maximum
number of instances on this side that may be linked to an instance on the other side.

18 Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

Fig. 7 depicts an extract from a class diagram for the Meeting Scheduler exam-
ple. The main classes are Person, Meeting, and its sub-class ScheduledMeeting.
Name and Email are attributes of Person. Initiates is a relationship between Per-
son and Meeting specifying that a meeting is initiated by one and only one person
(multiplicity 1..1) and that a person can initiate 0 or multiple meetings (multiplicity
0..*). For each invited participant to a meeting, the Invitation relationship specifies
the preferred and excluded dates, which are attributes of this relationship.

Person

Name
E-mail

Meeting

Date range
Time range
Location

Initiates1..1 0..*

1..*

0..*

Invitation

Preferred dates
Excluded dates

1..1

1..*Schedules
Scheduled Meeting

Date

1..*

Participates

0..*

Fig. 7 A class diagram for the Meeting Scheduler example

Structural modelling techniques reveal relationships between constituents of the
system-to-be, and they are helpful when scoping the problem, decomposing it, and
reusing specifications. In addition to such static models, it is also useful to describe
the dynamics of the system using behavioural models.

3.2.3 Behavioural Modelling

This category of modelling techniques focuses on interactions between different
entities relevant to the system-to-be. They can be driven by the data exchanges be-
tween actors as in scenarios [2] or the events that show how an actor or actors
react/respond to external or internal events as in state machines [22].

Scenarios. A scenario is a description of a sequence of actions or events for a spe-
cific case of some generic task that the system needs to accomplish. A use case
is a description of a set of actions, including variants, that a system performs that
yield an observable result of value to actors. As such, a use case can be perceived as
a behavioural specification of the system-to-be. It specifies all of the relevant nor-
mal course actions, variants on these actions and, potentially important alternative
courses that inhibit the achievement of services and high-level system functions. In
one sense, scenarios can be viewed as instances of a use case. Use cases and scenar-
ios enable engineers to share an understanding of user needs, put them in context,
elicit requirements, and explore side effects.

In the Unified Modelling Language [96], sequence diagrams are used to represent
scenarios. Fig. 8 shows a sequence diagram for the meeting scheduler example. Each

Requirements Engineering 19

actor (Meeting Initiator, Meeting Scheduler, and Participant) is associated with
a timeline. Messages are shown as labelled arrows between timelines to describe
information exchange between actors. For example, to start the scheduling process,
the Meeting Initiator sends a MeetingRequest to the Meeting Scheduler, which
then sends it to the participant. The scheduler receives the ParticipantAvail mes-
sages and sends back a MeetingResponse to the Meeting Initiator, which then
makes the final decision about the date and transmits the message back to the Meet-
ing Scheduler. Finally, the Meeting Scheduler notifies the participants about the
final date for the scheduled meeting.

Meeting Initiator Meeting Scheduler Participant

MeetingRequest(DateRange, Location)

MeetingRequest(Date, Location)

ParticipantAvail(PrefDates, ExcluDate)

MeetingResponse(DateRange,Avail)

ScheduleMeeting(Date)
ScheduledMeeting(Date)

Fig. 8 A sequence diagram for the Meeting Scheduler example

State Machines. Sequence diagrams capture a particular interaction between actors.
A classical technique for specifying the dynamics, or behaviour, of a system as a set
of interactions is state machines. A state machine can be regarded as a directed graph
whose nodes represent the states of a system and edges represent events leading
to transit from one state to another. The start node indicates the initiation of an
execution, and a final state, if there is one, indicates a successful termination of an
execution. Fig. 9 depicts the behaviour of the Meeting Scheduler, which starts at
an Idle state, in which it can receive a MeetingRequest and progresses to reach a
terminating states the meeting is successfully scheduled.

Idle MeetingRequest
Received

MeetingRequest ParticipantInvitation AwaitingParticipant
Replies

ParticipantAvail

AwaitingInitiator
Confirmation

MeetingResponse

MeetingConfirmedMeetingScheduled
ScheduleMeetingParticipantNotification

Fig. 9 A state machine for the Meeting Scheduler example

20 Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

In safety-critical systems, it is often important to model and analyse requirements
using formal methods such as state machines [64]. Indeed, when requirements are
formally specified, formal verification techniques such as model checking (which
we will discuss in Section 3.3.2) can be used to ensure that the system, or more
precisely a model thereof, satisfies those requirements [69]. However, recent stud-
ies showed that despite several successful case studies for modelling and verifying
requirements formally, it remains underused in practice [78].

3.2.4 Goal Modelling

While structural modelling techniques focus on what constitutes the system-to-be,
and behavioural modelling techniques describes how its different actors interact,
goal modelling techniques focus on why, i.e., the rationale and objectives of the
different system components or actors as well as who is responsible for realising
them. In the following we will present two goal modelling techniques: KAOS, which
focuses on refinement relationships; and i*, which focuses on dependencies in socio-
technical systems.

KAOS. A KAOS goal model [58] shows how goals are refined into sub-goals and
associated domain properties. A KAOS goal is defined as a prescriptive statement
that the system should satisfy through the cooperation of agents such as humans,
devices and software. Goals may refer to services to be provided (functional goals)
or quality of service (soft goals). KAOS domain properties are descriptive state-
ments about the environment. Besides describing the contribution of sub-goals (and
associated domain properties) to the satisfaction of a goal, refinement links are also
used for the operationalisation of goals. In this case, refinement links map the goals
to operations, which are atomic tasks executed by the agents to satisfy those goals.
Conflict links are used to represent the case of goals that cannot be satisfied to-
gether. Keywords such as Achieve, Maintain, and Avoid are used to characterise
the intended behaviours of the goals and can guide their formal specification in
real-time temporal logic [76]. A KAOS requirement is defined as a goal under the
responsibility of a single software agent.

Fig. 10 depicts an extract of the meeting scheduler where the goal of eventually
getting a meeting scheduled Achieve[MeetingScheduled] is refined into a func-
tional sub-goal consisting in booking a room and a soft sub-goal involving max-
imising attendance. The satisfaction of the former assumes that the domain property
A room is available holds true and is assigned to the Initiator agent. The latter can
be hindered by an obstacle involving a participant never available. To mitigate the
risk posed by this obstacle, additional goals can be introduced.

KAOS defines a goal-oriented, model-based approach to RE which integrates
many views of the system, each of which captured using an appropriate model.
Traceability links are used to connect these different models. Besides the goal model
representing the intentional view of the system, KAOS defines the following mod-
els:

Requirements Engineering 21

Achieve
[MeetingScheduled]

A room is available

Initiator
Participant

never available

Achieve[RoomBooked] Maximise
Attendance

Domaine
Property

Refinement
Legend

Functional
Goal

Soft
Goal

ResponsibilityObstacle

Obstacle link

Fig. 10 A KAOS model for the Meeting Scheduler example

• An obstacle model that enables risk analysis of the goal model by eliciting the
obstacles that may obstruct the satisfaction of goals.

• An object model that captures the structural view of the system and is represented
using UML class diagrams.

• An agent model that defines the agents forming the systems and for which goals
they are responsible.

• An operation model represented using UML use cases.
• A behaviour model captures interaction between agents as well as the behaviour

of individual agents. UML sequence diagrams are used to represent interaction
between agents while a UML state diagram specifies the admissible behaviour of
a single individual agent.

i*. The i* modelling approach emphasises the who aspect, which is paramount for
modelling socio-technical systems [110]. The central notion in i* is the actor, who
has intentional attributes such as objectives, rationale and commitments. Besides
actors, the main i* elements are: goals, tasks, soft-goals and resources. A goal rep-
resents a condition or state of the world that can be achieved or not. Goals in i*
mean functional requirements that are either satisfied or not. A task represents one
particular way of attaining a goal. Tasks can be considered as activities that produce
changes in the world. In other words, tasks enact conditions and states of the world.
Resources are used in i* to model objects in the world. These objects can be physical
or informational. Soft-goals describe properties or constraints of the system being
modelled whose achievement cannot be defined as a binary property.

Dependencies between actors are defined within a Strategic Dependency (SD)
model. In particular, one actor (the depender) can rely on another actor (dependee)
to satisfy a goal or a quality, to achieve a task, and to make a resource available.
Fig. 11 illustrates an SD model between three actors of the Meeting Scheduler ex-
ample. The task dependency between Initiator and Meeting Scheduler indicates
that these two actors interact and collaborate to OrganiseMeeting. In other words,
the responsibility of performing the task is shared between these two actors. The
goal dependency between Meeting Scheduler and Participant means that the for-
mer relies on the latter for satisfying the goal AvailabilityCompleted and for doing

22 Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

so quickly. In other words, the satisfaction of that goal is the responsibility of Par-
ticipant.

Initiator

Availability

Completed

quickly

Availability

Completed

Meeting

Scheduler

Organise

Meeting

Participant	

Legend

Actor
Task
Goal

Soft-goal
 Dependency	

Fig. 11 An i* SD model for the Meeting Scheduler example

The Strategic Rationale (SR) model provides a finer-grained description by de-
tailing what each actor can achieve by itself. It includes three additional types of
links or relationships. Task decomposition links break down the completion of a task
into several other entities. Means-end links indicate alternative ways for achieving
a goal or a task. Contributes-to links indicate how satisfying a goal or performing a
task can contribute positively or negatively to a soft-goal. These links are included
within the boundary of one actor whereas dependency links connect different actors.

Fig. 12 depicts an i* SR model where Meeting Scheduler has its SR model re-
vealed. OrganiseMeeting is decomposed into three sub-tasks. To achieve Collec-
tAvailabilty, MeetingScheduler requires availability to be completed, and there-
fore relies on Participant to satisfy this pre-condition. MeetingScheduler is the
sole responsible for performing the task DetermineSchedule. Two alternative
methods can be used to notify participants about the schedule meeting: email or
phone. This is represented using two means-end links to the NotifyParticipant task.
As notification by email is quicker than through phone, contributes-to links are used
to express this positive and negative influence. The i* modelling language has been
compiled in the i* 2.0 standard [26].

3.2.5 Choosing and Combining Modelling Techniques

Requirements models can serve many purposes, facilitate discussion, document
agreement, and guide implementations. By focusing on a specific aspect, each mod-
elling technique provide an abstraction that is better suited for particular projects
or at particular stages of RE. For example, structural techniques such as problem
frames can help scope the problem at the early stages of the RE process, goal-
oriented techniques can be highly beneficial when the project has ill-defined ob-
jectives, and behavioural techniques with their finer-grained description are easily
understood by developers. Hence, Alexander [2] advocates the need for require-

Requirements Engineering 23

Initiator

Availability

Completed

quickly

Availability

Completed

Meeting

Scheduler

Participant	

Legend

Task

decomposition	

Organise

Meeting

Collect

Availability

Determine
Schedule

Notify
Participants

Notify
by Email

Notify by
Phone

Notification
sent quickly

Actor

boundary	

Means-End	 Contributes to	+/-

+ -

Fig. 12 An i* SR model for the Meeting Scheduler example

ments engineers to understand the benefits and assumptions of each technique and
combine them to fit the specificities of the software project at hand.

3.3 Assurance

Requirements assurance seeks to determine whether requirements satisfy the quali-
ties defined in Section 2.2 and to identify, report, analyse and fix defects in require-
ments. It involves both validation and verification (see Fig. 13). Validation checks
whether the elicited requirements reflect the real needs of the stakeholders and that
they are realistic (can be afforded, do not contradict laws of nature) and consistent
with domain constraints (existing interfaces and protocols). Verification of require-
ments analyses the coherence of requirements themselves. Verification against re-
quirements specification involves showing and proving that the implementation of
a software system conforms to its requirements specification. In the following, we
discuss techniques for validating and verifying requirements.

3.3.1 Validation

Traditionally, software engineering techniques tend to focus on code quality. Yet,
today more than ever software quality is defined by the users themselves. This is
for example reflected in the move from software quality standards such as ISO/IEC
9126 [47] to ISO/IEC 25022 [46], which put increasing emphasis on requirements
analysis, design, and testing. Ultimately, what determines the success of software is

24 Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

Stakeholder

Validation of
requirements

Verification of
requirements

Verification against
specifications

Environment Phenomena Machine Phenomena

Requirements (R)
Domain Properties(D)

Program (P)Specification (S)

Fig. 13 Requirements assurance

its acceptance by its users [28]. Criteria as to whether a software system fulfils all
basic promises, whether it fits the environment, produces no negative consequences,
or that it delights the users are decisive [28]. RE places an important focus on ensur-
ing that the requirements meet the expectations of the stakeholders from the start.
To do so, some techniques focus on checking each requirement individually, e.g.,
quality gateway, while others regard the requirement specification as a whole, e.g.,
walkthroughs.

Quality Gateway. The Quality Gateway [95] defines a set of tests that every re-
quirement specified using the Volere template must pass. The goal of the quality
gateway is to prevent incorrect requirements from passing into the design and im-
plementation. The tests are devised to make sure that each requirement is an accurate
statement of the business needs. There is no priority between the tests, nor is there
an order in which they are applied. In particular, each requirement must have (i) a
unique identifier to be traceable, (ii) a fit criterion that can be used to check whether
a given solution meets the requirement, (iii) a rationale to justify its existence in
the first place, and (iv) a customer satisfaction value to determine its value to the
stakeholders. Each requirement is relevant and has no reference to specific technol-
ogy which limits the number of solutions. Another test consists in verifying that all
essential terms within the Volere template are defined and used consistently.

Walkthroughs. Walkthroughs are inspection meetings where the requirements en-
gineers review the specified requirements with stakeholders to discover errors,
omissions, exceptions, and additional requirements [3]. Walkthroughs can take two
forms: (i) free discussion between the participants, or (ii) structured discussions us-
ing checklists to guide the detection of defects, or using scenarios and animations
to facilitate understanding.

3.3.2 Verification

Verification aims to check that the requirements meet some properties (e.g., consis-
tency) or that the software specification meets the requirements in the given domain.

Requirements Engineering 25

It can be formal as is the case with model checking or semi-formal as is the case
with argumentation.

Model Checking. Model checking is an automated formal verification technique
for assessing whether a model of a system satisfies a desired property [22]. Model
checking focuses on the behaviour of software systems, which is rigorously anal-
ysed in order to reveal potential inconsistencies, ambiguities, and incompleteness.
In other words, model checking helps verifying the absence of execution errors in
software systems. Once potential execution errors are detected, they can be solved
either by eliminating the interactions leading to the errors or by introducing an inter-
mediary software such that the composed behaviour satisfies the desired property. In
its basic form, the model of a system is given as a state machine and the property to
verify specified in temporal logic. A model checker then exhaustively explores the
state space, that is the set of all reachable states. When a state in which the property
is not valid is reachable, the path to this state is given as a counterexample, which is
then used to correct the error.

Argumentation. Formal verification is often insufficient in capturing various as-
pects of a practical assurance process. First of all, facts in our knowledge are not
always complete and consistent, and yet they may still be useful to be able to make
limited inferences. Secondly, new knowledge may be discovered which invalidates
what was previously known and yet it may be useful not to purge the old knowl-
edge. Thirdly, rules of inference that are not entirely sound, and perhaps domain-
dependent, may provide useful knowledge. In addressing these issues, argumenta-
tion approaches have emerged as a form of reasoning that encompasses a range of
non-classical logics [31], and is thought to be closer to human cognition [12].

Structurally an argument contains two essential parts: (i) a claim, a conclusion to
be reached, and (ii) grounds, a set of assumptions made that support the conclusion
reached. A claim is usually a true/false statement, and assumptions may contain
different kinds of statements, facts, expert opinions, physical measurements and so
on. There are two kinds of relationships between arguments: an argument rebuts an-
other argument if they make contradicting claims, and argument undercuts another
argument if the former contradicts some of the assumptions of the latter [12]. This
structure lends itself very well to visualisation as a graph, and to capturing dialogues
in knowledge discovery processes.

Argumentation approaches have been used in a number of application areas in-
cluding safety engineering. Kelly and Weaver [55] propose a graphical notation for
presenting “safety cases” as an argument. The aim of a safety case is to present
how all available evidence show that a system’s operation is safe within a certain
context, which can naturally be represented as an argument. In their Goal Structur-
ing Notation (GSN) notation, claims are represented as goals, and assumptions are
categorised into different elements including solution, strategy, and context. Argu-
mentation approaches have also been used in security engineering in order to make
security engineers think clearly about the relationship between the security mea-
sures and the security objectives they aim to achieve [40]. For example, Alice might
claim that her email account is secure (node A in Fig. 14) because she uses long

26 Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

and complex passwords for an email account (node B and black arrow to A). It is
easy to undercut the argument by saying that an attacker will use a phishing attack
to steal the password (node C and red arrow to the black arrow). In the security ar-
gumentation method, this counterargument could lead to the introduction of secure
measures against phishing attacks.

A

B
C

Legend

A Claim: Alice’s mail account secure

B
Ground: Alice uses long and
complex passwords

C
Claim: Attacker uses phishing
to steal passwords

Support

Undercut

Fig. 14 A simple argument structure

3.4 Management and Evolution

This section explores techniques for managing conflicts and change in requirements.
We start by discussing techniques for negotiating and prioritizing requirements be-
fore focusing on agile methods, reuse of domain knowledge, requirements traceabil-
ity and adaptation.

3.4.1 Negotiation & Prioritization

RE typically involves multiple stakeholders with different viewpoints and expec-
tations, which could have conflicting requirements. Such requirements need to be
identified and resolved to the extent possible before the system is implemented.
Consensus building through negotiation among the stakeholders and prioritization
of requirements are two main techniques for managing conflicting requirements.

Negotiation. Stakeholders, including users, customers, managers, domain experts,
and developers, have different expectations and interests in a software project. They
may be unsure of what they can expect from the new system. Requirements nego-
tiation aims to make informed decisions and trade-offs that would satisfy the rel-
evant stakeholders. WinWin [15] is a requirements negotiation technique whereby
the stakeholders collaboratively review, brainstorm, and agree on requirement based
on defined win conditions. A win condition represents stakeholders’ goals. While
conflicting win conditions exist, stakeholders invent options for mutual gain and ex-

Requirements Engineering 27

plore the option trade-offs. Options are iterated and turned into agreements when
all stakeholders concur. A glossary of terms ensures that the stakeholders have a
common understanding of important terms. A WinWin equilibrium is reached when
stakeholders agree on all win conditions.

Prioritization. Satisfying all requirements may be infeasible given budget and
schedule constraints, and as a result requirements prioritization may become nec-
essary. Prioritized requirements make it easier to allocate resources and plan an
incremental development process as well as to re-plan the project when new con-
straints such as unanticipated delays or budget restrictions arise. MoSCoW (see Sec-
tion 3.2.1) is a simple prioritization technique for categorising requirements within
four groups: Must, Should, Could, and Won’t. However, it is ambiguous and as-
sumes a shared understanding among stakeholders. Karlsson and Ryan [54] pro-
pose to compare requirements pair-wise and use AHP (Analytic Hierarchy Process)
to determine their relative value according to customers or users. Engineers then
evaluate the cost of implementing each requirement. Finally, a cost-value diagram
shows how these two criteria are related in order to guide the selection of priori-
ties. To determine the value of requirements, several criteria can be used, including
business value, cost, customer satisfaction [95] or risk [111] as estimated by domain
experts or stakeholders. The challenge is however to agree on the criteria used for
prioritization [93].

3.4.2 Agile Methods

Agile methods refer to a set of software development methods that encourage con-
tinuous collaboration with the stakeholders as well as frequent and incremental de-
livery of software. Rather than planning and documenting the software implemen-
tation; the requirements, the design, and the implementation emerge simultaneously
and co-evolve. This section describes the characteristics of agile methods as they
relate to RE activities.

Elicitation. Agile methods promote face-to-face communication with customers
over written specifications of requirements. As a result, agile methods assume that
customers’ needs can be captured when there is effective communication between
customers and developers [92]. Furthermore, domain knowledge is acquired through
iterative development cycles, leading to the emergence of requirements together
with the design.

Modelling and Analysis. Requirements are often expressed in agile development
methods with user stories. User stories are designed to be simple and small. Each
user story describes a simple requirement from a user’s perspective in the form
of “As a [role], I want [functionality] so that [rationale]”. Measurability,
which is one of the main quality properties of requirements are hardly specified
within user stories. Nevertheless, acceptance tests can be used to assess the imple-
mentation of a user story. Many quality requirements are difficult to express as user
stories, which are often designed to be implemented in a single iteration [92].

28 Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

Assurance. Agile methods focus more on requirements validation rather than ver-
ification as there is no formal modelling of requirements. Agile methods promote
frequent review meetings where developers demonstrate given functionality as well
as acceptance testing to evaluate, using a yes/no test, whether the user story is cor-
rectly implemented.

Management and Evolution. Agile teams prioritize requirements for each devel-
opment cycle rather than once for the entire project. One consequence is that re-
quirements are prioritized more on business value rather than other criteria such
as the need for a dependable architecture [92]. Agile methods are responsive to
requirements change during development and are therefore well-suited to projects
with uncertain and volatile requirements.

3.4.3 Reuse

Software systems are seldom designed from scratch and many systems have a great
deal of features in common. In the following we discuss how requirements can be
reused across software development projects. We then discuss the role and chal-
lenges for RE when software systems are developed by reusing other software com-
ponents.

Requirements Reuse. Jackson [50] highlights that most software engineering
projects follow normal design in which incremental improvements are made to
well understood successful existing systems. As such, many systems are likely to
have similar requirements. One technique for transferring requirements knowledge
across projects is using software requirements patterns to guide the formulation of
requirements [109]. A requirement pattern is applied at the level of an individual
requirement and guides the specifications of a single requirement at a time. It pro-
vides a template for the specification of the requirement together with examples of
requirements of the same type, suggests other requirements that usually follow on
from this type of requirements, and gives hints to test or even implement this type
of requirements.

In contrast to normal design, radical design involves unfamiliar requirements that
are difficult to specify. To mitigate some of the risks associated with such radical de-
sign, agile methods introduce development cycles that continually build prototypes
that help stakeholders and developers understand the problem domain.

Requirements for Reuse. Modern software systems are increasingly built by as-
sembling, and re-assembling existing software components, which are possibly dis-
tributed among many devices. In this context, requirements play an essential role
when evaluating, comparing, and deciding the software components to reuse. We
now discuss the role of RE when reuse takes place in-house across related software
systems (Software Product Lines) or externally with increasing level of autonomy
from Commercial-Off-The-Shelf (COTS) products to service-oriented systems, to
systems of systems.

Requirements Engineering 29

• Software Product Lines. A software product line defines a set of software prod-
ucts that share an important set of functionalities called features. The variation
in features aims to satisfy the needs of different set of customers or markets.
As a result, there exists a set of core requirements associated with the common
features and additional requirements specific to individual products, representing
their variable features. Moon et al. [82] propose an approach to collect and anal-
yse domain properties and identify atomic requirements, described through use
cases, and rules for their composition. Tun et al. [104] propose to use problem
frames to relate requirements and features, which facilitates the configuration of
products that systematically satisfy given requirements.

• COTS. Commercial-Off-The-Shelf products are software systems purchased from
a software vendor and either used as is or configured and customised to fit users’
needs. Hence, the ownership of the software system-to-be is shared and the chal-
lenge shifted from defining requirements for developing a software system to
selecting and integrating the appropriate COTS products [6]. The selection aims
to match and find the closest fit between the requirements specifications and the
specification of the COTS. The integration aims to find the wrappers or adaptors
that compensate for the differences between the requirements specifications and
the specification of the selected COTS.

• Service-Oriented Systems. Service-oriented systems rely on an abstraction that
facilitates the development of distributed systems despite the heterogeneity of the
underlying infrastructure, that is middleware. Indeed, software systems progres-
sively evolved from fixed, static, and centralised to adaptable, dynamic, and dis-
tributed systems [84]. As a result, there was an increasing demand for methods,
techniques, and tools to facilitate the integration of different systems. For RE,
this means a shift from specifying requirements for developing a bespoke system
or selecting a COTS products from one vendor, to the discovery and composi-
tion of multiple services to satisfy the requirements of the system-to-be. A major
challenge for discovery was syntactic mismatches between the specification of
services and the requirements. Indeed, as the components and requirements are
specified independently, the vocabulary and assumptions can be different. For
composition, the challenges were related to interdependencies between service
and behavioural mismatches with requirements. Semantic Web Services, which
provide a richer and more precise way to describe the services through the use
of knowledge representation languages and ontologies, were then used to enable
the selection and composition of the services even in the case of syntactic and
behavioural differences [89].

• Systems of Systems. These are systems where constituent components are au-
tonomous systems that are designed and implemented independently and do not
obey any central control or administration. Examples include the military sys-
tems of different countries [62], or several transportation companies within a
city [101]. There are often real incentives for these autonomous systems to work
together, e.g., to allow international cooperation during conflicts, or ensure users
can commute. The RE challenges stem from the fact that each system may have
its own requirements and assumptions but their collaboration often needs to sat-

30 Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

isfy other (global) requirements [65] for example by managing the inconsistent
and conflicting requirements of these autonomous systems [105].

3.4.4 Adaptation

Increasingly software systems are used in environments with highly dynamic struc-
tures and properties. For example, a smart home may have several devices: these
devices may move around the house, in and out of the house, and they could be
in any of a number of states, some of which cannot be predicted until the system
becomes operational. A number of phrases are used to describe such systems, in-
clude: “self-adaptive systems” [21] and “context-aware” systems [29]. Understand-
ing and controlling how these systems should behave in such an environment gives
an additional dimension to the challenges of RE, especially when their performance,
security, usability requirements are considered.

Research in this area is still maturing, but a few fundamentals are becoming
clear [100]. First of all, there is a need to describe requirements for adaptation
quite precisely. A number of proposals have been made to this end including: (i)
the concept of “requirements reflection” which treats the requirement model as
an executable model whose states reflect the state of the running software [100],
(ii) the notion of “awareness-requirements” which considers the extent to which
other requirements should be satisfied [102], (iii) numerical quantification of re-
quirements so that their parameters can be estimated and updated at runtime [34],
and (iv) rewriting of requirements to account for uncertainty in the environment so
that requirements are not violated when the system encounters unexpected condi-
tions [107].

Secondly, self-adaptive systems not only have to implement some requirements,
but they also have to monitor whether their actions satisfy or violate require-
ments [35], often by means of a feedback loop in the environment [36]. This leads
to the questions about which parts of the environment need to be monitored, how to
monitor them, and how to infer requirement satisfaction from the recorded data.

Thirdly, self-adaptive systems have to relate their requirements to the system ar-
chitecture at runtime. There are a number of mechanisms for doing this, including (i)
by means of switching the behaviour in response to monitored changes in the envi-
ronment [99], (ii) by exploiting a layered architecture in order to identify alternative
ways of achieving goals when obstacles are encountered, and (iii) by reconfiguring
components within the system architecture [56]. Jureta et al. [52] revisit Jackson
and Zave to deal with self-adaptive systems by proposing configurable specifica-
tions that can be associated with different set of requirements. At runtime according
to the environment context, different specification can be configured which satis-
fies predefined set of requirements. Yet, this solution require some knowledge of all
potential sets of requirements and associated specification rather than automatically
reacting to changes in the environment. Controller synthesis can also be used to
generate the software that satisfies requirements at runtime through decomposition

Requirements Engineering 31

and assignment to multiple agents [63] or by composing existing software compo-
nents [10].

3.4.5 Traceability

Software evolution is inevitable and we must prepare for change from the very be-
ginning of the project and throughout software lifetime. Traceability management
is a necessary ingredient for this process. Traceability is concerned with the rela-
tionships between requirements, their sources and the system design as illustrated
in Fig. 15. Hence, different artefacts can be traced at varying levels of granularity.
The overall objective of traceability is to support consistency maintenance in the
presence of change by ensuring that the impact of changes can be located quickly
for assessment and propagation. In addition, in safety-critical systems, traceability
supports approval and certification by establishing links between the necessary re-
quirements and the software complying with them. The main goal of traceability
is that it is requirements-driven [23], meaning that traceability must support stake-
holders needs. Challenges for RE include tools for creating, using, and managing
traceability links between relevant requirements, stakeholders and other software
artefacts across projects regardless of the software development process [37]. These
challenges are made even more difficult when non-functional requirements that of-
ten cross-cut multiple components and features are considered [81].

Architecture

Design

Tests

Requirements
Stakeholders

Requirements Traceability

Software Traceability

System Traceability

Fig. 15 Requirements, Software, and System Traceability

32 Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

3.5 RE for Cross-Cutting Properties

Non-functional properties (such as dependability and security) properties affect the
behaviour of multiple components in the system. These properties are both impor-
tant (as they are critical to success [38]) and challenging as they require holistic ap-
proaches to elicit, model, assure, and maintain non-functional requirements. These
properties are typically related to system dependability, security, and user privacy.
In this section presents RE efforts for addressing those relating to system depend-
ability, security, and user privacy.

Dependability. The notion of dependability encompasses a range of critical sys-
tem properties. Among the researchers in this area, a consensus has emerged as to
the main concepts and dependability of properties [7]. From RE point of view, the
taxonomy and characterisation of dependablility provide a way of conceptualising
relationships between requirements and how they impact the system architecture.
Avizienis et al. [7] propose a framework in which dependability and security are
defined in terms of attributes, threats and means. They identify the following six
attributes as being the core properties of dependable systems:

• Availability: correct system behaviour is provided to the user whenever de-
manded.

• Reliability: correct system behaviour continues to be available to the user.
• Safety: system behaviour has no bad consequences on the user and the environ-

ment.
• Confidentiality: No unauthorised disclosure of information.
• Integrity: No modification of data without authorisation or in an undetectable

manner.
• Maintainability: System behaviour can be changed and repaired.

Confidentiality, Integrity and Availability are collectively known as the security
attributes.

Avizienis et al. identify three kinds of threats to dependability and security:

• Fault: A suspected or confirmed cause of an error.
• Error: A deviation from the designed system behaviour.
• Failure: A system behaviour that does not meet the user expectation.

There are different ways of managing threats and they can be grouped as follows:

• Fault Prevention: methods for preventing the introduction or occurrence of faults
• Fault Tolerance: methods for avoiding failures in the presence of faults
• Fault Removal: methods for reducing or eliminating the occurrence of faults
• Fault Forecasting: methods for estimating the occurrence and consequence of

faults

From the RE point of view, the dependability framework is valuable because a
systematic consideration of the dependability requirements could have a significant

Requirements Engineering 33

impact on the system architecture and its implementation. For example, system de-
pendability can be improved by ensuring that critical requirements are satisfied by
a small subset of components in the system [53].

Security. In recent years, the security of software systems has come under the spot-
light. There are two main ways in which the term ‘security’ is used in the con-
text of RE. In a formal sense, security tends to be a triple of properties, known
as CIA properties: Confidentiality, Integrity and Availablity of information (some-
times called information security). In a broader sense, the term security is used to
capture the need for protecting valuable assets from harm [41] (sometimes called
‘system security’). In RE approaches, analysis often begins with requirements for
system security, and many of them are often refined into CIA properties. Several RE
approaches to system security have been surveyed by Nhlabatsi et al. [83].

Rushby [97] suggests that it is difficult to write security requirements because
some security properties do not match with behavioural properties that can be ex-
pressed using formal methods, and also because security requirements are counter-
factual (i.e. you do not know what the security requirements are until the system is
compromised by an attacker).

One way to think about security requirements is by looking at the system from
the point of view of an attacker: What would an attacker want to be able to do with
the system? Perhaps they want to steal the passwords stored on the server. Require-
ments of an attacker are called negative requirements, or anti-requirements [25].
Once identified, the software engineer has to design the system that prevents the
anti-requirements from being satisfied. The idea has been extended by consider-
ing various patterns of anti-requirements, known as “abuse frames” [67]. In goal-
oriented modelling, anti-requirements are called anti-goals, and the anti-goals can
be refined in order to identify obstacles to security goals, and generate countermea-
sures [57] . In a similar vein, a systematic process to analyse security requirements
in a social and organisational setting has been proposed [68]. Complementing this
attacker-focused approaches to engineering security requirements is the notion of
defence in depth, which calls for ever more detailed analysis of threats and defence
mechanisms. This questioning attitude to security is well supported by argumenta-
tion frameworks. In one line of work, formal and semi-formal argumentation ap-
proaches have been used to reason about system security [41].

Privacy. For software systems dealing with personal and private information, there
are growing concerns for the protection of privacy. In some application areas such
as health and medicine, there are legal and regulatory frameworks for respecting
privacy. There are systematic approaches for obtaining requirements from existing
legal texts [18], and for designing designing adaptive privacy [88].

34 Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

4 Future Challenges

Why should I bother writing requirements? Engineers focus on building
things. Requirements are dead!
No, RE isn’t only about documents.
Well, anyway, there isn’t any real business using goal models!
Would you use RE for driveless car?

These statements exemplify the current debate around requirements engineering.
In its early years, requirements engineering was about the importance of specifying
requirements, focusing on the ‘What’ instead of the ‘How’. It then moved to sys-
tematic processes and methods, focusing on the ‘Why’. It has then grown steadily
over the years. The achievements were reflected in requirements engineering being
part of several software engineering standards and processes. Yet, the essence of RE
remains the same: it involves good understanding of problems [71], which includes
analysing the domain, communicating with stakeholders, and preparing for system
evolution. So what have changed in those years?

On the one hand, techniques such as machine learning, automated composi-
tions, creativity disrupt the traditional models of software development and call for
quicker, if not immediate, response from requirements engineering. On the other
hand, the social underpinning and the increasing reliance on software systems for
every aspect of our life, call for better methods to understand the impact and impli-
cations of software solutions on the well-being of individuals and society as a whole.
For example, online social networks with their privacy implications and their soci-
etal, legal, and ethical impact require some understanding of the domain in which
the software operate.

In addition, a number of pressing global problems such as climate change and
sustainability engineering as well as increasingly important domains such as user-
centred computing, and other inter and cross disciplinary problems challenge exist-
ing processes and techniques. Yet, the fundamentals of RE are likely to be the same.
The intrinsic ability of RE to deal with conflicts, negotiation, and its traditional
focus on tackling those wicked problems is highly beneficial. We now summarise
some trends influencing the evolution of requirements engineering as a discipline.

4.1 Sustainability and Global Societal Challenges

Software is now evolving to encompass a world where the boundary between the
machine and human disappears, merging wearable with the Internet of Things into
‘a digital universe of people, places and things’ [1]. This ubiquitous connectiv-
ity and digitisation opens up endless opportunities for addressing pressing societal
problems defined by the United Nations as Sustainable Development Goals1, e.g.,

1 http://www.un.org/sustainabledevelopment/

http://www.un.org/sustainabledevelopment/

Requirements Engineering 35

eradicating hunger; ensuring health and well-being; and building resilient infras-
tructure and fostering innovation. These problems are wicked problems that RE has
long aspired to address [32] but they still challenge existing RE techniques and pro-
cesses [39]. First, the multi- and cross-disciplinary nature of these problems makes it
hard to understand them, let alone to specify them. In addition, while collaboration
between systems and people is important, stakeholders may have radically different
views when addressing them. As each of those problems is novel and unique, they
involve radical design and thereby require dealing with failures to adapt and adjust
solutions iteratively [50].

Multidisciplinarity. The need for multidisciplinary training for requirements en-
gineers has been advocated since 2000s [87]. Agile methods also promote multi-
functional teams [61]. Furthermore, Robertson and Maiden [73] highlight the need
to be creative during the RE process. But nowadays, requirements engineers need
to become global problem solvers with the ability to communicate, reflect, and me-
diate between domain experts and software engineers as well as to invent solutions.
Early empirical evidence is given in the domain of sustainability as to the role of
the RE mindset and its inherent focus on considering multiple perspectives to build
shared understanding in an adaptive, responsive, and iterative manner [8].

Collaboration. Collaboration between software engineering teams to find software
solutions has attracted a lot of interest [43]. So has the collaboration between soft-
ware components for adaptation and interoperability [10]. Software ecosystems that
compose software platforms as well as communities of developers, domain experts
and users are becoming increasingly common [16]. The intentional aspects of those
ecosystems need to be well understood in order for the impact of collaboration and
interconnection to be specified rather than just incurred. The requirements for emer-
gent collaborations between people and technology, and the theory and processes
for understanding them are still to be defined.

Failure. In extremely complex systems, failure is inevitable [66]. In order to make
systems more resilient, it is important to be able to anticipate, inject, and control
errors so that the side effects that are not necessary foreseen at the design time are
better understood [98]. But embracing failure necessitate learning from it and dis-
tilling appropriate knowledge into the design, which is often at the heart of RE [50].

4.2 Artificial Intelligence

The research discipline of RE has focused on capturing lessons, developing strate-
gies and techniques, and building tools to assist with the creation of software sys-
tems. Many of the related tasks, from scoping to operationalisation, were human-
driven but increasingly Artificial Intelligence (AI) techniques are able to assist with
those tasks [91, 9]. For example, machine learning can be viewed as a tool for build-
ing a system inductively from a set of input-output examples, where specifications
of such a system are given as training data sets [79]. In this context, requirements

36 Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

are used to guide the selection of training data. Without having this selection inline
with stakeholders’ needs, the learnt system may diverge from their initial purpose,
as it happened with Microsoft Tay chatbot [106]. Tay was a machine learning project
designed for user engagement but which has learnt inappropriate language and com-
mentary due to the data used in the learning process. In addition, transparency re-
quirements [44] can also play an important role in increasing users confidence in
the system by explaining the decision made with the software system.

4.3 Exemplars and Artefacts

In their 2007 survey paper, Cheng and Atlee [20] highlighted the need for the RE
community to be proactive in identifying the new computing challenges. Ten years
latter, RE still focuses on conceptual frameworks and reflects rather than leads and
invents new application domains. Evidence is somehow given by the lack of exten-
sive RE benchmarks and model problems (besides the meeting scheduler [60], lift
management system [77], or railroad crossing control [42]) despite some success-
ful case studies in the domain of critical systems such as aviation [64] and space
exploration [70]. Yet as discussed in this section, RE can play an immense role
in leading the way for understanding and eliciting alternative solutions for solving
global societal challenges. The discipline of RE may need to move from reflection
to disruption [33].

5 Conclusion

Requirements are inherent to any software system whether or not they are made
explicit during the development. During its early days, RE research focused on un-
derstanding the nature of requirements, relating RE to other software engineering
activities, and setting out the requirements processes. RE was then concerned with
defining the essential qualities of requirements, which would make them easy to
analyse and to change by developers. Later on a specific focus was given to partic-
ular activities within requirements engineering, such as modelling, assurance, and
managing change. In the context of evolution, reuse and adaptation have become ac-
tive areas research. Agile and distributed software development environments have
challenged the traditional techniques for specifying and documenting requirements.
Although the tools for writing, documenting, specifying requirements may differ,
the principles of RE relating to domain understanding, creativity, retrospection are
still important, and will probably remain so. With the complexity and ubiquity of
software in society, the interplay between different technical, economical, and po-
litical issues calls for the kinds of tools and techniques developed by RE research.

Requirements Engineering 37

References

1. Abowd, G.D.: Beyond weiser: From ubiquitous to collective computing. IEEE Computer
49(1), 17–23 (2016). DOI 10.1109/MC.2016.22. URL http://dx.doi.org/10.
1109/MC.2016.22

2. Alexander, I.: Gore, sore, or what? IEEE Software 28(1), 8–10 (2011). DOI 10.1109/MS.
2011.7. URL http://dx.doi.org/10.1109/MS.2011.7

3. Alexander, I.F., Maiden, N.: Scenarios, Stories, Use Cases: Through the Systems Develop-
ment Life-Cycle. John Wiley & Sons (2005)

4. Alexander, I.F., Stevens, R.: Writing Better Requirements. Pearson Education (2002)
5. Altran: Reveal tm. URL http://intelligent-systems.altran.com/fr/

technologies/systems-engineering/revealtm.html
6. Alves, C.F., Finkelstein, A.: Challenges in COTS decision-making: a goal-driven require-

ments engineering perspective. In: Proceedings of the 14th international conference on Soft-
ware engineering and knowledge engineering, SEKE 2002, Ischia, Italy, July 15-19, 2002,
pp. 789–794 (2002). DOI 10.1145/568760.568894. URL http://doi.acm.org/10.
1145/568760.568894

7. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of de-
pendable and secure computing. IEEE Transactions on Dependable and Secure Computing
1(1), 11–33 (2004). DOI 10.1109/TDSC.2004.2

8. Becker, C., Betz, S., Chitchyan, R., Duboc, L., Easterbrook, S.M., Penzenstadler, B., Seyff,
N., Venters, C.C.: Requirements: The key to sustainability. IEEE Software 33(1), 56–
65 (2016). DOI 10.1109/MS.2015.158. URL http://dx.doi.org/10.1109/MS.
2015.158

9. Bencomo, N., Cleland-Huang, J., Guo, J., Harrison, R. (eds.): IEEE 1st International Work-
shop on Artificial Intelligence for Requirements Engineering, AIRE 2014, 26 August, 2014,
Karlskrona, Sweden. IEEE Computer Society (2014). URL http://ieeexplore.
ieee.org/xpl/mostRecentIssue.jsp?punumber=6887463

10. Bennaceur, A., Nuseibeh, B.: The many facets of mediation: A requirements-driven approach
for trading-off mediation solutions. In: I. Mistrík, N. Ali, J. Grundy, R. Kazman, B. Schmerl
(eds.) Managing trade-offs in adaptable software architectures. Elsevier (2016). URL http:
//oro.open.ac.uk/45253/

11. Berander, P., Andrews, A.: Requirements prioritization. In: A. Aurum, C. Wohlin (eds.)
Engineering and Managing Software Requirements, pp. 69–94. Springer Berlin Heidelberg
(2005)

12. Besnard, P., Hunter, A.: Elements of Argumentation. The MIT Press (2008)
13. Boehm, B.W.: Verifying and validating software requirements and design specifications.

IEEE Software 1(1), 75–88 (1984). DOI 10.1109/MS.1984.233702. URL http://dx.
doi.org/10.1109/MS.1984.233702

14. Boehm, B.W.: A spiral model of software development and enhancement. IEEE Computer
21(5), 61–72 (1988). DOI 10.1109/2.59. URL http://dx.doi.org/10.1109/2.59

15. Boehm, B.W., Grünbacher, P., Briggs, R.O.: Developing groupware for requirements negoti-
ation: Lessons learned. IEEE Software 18(3), 46–55 (2001). DOI 10.1109/52.922725. URL
http://dx.doi.org/10.1109/52.922725

16. Bosch, J.: Speed, data, and ecosystems: The future of software engineering. IEEE Soft-
ware 33(1), 82–88 (2016). DOI 10.1109/MS.2016.14. URL http://dx.doi.org/10.
1109/MS.2016.14

17. Bradner, S.: Key words for use in RFCs to indicate requirement levels (1997). URL http:
//www.ietf.org/rfc/rfc2119.txt

18. Breaux, T., Antón, A.: Analyzing regulatory rules for privacy and security requirements.
IEEE Transactions on Software Engineering 34(1), 5–20 (2008). DOI 10.1109/TSE.2007.
70746

19. Brooks Jr., F.P.: No silver bullet essence and accidents of software engineering. Computer
20(4), 10–19 (1987). DOI 10.1109/MC.1987.1663532. URL http://dx.doi.org/10.
1109/MC.1987.1663532

http://dx.doi.org/10.1109/MC.2016.22
http://dx.doi.org/10.1109/MC.2016.22
http://dx.doi.org/10.1109/MS.2011.7
http://intelligent-systems.altran.com/fr/technologies/systems-engineering/revealtm.html
http://intelligent-systems.altran.com/fr/technologies/systems-engineering/revealtm.html
http://doi.acm.org/10.1145/568760.568894
http://doi.acm.org/10.1145/568760.568894
http://dx.doi.org/10.1109/MS.2015.158
http://dx.doi.org/10.1109/MS.2015.158
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6887463
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6887463
http://oro.open.ac.uk/45253/
http://oro.open.ac.uk/45253/
http://dx.doi.org/10.1109/MS.1984.233702
http://dx.doi.org/10.1109/MS.1984.233702
http://dx.doi.org/10.1109/2.59
http://dx.doi.org/10.1109/52.922725
http://dx.doi.org/10.1109/MS.2016.14
http://dx.doi.org/10.1109/MS.2016.14
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://dx.doi.org/10.1109/MC.1987.1663532
http://dx.doi.org/10.1109/MC.1987.1663532

38 Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

20. Cheng, B.H.C., Atlee, J.M.: Research directions in requirements engineering. In: Proc. of
the Workshop on the Future of Software Engineering, FOSE, pp. 285–303 (2007)

21. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker, B.,
Bencomo, N., Brun, Y., Cukic, B., Serugendo, G.D.M., Dustdar, S., Finkelstein, A., Gacek,
C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M., Kramer, J., Litoiu, M., Malek, S., Mi-
randola, R., Müller, H.A., Park, S., Shaw, M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.:
Software engineering for self-adaptive systems: A research roadmap. In: Software Engineer-
ing for Self-Adaptive Systems [outcome of a Dagstuhl Seminar], pp. 1–26 (2009)

22. Clarke, E.M., Wing, J.M.: Formal methods: State of the art and future directions. ACM
Computing Surveys 28(4), 626–643 (1996)

23. Cleland-Huang, J., Gotel, O., Hayes, J.H., Mäder, P., Zisman, A.: Software traceability:
trends and future directions. In: Proc. of the Future of Software Engineering, FOSE@ICSE,
pp. 55–69 (2014). DOI 10.1145/2593882.2593891. URL http://doi.acm.org/10.
1145/2593882.2593891

24. Cleland-Huang, J., Gotel, O., Zisman, A. (eds.): Software and Systems Traceability. Springer
(2012). DOI 10.1007/978-1-4471-2239-5. URL http://dx.doi.org/10.1007/
978-1-4471-2239-5

25. Crook, R., Ince, D.C., Lin, L., Nuseibeh, B.: Security requirements engineering: When anti-
requirements hit the fan. In: 10th Anniversary IEEE Joint International Conference on Re-
quirements Engineering (RE 2002), 9-13 September 2002, Essen, Germany, pp. 203–205.
IEEE Computer Society (2002)

26. Dalpiaz, F., Franch, X., Horkoff, J.: istar 2.0 language guide. CoRR abs/1605.07767 (2016).
URL http://arxiv.org/abs/1605.07767

27. Davis, A.M., Tubío, Ó.D., Hickey, A.M., Juzgado, N.J., Moreno, A.M.: Effectiveness of
requirements elicitation techniques: Empirical results derived from a systematic review. In:
Proc. of the 14th IEEE International Conference on Requirements Engineering, RE, pp. 176–
185 (2006). DOI 10.1109/RE.2006.17. URL http://dx.doi.org/10.1109/RE.
2006.17

28. Denning, P.J.: Software quality. Commun. ACM 59(9), 23–25 (2016). DOI 10.1145/
2971327. URL http://doi.acm.org/10.1145/2971327

29. Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for supporting
the rapid prototyping of context-aware applications. Hum.-Comput. Interact. 16(2), 97–166
(2001)

30. Dieste, O., Juzgado, N.J.: Systematic review and aggregation of empirical studies on elici-
tation techniques. IEEE Trans. Software Eng. 37(2), 283–304 (2011). DOI 10.1109/TSE.
2010.33. URL http://dx.doi.org/10.1109/TSE.2010.33

31. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artificial Intelligence 77(2),
321 – 357 (1995). DOI http://dx.doi.org/10.1016/0004-3702(94)00041-X. URL http:
//www.sciencedirect.com/science/article/pii/000437029400041X

32. Easterbrook, S.: What is requirements engineering? july 2004. URL http://www.cs.
toronto.edu/~sme/papers/2004/FoRE-chapter01-v7.pdf

33. Ebert, C., Duarte, C.H.C.: Requirements engineering for the digital transformation: Industry
panel. In: 2016 IEEE 24th International Requirements Engineering Conference (RE), pp.
4–5 (2016). DOI 10.1109/RE.2016.21

34. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-time param-
eter adaptation. In: Proceedings of the 31st International Conference on Software Engineer-
ing, ICSE ’09, pp. 111–121. IEEE Computer Society, Washington, DC, USA (2009). DOI
10.1109/ICSE.2009.5070513. URL http://dx.doi.org/10.1109/ICSE.2009.
5070513

35. Fickas, S., Feather, M.S.: Requirements monitoring in dynamic environments. In: Require-
ments Engineering, 1995., Proceedings of the Second IEEE International Symposium on, pp.
140–147 (1995). DOI 10.1109/ISRE.1995.512555

36. Filieri, A., Maggio, M., Angelopoulos, K., D’Ippolito, N., Gerostathopoulos, I., Hempel,
A.B., Hoffmann, H., Jamshidi, P., Kalyvianaki, E., Klein, C., Krikava, F., Misailovic, S.,

http://doi.acm.org/10.1145/2593882.2593891
http://doi.acm.org/10.1145/2593882.2593891
http://dx.doi.org/10.1007/978-1-4471-2239-5
http://dx.doi.org/10.1007/978-1-4471-2239-5
http://arxiv.org/abs/1605.07767
http://dx.doi.org/10.1109/RE.2006.17
http://dx.doi.org/10.1109/RE.2006.17
http://doi.acm.org/10.1145/2971327
http://dx.doi.org/10.1109/TSE.2010.33
http://www.sciencedirect.com/science/article/pii/000437029400041X
http://www.sciencedirect.com/science/article/pii/000437029400041X
http://www.cs.toronto.edu/~sme/papers/2004/FoRE-chapter01-v7.pdf
http://www.cs.toronto.edu/~sme/papers/2004/FoRE-chapter01-v7.pdf
http://dx.doi.org/10.1109/ICSE.2009.5070513
http://dx.doi.org/10.1109/ICSE.2009.5070513

Requirements Engineering 39

Papadopoulos, A.V., Ray, S., Sharifloo, A.M., Shevtsov, S., Ujma, M., Vogel, T.: Software
engineering meets control theory. In: 2015 IEEE/ACM 10th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, pp. 71–82 (2015). DOI
10.1109/SEAMS.2015.12

37. Furtado, F., Zisman, A.: Trace++: A traceability approach for agile software engineering. In:
Proc. of the 24th International Requirements Engineering Conference, RE (2016)

38. Glinz, M.: On non-functional requirements. In: Proc. of the 15th IEEE International Re-
quirements Engineering Conference, RE, pp. 21–26 (2007). DOI 10.1109/RE.2007.45. URL
https://doi.org/10.1109/RE.2007.45

39. Guenther Ruhe, M.N., Ebert, C.: The vision: Requirements engineering in society.
In: Proc. of the 25th International Requirements Engineering Conference - Silver Ju-
bilee Track, RE (2017). URL https://www.ucalgary.ca/mnayebi/files/
mnayebi/the-vision-requirements-engineering-in-society.pdf. To
appear

40. Haley, C., Laney, R., Moffett, J., Nuseibeh, B.: Security requirements engineering: A frame-
work for representation and analysis. IEEE Transactions on Software Engineering 34, 133–
153 (2007). DOI doi.ieeecomputersociety.org/10.1109/TSE.2007.70754

41. Haley, C.B., Laney, R.C., Moffett, J.D., Nuseibeh, B.: Security requirements engineering:
A framework for representation and analysis. IEEE Trans. Software Eng. 34(1), 133–153
(2008)

42. Heitmeyer, C.L., Labaw, B., Jeffords, R.: A benchmark for comparing different approaches
for specifying and verifying real-time systems. In: Proc. 10th Intl. Workshop on Real-Time
Operating Systems and Softw. (1993)

43. Herbsleb, J.D.: Building a socio-technical theory of coordination: why and how (outstanding
research award). In: Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016,
pp. 2–10 (2016). DOI 10.1145/2950290.2994160. URL http://doi.acm.org/10.
1145/2950290.2994160

44. Hosseini, M., Shahri, A., Phalp, K., Ali, R.: Four reference models for transparency require-
ments in information systems. Requirements Engineering pp. 1–25 (2017)

45. IEEE Computer Society. Software Engineering Standards Committee and IEEE-SA Stan-
dards Board: IEEE Recommended Practice for Software Requirements Specifications. Tech.
rep., IEEE (1998)

46. ISO/IEC 25022: Systems and software engineering – systems and software quality require-
ments and evaluation (square) – measurement of quality in use. Tech. rep., ISO (2016)

47. ISO/IEC 9126: Software engineering – product quality – part 1: Quality model. Tech. rep.,
ISO (2001)

48. Jackson, M.: Software requirements & specifications: a lexicon of practice, principles and
prejudices. ACM Press/Addison-Wesley Publishing Co. (1995)

49. Jackson, M.: Problem Frames: Analyzing and Structuring Software Development Problems.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2001)

50. Jackson, M.: The name and nature of software engineering. In: Revised Tutorial Lec-
tures in Advances in Software Engineering, Lipari Summer School 2007, pp. 1–38
(2007). DOI 10.1007/978-3-540-89762-0_1. URL http://dx.doi.org/10.1007/
978-3-540-89762-0_1

51. Jackson, M., Zave, P.: Deriving specifications from requirements: An example. In: Pro-
ceedings of the 17th International Conference on Software Engineering, ICSE ’95, pp.
15–24. ACM, New York, NY, USA (1995). DOI 10.1145/225014.225016. URL http:
//doi.acm.org/10.1145/225014.225016

52. Jureta, I., Borgida, A., Ernst, N.A., Mylopoulos, J.: The requirements problem for adaptive
systems. ACM Trans. Management Inf. Syst. 5(3), 17 (2014). DOI 10.1145/2629376. URL
http://doi.acm.org/10.1145/2629376

53. Kang, E., Jackson, D.: Dependability arguments with trusted bases. In: Proceedings of the
18th IEEE International Requirements Engineering Conference, RE ’10, pp. 262–271. IEEE

https://doi.org/10.1109/RE.2007.45
https://www.ucalgary.ca/mnayebi/files/mnayebi/the-vision-requirements-engineering-in-society.pdf
https://www.ucalgary.ca/mnayebi/files/mnayebi/the-vision-requirements-engineering-in-society.pdf
http://doi.acm.org/10.1145/2950290.2994160
http://doi.acm.org/10.1145/2950290.2994160
http://dx.doi.org/10.1007/978-3-540-89762-0_1
http://dx.doi.org/10.1007/978-3-540-89762-0_1
http://doi.acm.org/10.1145/225014.225016
http://doi.acm.org/10.1145/225014.225016
http://doi.acm.org/10.1145/2629376

40 Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

Computer Society, Washington, DC, USA (2010). DOI 10.1109/RE.2010.38. URL http:
//dx.doi.org/10.1109/RE.2010.38

54. Karlsson, J., Ryan, K.: A cost-value approach for prioritizing requirements. IEEE Software
14(5), 67–74 (1997). DOI 10.1109/52.605933. URL http://dx.doi.org/10.1109/
52.605933

55. Kelly, T., Weaver, R.: The goal structuring notation–a safety argument notation. In: Proceed-
ings of the dependable systems and networks 2004 workshop on assurance cases (2004)

56. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Proc. of the
Future of Software Engineering track, FOSE@ICSE, pp. 259–268 (2007). DOI 10.1109/
FOSE.2007.19. URL http://dx.doi.org/10.1109/FOSE.2007.19

57. van Lamsweerde, A.: Elaborating security requirements by construction of intentional anti-
models. In: A. Finkelstein, J. Estublier, D.S. Rosenblum (eds.) 26th International Conference
on Software Engineering (ICSE 2004), 23-28 May 2004, Edinburgh, United Kingdom, pp.
148–157. IEEE Computer Society (2004)

58. van Lamsweerde, A.: Requirements engineering: from craft to discipline. In: Proceedings of
the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
2008, Atlanta, Georgia, USA, November 9-14, 2008, pp. 238–249 (2008). DOI 10.1145/
1453101.1453133. URL http://doi.acm.org/10.1145/1453101.1453133

59. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models to
Software Specifications. Wiley (2009)

60. van Lamsweerde, A., Darimont, R., Massonet, P.: Goal-directed elaboration of requirements
for a meeting scheduler: problems and lessons learnt. In: Proc. of the 2nd IEEE Intl. Symp.
on Requirements Eng., RE, pp. 194–203 (1995). DOI 10.1109/ISRE.1995.512561. URL
http://dx.doi.org/10.1109/ISRE.1995.512561

61. Laplante, P.A.: Requirements engineering for software and systems. CRC Press (2013)
62. Larson, E.: Interoperability of us and nato allied air forces: Supporting data and case studies.

Tech. Rep. 1603, RAND Corporation (2003)
63. Letier, E., Heaven, W.: Requirements modelling by synthesis of deontic input-output au-

tomata. In: 35th International Conference on Software Engineering, ICSE ’13, San Fran-
cisco, CA, USA, May 18-26, 2013, pp. 592–601 (2013). URL http://dl.acm.org/
citation.cfm?id=2486866

64. Leveson, N.G., Heimdahl, M.P.E., Hildreth, H., Reese, J.D.: Requirements specification for
process-control systems. IEEE Trans. Software Eng. 20(9), 684–707 (1994). DOI 10.1109/
32.317428. URL https://doi.org/10.1109/32.317428

65. Lewis, G.A., Morris, E., Place, P., Simanta, S., Smith, D.B.: Requirements engineering for
systems of systems. In: Systems Conference, 2009 3rd Annual IEEE, pp. 247–252 (2009).
DOI 10.1109/SYSTEMS.2009.4815806

66. Limoncelli, T.A.: Automation should be like iron man, not ultron. ACM Queue 13(8),
50 (2015). DOI 10.1145/2838344.2841313. URL http://doi.acm.org/10.1145/
2838344.2841313

67. Lin, L., Nuseibeh, B., Ince, D.C., Jackson, M.: Using abuse frames to bound the scope of
security problems. In: 12th IEEE International Conference on Requirements Engineering
(RE 2004), 6-10 September 2004, Kyoto, Japan, pp. 354–355 (2004)

68. Liu, L., Yu, E.S.K., Mylopoulos, J.: Security and privacy requirements analysis within a
social setting. In: 11th IEEE International Conference on Requirements Engineering (RE
2003), 8-12 September 2003, Monterey Bay, CA, USA, pp. 151–161 (2003)

69. Lutz, R.R.: Analyzing software requirements errors in safety-critical, embedded systems.
In: Proc. of IEEE International Symposium on Requirements Engineering, RE, pp. 126–133
(1993). DOI 10.1109/ISRE.1993.324825. URL https://doi.org/10.1109/ISRE.
1993.324825

70. Lutz, R.R.: Software engineering for space exploration. IEEE Computer 44(10), 41–46
(2011). DOI 10.1109/MC.2011.264. URL https://doi.org/10.1109/MC.2011.
264

71. Maiden, N.A.M.: So, what is requirements work? IEEE Software 30(2), 14–15 (2013). DOI
10.1109/MS.2013.35. URL http://dx.doi.org/10.1109/MS.2013.35

http://dx.doi.org/10.1109/RE.2010.38
http://dx.doi.org/10.1109/RE.2010.38
http://dx.doi.org/10.1109/52.605933
http://dx.doi.org/10.1109/52.605933
http://dx.doi.org/10.1109/FOSE.2007.19
http://doi.acm.org/10.1145/1453101.1453133
http://dx.doi.org/10.1109/ISRE.1995.512561
http://dl.acm.org/citation.cfm?id=2486866
http://dl.acm.org/citation.cfm?id=2486866
https://doi.org/10.1109/32.317428
http://doi.acm.org/10.1145/2838344.2841313
http://doi.acm.org/10.1145/2838344.2841313
https://doi.org/10.1109/ISRE.1993.324825
https://doi.org/10.1109/ISRE.1993.324825
https://doi.org/10.1109/MC.2011.264
https://doi.org/10.1109/MC.2011.264
http://dx.doi.org/10.1109/MS.2013.35

Requirements Engineering 41

72. Maiden, N.A.M., Gizikis, A., Robertson, S.: Provoking creativity: Imagine what your re-
quirements could be like. IEEE Software 21(5), 68–75 (2004). DOI 10.1109/MS.2004.
1331305. URL http://dx.doi.org/10.1109/MS.2004.1331305

73. Maiden, N.A.M., Robertson, S., Robertson, J.: Creative requirements: invention and its role
in requirements engineering. In: Proc. of the 28th International Conference on Software
Engineering, ICSE, pp. 1073–1074 (2006). DOI 10.1145/1134512. URL http://doi.
acm.org/10.1145/1134512

74. Maiden, N.A.M., Rugg, G.: ACRE: selecting methods for requirements acquisition. Software
Engineering Journal 11(3), 183–192 (1996). DOI 10.1049/sej.1996.0024. URL http:
//dx.doi.org/10.1049/sej.1996.0024

75. Mancini, C., Rogers, Y., Bandara, A.K., Coe, T., Jedrzejczyk, L., Joinson, A.N., Price, B.A.,
Thomas, K., Nuseibeh, B.: Contravision: exploring users’ reactions to futuristic technology.
In: Proceedings of the 28th International Conference on Human Factors in Computing Sys-
tems, CHI 2010, Atlanta, Georgia, USA, April 10-15, 2010, pp. 153–162 (2010)

76. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems - specification.
Springer (1992)

77. Marca, D., Harandi: Problem set for the fourth international workshop on software specifica-
tion and design. In: Proc. 4th International Workshop on Software Specification and Design
(1987)

78. Martins, L.E.G., Gorschek, T.: Requirements engineering for safety-critical systems:
Overview and challenges. IEEE Software 34(4), 49–57 (2017). DOI 10.1109/MS.2017.94

79. Maruyama, H.: Machine learning as a programming paradigm and its implications to re-
quirements engineering. In: Asia-Pacific Requirements Engineering Symposium, APRES
(2016)

80. Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: Easy approach to requirements syntax
(EARS). In: Proc. of the 17th IEEE International Requirements Engineering Conference,
RE, pp. 317–322 (2009). DOI 10.1109/RE.2009.9. URL http://dx.doi.org/10.
1109/RE.2009.9

81. Mirakhorli, M., Cleland-Huang, J.: Tracing non-functional requirements. In: Software and
Systems Traceability., pp. 299–320. Springer (2012). DOI 10.1007/978-1-4471-2239-5_14.
URL http://dx.doi.org/10.1007/978-1-4471-2239-5_14

82. Moon, M., Yeom, K., Chae, H.S.: An approach to developing domain requirements as a core
asset based on commonality and variability analysis in a product line. IEEE Trans. Software
Eng. 31(7), 551–569 (2005). DOI 10.1109/TSE.2005.76. URL http://dx.doi.org/
10.1109/TSE.2005.76

83. Nhlabatsi, A., Nuseibeh, B., Yu, Y.: Security requirements engineering for evolving software
systems: A survey. International Journal of Secure Software Engineering (IJSSE) 1(1), 54–73
(2010)

84. Nitto, E.D., Ghezzi, C., Metzger, A., Papazoglou, M.P., Pohl, K.: A journey to highly dy-
namic, self-adaptive service-based applications. Autom. Softw. Eng. 15(3-4), 313–341
(2008). DOI 10.1007/s10515-008-0032-x. URL http://dx.doi.org/10.1007/
s10515-008-0032-x

85. Niu, N., Easterbrook, S.M.: So, you think you know others’ goals? A repertory grid study.
IEEE Software 24(2), 53–61 (2007). DOI 10.1109/MS.2007.52. URL http://dx.doi.
org/10.1109/MS.2007.52

86. Nuseibeh, B.: Weaving together requirements and architectures. IEEE Computer 34(3),
115–117 (2001). DOI 10.1109/2.910904. URL http://dx.doi.org/10.1109/2.
910904

87. Nuseibeh, B., Easterbrook, S.M.: Requirements engineering: a roadmap. In: Proc. of the
Future of Software Engineering Track at the 22nd International Conference on on Software
Engineering, Future of Software Engineering Track, FOSE, pp. 35–46 (2000). DOI 10.1145/
336512.336523. URL http://doi.acm.org/10.1145/336512.336523

88. Omoronyia, I., Cavallaro, L., Salehie, M., Pasquale, L., Nuseibeh, B.: Engineering adaptive
privacy: on the role of privacy awareness requirements. In: 35th International Conference

http://dx.doi.org/10.1109/MS.2004.1331305
http://doi.acm.org/10.1145/1134512
http://doi.acm.org/10.1145/1134512
http://dx.doi.org/10.1049/sej.1996.0024
http://dx.doi.org/10.1049/sej.1996.0024
http://dx.doi.org/10.1109/RE.2009.9
http://dx.doi.org/10.1109/RE.2009.9
http://dx.doi.org/10.1007/978-1-4471-2239-5_14
http://dx.doi.org/10.1109/TSE.2005.76
http://dx.doi.org/10.1109/TSE.2005.76
http://dx.doi.org/10.1007/s10515-008-0032-x
http://dx.doi.org/10.1007/s10515-008-0032-x
http://dx.doi.org/10.1109/MS.2007.52
http://dx.doi.org/10.1109/MS.2007.52
http://dx.doi.org/10.1109/2.910904
http://dx.doi.org/10.1109/2.910904
http://doi.acm.org/10.1145/336512.336523

42 Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013, pp. 632–
641 (2013). DOI 10.1109/ICSE.2013.6606609. URL http://dx.doi.org/10.1109/
ICSE.2013.6606609

89. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic matching of web services
capabilities. In: Proc. of the International Semantic Web Conference, ISWC, pp. 333–347
(2002)

90. Parnas, D.L., Madey, J.: Functional documents for computer systems. Sci. Comput. Program.
25(1), 41–61 (1995). DOI 10.1016/0167-6423(95)96871-J. URL http://dx.doi.org/
10.1016/0167-6423(95)96871-J

91. Pohl, K., Assenova, P., Dömges, R., Johannesson, P., Maiden, N., Plihon, V., Schmitt, J.R.,
Spanoudakis, G.: Applying ai techniques to requirements engineering: The nature prototype.
In: Proc. ICSE-Workshop on Research Issues in the Intersection Between Software Engi-
neering and Artificial Intelligence (1994)

92. Ramesh, B., Cao, L., Baskerville, R.: Agile requirements engineering practices and chal-
lenges: an empirical study. Inf. Syst. J. 20(5), 449–480 (2010). DOI 10.1111/j.
1365-2575.2007.00259.x. URL http://dx.doi.org/10.1111/j.1365-2575.
2007.00259.x

93. Riegel, N., Dörr, J.: A systematic literature review of requirements prioritization criteria. In:
Proc. of the 21st International Working Conference on Requirements Engineering: Founda-
tion for Software Quality, REFSQ, pp. 300–317 (2015). DOI 10.1007/978-3-319-16101-3_
22. URL http://dx.doi.org/10.1007/978-3-319-16101-3_22

94. Robertson, S., Robertson, J.: Mastering the Requirements Process. ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA (1999)

95. Robertson, S., Robertson, J.: Mastering the requirements process: Getting requirements right.
Addison-wesley (2012)

96. Rumbaugh, J., Jacobson, I., Booch, G.: Unified modeling language reference manual, the.
Pearson Higher Education (2004)

97. Rushby, J.: Security requirements specifications: How and what? In: Requirements Engi-
neering for Information Security (SREIS), Indianapolis, IN (2001)

98. Russo, D., Ciancarini, P.: A proposal for an antifragile software manifesto. Procedia Com-
puter Science 83, 982–987 (2016)

99. Salifu, M., Yu, Y., Nuseibeh, B.: Specifying monitoring and switching problems in context.
In: 15th IEEE International Requirements Engineering Conference (RE 2007) (2007). URL
http://oro.open.ac.uk/10264/

100. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-aware sys-
tems: A research agenda for re for self-adaptive systems. In: 2010 18th IEEE International
Requirements Engineering Conference, pp. 95–103 (2010). DOI 10.1109/RE.2010.21

101. SECUR-ED, C.: Deliverable d22.1: Interoperability concept. fp7 SECUR-ED EU project.
(2012). URL http://www.secur-ed.eu/?page_id=33

102. Silva Souza, V.E., Lapouchnian, A., Robinson, W.N., Mylopoulos, J.: Awareness require-
ments for adaptive systems. In: Proceedings of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS ’11, pp. 60–69. ACM, New
York, NY, USA (2011). DOI 10.1145/1988008.1988018. URL http://doi.acm.org/
10.1145/1988008.1988018

103. Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice Guide, 1st edn.
John Wiley & Sons, Inc., New York, NY, USA (1997)

104. Tun, T.T., Boucher, Q., Classen, A., Hubaux, A., Heymans, P.: Relating requirements and
feature configurations: a systematic approach. In: Proc. of the 13th International Conference
on Software Product Lines, SPLC, pp. 201–210 (2009). DOI 10.1145/1753235.1753263.
URL http://doi.acm.org/10.1145/1753235.1753263

105. Viana, T., Bandara, A., Zisman, A.: Towards a framework for managing inconsistencies in
systems of systems. In: Proc. of the Colloquium on Software-intensive Systems-of-Systems
at 10th European Conference on Software Architecture (2016). URL http://oro.open.
ac.uk/48014/

http://dx.doi.org/10.1109/ICSE.2013.6606609
http://dx.doi.org/10.1109/ICSE.2013.6606609
http://dx.doi.org/10.1016/0167-6423(95)96871-J
http://dx.doi.org/10.1016/0167-6423(95)96871-J
http://dx.doi.org/10.1111/j.1365-2575.2007.00259.x
http://dx.doi.org/10.1111/j.1365-2575.2007.00259.x
http://dx.doi.org/10.1007/978-3-319-16101-3_22
http://oro.open.ac.uk/10264/
http://www.secur-ed.eu/?page_id=33
http://doi.acm.org/10.1145/1988008.1988018
http://doi.acm.org/10.1145/1988008.1988018
http://doi.acm.org/10.1145/1753235.1753263
http://oro.open.ac.uk/48014/
http://oro.open.ac.uk/48014/

Requirements Engineering 43

106. Wakefield, J.: Microsoft chatbot is taught to swear on twitter. Visited on 30 March 2017
107. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.M.: Relax: a language to ad-

dress uncertainty in self-adaptive systems requirement. Requirements Engineering 15(2),
177–196 (2010). DOI 10.1007/s00766-010-0101-0. URL http://dx.doi.org/10.
1007/s00766-010-0101-0

108. Wiegers, K., Beatty, J.: Software requirements. Pearson Education (2013)
109. Withall, S.: Software Requirement Patterns, first edn. Microsoft Press, Redmond, WA, USA

(2007)
110. Yu, E.S.K.: Towards modeling and reasoning support for early-phase requirements engineer-

ing. In: 3rd IEEE International Symposium on Requirements Engineering (RE’97), Jan-
uary 5-8, 1997, Annapolis, MD, USA, pp. 226–235. IEEE Computer Society (1997). DOI
10.1109/ISRE.1997.566873. URL http://dx.doi.org/10.1109/ISRE.1997.
566873

111. Yu, Y., Franqueira, V.N.L., Tun, T.T., Wieringa, R., Nuseibeh, B.: Automated analysis of
security requirements through risk-based argumentation. Journal of Systems and Software
106, 102–116 (2015). DOI 10.1016/j.jss.2015.04.065. URL http://dx.doi.org/10.
1016/j.jss.2015.04.065

112. Zave, P.: Classification of research efforts in requirements engineering. ACM Comput. Surv.
29(4), 315–321 (1997). DOI 10.1145/267580.267581. URL http://doi.acm.org/
10.1145/267580.267581

113. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans. Softw.
Eng. Methodol. 6(1), 1–30 (1997). DOI 10.1145/237432.237434. URL http://doi.
acm.org/10.1145/237432.237434

114. Zowghi, D., Coulin, C.: Requirements Elicitation: A Survey of Techniques, Approaches, and
Tools, pp. 19–46. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

http://dx.doi.org/10.1007/s00766-010-0101-0
http://dx.doi.org/10.1007/s00766-010-0101-0
http://dx.doi.org/10.1109/ISRE.1997.566873
http://dx.doi.org/10.1109/ISRE.1997.566873
http://dx.doi.org/10.1016/j.jss.2015.04.065
http://dx.doi.org/10.1016/j.jss.2015.04.065
http://doi.acm.org/10.1145/267580.267581
http://doi.acm.org/10.1145/267580.267581
http://doi.acm.org/10.1145/237432.237434
http://doi.acm.org/10.1145/237432.237434

	Requirements Engineering
	Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh
	Introduction
	Concepts and Principles
	Fundamentals: The World and the Machine
	Qualities
	Processes

	Organised Tour: Genealogy and Seminal Works
	Elicitation
	Modelling & Analysis
	Assurance
	Management and Evolution
	RE for Cross-Cutting Properties

	Future Challenges
	Sustainability and Global Societal Challenges
	Artificial Intelligence
	Exemplars and Artefacts

	Conclusion
	References

