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Abstract. Constraint equations of a parallel manipulator can be used to analyze
their kinematic behaviour. This paper deals with the determination of the alge-
braic constraint equations of a 3-RUU parallel manipulator with two approaches.
The first one is based on the manipulator geometry and the second one uses the
Linear Implicitization Algorithm. The obtained constraint equations through the
former approach can be given a geometrical interpretation while the latter ap-
proach is less prone to missing physical constraints. Both the ideals of constraint
polynomials should lead to the same variety. Furthermore, the simplest set of
equations is chosen to solve the direct kinematics problem. For the manipulator
under study, it turns out that its direct kinematics problem leads to a factorisable
univariate polynomial and a translational operation mode appears.
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1 Introduction

For theoretical and practical purposes, the kinematic analysis of a parallel manipula-
tor (PM) is essential to understand its motion behavior. Kinematic constraints can be
transformed via Study’s kinematic mapping into algebraic constraint equations. Every
configuration of the PM is thereby mapped to a point in a projective space, P7 [4, 5].
Consequently, well developed concepts of algebraic geometry [2] can be used to inter-
pret the algebraic constraint equations to obtain necessary information about the PM.

In that vein, many PMs were investigated using algebraic geometry concepts. Re-
sultant methods were adopted to solve the direct kinematics of Stewart-Gough plat-
forms [3]. A complete kinematic analysis including the characterization of operation
modes, solutions to direct kinematics and determination of singular poses was per-
formed for the 3-RPS PM [10, 11], the 3-RPS cube PM [8] and 3-PRS PMs with dif-
ferent arrangements of prismatic joints [6]. In the foregoing papers, the prismatic joints
were considered to be actuated, which makes the analysis inherently algebraic. A more
challenging kinematic analysis of an over-constrained 4-RUU PM with square base and
moving platform was accomplished by decomposing it into two 2-RUU PMs [7]. The
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constraint equations of a 3-RUU PM are derived in this paper and its direct kinematics
problem is solved. Nevertheless, a complete characterization of the manipulator opera-
tion modes has not been obtained yet.

The paper is organized as follows: Section 2 describes the manipulator architec-
ture. Section 3 deals with the derivation of algebraic constraint equations with two ap-
proaches and their comparison. Section 4 presents the solutions to direct kinematics for
arbitrary design parameters and hints the recognition of a translational operation mode.

2 Manipulator Architecture

The 3-RUU PM is shown in Figure 1a. Each limb consists of a revolute joint and two
universal joints mounted in series with the first revolute joint as the active joint. The
moving platform and the fixed base form equilateral triangles with vertices Ci and Ai,
respectively, i= 1,2,3. The unit vectors of the revolute joint axes within the i-th limb are
denoted as si j, i = 1,2,3; j = 1, ...,5. si5 and si1 are tangent to the circumcircles (with
centers P and O) of the moving platform and the base triangles, respectively. Vectors si1
and si2 are always parallel, so are vectors si3 and si4. The origin of the fixed coordinate
frame, FO is at O and the zO-axis lies along the normal to the base plane whereas
the origin of the moving coordinate frame FP is at P and the zP-axis lies along the
normal to the moving platform plane. xO and xP axes are directed along OA1 and PC1,
respectively. r0 and r1 are the circumradii of base and the moving platform, respectively.
a1 and a3 are the link lengths. θi1 is the angle of rotation of the first revolute joint about
the axis represented by vector si1 measured from the base plane whereas θi2 is the angle
of rotation of the second revolute joint about the axis represented by vector si2 measured
from the first link.

s
31

s
33

s
32

s
34

s
35

A
3

B
3

C
3

sx
O

z
O

y
O

O

x
P

z
P

y
P

O

P

F
P

A
1

B
1

C
1

A
2

B
2

C
2

θ
11

θ
12

h
1

h
2

a
1

F
O

a
3

(a) The 3-RUU PM in a general configuration
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3 Constraint Equations

The constraint equations of the 3-RUU PM are derived using a geometrical approach
and the Linear Implicitization Algorithm (LIA) [12]. First, canonical constraint equa-
tions for a limb of the PM are derived by attaching fixed and moving coordinate frames
to the two extreme joints of a RUU limb as shown in Fig. 1b. Each U-joint is char-
acterized by two revolute joints with orthogonal and intersecting axes and Denavit-
Hartenberg (DH) convention is used to parameterize each limb. F0 and F1 are the
fixed and the moving coordinate frames with their corresponding z-axes along the first
and the last revolute joint axes, respectively. Later on, general constraint equations are
derived for the whole manipulator.

3.1 Derivation Using a Geometrical Approach

Canonical Constraints In order to derive the geometric constraints for a RUU limb,
the homogeneous coordinates4 of points A,B,C (a,b,c, respectively) and vectors s j,
j = 1, ...,5, shown in Fig. 1b are expressed as follows:

0a = [1,0,0,0]T 0b = [1,a1 cos(θ1),a1 sin(θ1),0]T 1c = [1,0,0,0]T

0s1 = [0,0,0,1]T 0s2 = [0,0,0,1]T 0s3 = [0,cos(θ1 +θ2),sin(θ1 +θ2),0]T

0s4 = [0,cos(θ1 +θ2),sin(θ1 +θ2),0]T 1s5 = [0,0,0,1]T (1)

where θ1 and θ2 are the angles of rotation of the first and the second revolute joints.
Study’s kinematic mapping is used to express the vectors c and s5 in the fixed coor-

dinate frame F0, using the transformation matrix 0T1 consisting of Study parameters
xi and yi, i = 0,1,2,3:

0c =0 T1
1c and 0s5 =

0 T1
1s5,

where 0T1 =
1
∆


∆ 0 0 0

d1 x0
2 + x1

2− x2
2− x3

2 −2x0x3 +2x1x2 2x0x2 +2x1x3

d2 2x0x3 +2x1x2 x0
2− x1

2 + x2
2− x3

2 −2x0x1 +2x2x3

d3 −2x0x2 +2x1x3 2x0x1 +2x2x3 x0
2− x1

2− x2
2 + x3

2

 (2)

with ∆ = x0
2 + x1

2 + x2
2 + x3

2 6= 0 and d1 = −2x0y1 + 2x1y0− 2x2y3 + 2x3y2, d2 =
−2x0y2 + 2x1y3 + 2x2y0− 2x3y1, d3 = −2x0y3− 2x1y2 + 2x2y1 + 2x3y0. All vectors
are now expressed in the base coordinate frame F0 and hence the geometric constraints
can be derived. The following constraints are already satisfied:

1. The first and the second revolute joint axes are parallel: s1 = s2
2. Third and fourth revolute joint axes are parallel: s3 = s4

3.
−→
AB is perpendicular to the first and the second revolute joint axes: (b−a)T s1 = 0

4. The second revolute joint axis is perpendicular to the third revolute joint axis:
sT

2 s3 = 0

4left superscript k denotes the vector expressed in coordinate frame Fk, k ∈ {0,1}
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5. Length of the link AB is a1: ||b−a||2 = a1

The remaining geometric constraints are derived as algebraic equations5: The second
revolute joint axis, the fifth revolute joint axis and link BC lie in the same plane. In other
words, the scalar triple product of the corresponding vectors is null:

g1 : (b− c)T (s2× s5) = 0 (3)

Vector
−→
BC is perpendicular to the third and the fourth revolute joint axes:

g2 : (b− c)T s4 = 0 (4)

The fourth and the fifth revolute joint axes are perpendicular:

g3 : sT
4 s5 = 0 (5)

Length of the link BC is a3:

g4 : ||b− c||−a3 = 0 (6)

Furthermore, Study’s quadric equation S : x0y0+x1y1+x2y2+x3y3 = 0 must be taken
into account. The five geometric relations g1,g2,g3,g4,S describe the RUU limbs of
the PM under study. As a matter of fact, when the first revolute joint is actuated, each
limb has four DoF and it should be possible to describe it by only two constraint equa-
tions. Eqs. (4) and (5) contain the passive joint variable v2 along with the active joint
variable v1. Eliminating v2 from g2 and g3 results in an equation that amounts to g1.
Therefore, the two constraint equations in addition to the Study quadric describing a
RUU limb are g1 and g4, namely Eqs. (3) and (6). The polynomials g1,g4 and S define
an ideal, which is a subset of all polynomials in the Study parameters:

I1 = 〈g1,g4,S 〉 ⊆ k[x0,x1,x2,x3,y0,y1,y2,y3]. (7)

Explicitly these polynomials take the form:

g1 :=
(
(x0x1− x2x3)(v1

2−1)+(−2x0x2−2x1x3)v1
)
(x2

0 + x2
1 + x2

2 + x2
3)a1

−2((x2
0 + x2

3)(x1y1 + x2y2)+2(x2
1 + x2

2)(x0y0 + x3y3))(v2
1−1) = 0, (8)

g4 :=−
(
x0

2 + x1
2 + x2

2 + x3
2)(v1

2 +1
)

a1
2 +
(
4(y1x0− y0x1 + y3x2− y2x3)v1

2

+8(−x0y2 + x1y3 + x2y0− x3y1)v1 +4(y2x3− y3x2− y1x0 + y0x1))a1

+
((

x0
2 + x1

2 + x2
2 + x3

2)a3
2− 4

(
y2

2 + y3
2 + y0

2 + y1
2))(v1

2 +1
)
= 0. (9)

General Constraints g1 and g4 are the constraint equations of an RUU limb with
specially adapted coordinate systems. To assemble the PM one has to transform these
equations so that the limbs get into the positions of Fig.1a. It is well known [9] that

5cosine and sine of angles are substituted by tangent half-angles to render the equations alge-
braic; cos(θi) =

1−v2
i

1+v2
i

sin(θi) =
2vi

1+v2
i

where vi = tan(θi/2), i = 1,2
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the necessary transformations are linear in the image space coordinates. Due to lack of
space these transformations are only shown for the derivation of the constraint equations
using the LIA in Sec.3.2 (Eq.14). One ends with six constraint equations gi1,gi4, i =
1,2,3 which form together with S = 0 and the normalization condition N : x2

0 + x2
1 +

x2
2 + x2

3−1 = 0 an ideal

I = 〈g11,g14,g21,g24,g31,g34,S ,N 〉 ⊆ k[x0,x1,x2,x3,y0,y1,y2,y3] (10)

3.2 Derivation Using a Linear Implicitization Algorithm

Canonical Constraints The canonical pose of a RUU limb is chosen such that the
rotation axes coincide with the z-axes and the common normals of these axes are in
the directions of the x-axes of the coordinate systems in order to derive the canoni-
cal constraint equations using LIA. It computes implicit equations of lowest possible
degree out of parametric equations by comparing coefficients with an arbitrary sys-
tem of implicit equations with the same degree. An extended explanation is given in
[12]. To describe the RUU kinematic chain using the usual Denavit-Hartenberg (DH)
parameters, the following 4× 4 matrices are defined: T = Mi.Gi, i = 1, . . . ,5, where
the Mi-matrices describe a rotation about the z-axis with ui as the rotation angle. The
Gi-matrices describe the transformation of one joint coordinate system to the next.

Mi =


1 0 0 0
0 cos(ui) −sin(ui) 0
0 sin(ui) cos(ui) 0
0 0 0 1

 , Gi =


1 0 0 0
ai 1 0 0
0 0 cos(αi) −sin(αi)
di 0 sin(αi) cos(αi)

 . (11)

The parameters in Gi are DH parameters encoding the distance along x-axis ai, the
offset along z-axis di and the twist angle between the axes αi. The DH parameters for
the RUU limb are α2 =

π

2 ,α4 =−π

2 ,d1 = a2 = d2 = d3 = a4 = d4 =α1 =α3 = 0. Com-
puting the Study-Parameters based on the transformation matrix T yields the parametric
representation of the limb [5]. Applying LIA yields the following quadratic canonical
constraint equations S , f1 and f2:

J = 〈 f1, f2,S 〉 ⊆ k[x0,x1,x2,x3,y0,y1,y2,y3], (12)
where

f1 :=
(
(x0x1− x2x3)(v1

2−1)− (2x0x2 +2x1x3)v1
)

a1 +2
(
v1

2 +1
)
(x0y0 + x3y3) = 0

f2 :=−
(
x0

2 + x1
2 + x2

2 + x3
2)(v1

2 +1
)

a1
2 +
(
4(y1x0− y0x1 + y3x2− y2x3)v1

2

+8(−x0y2 + x1y3 + x2y0− x3y1)v1 +4(y2x3− y3x2− y1x0 + y0x1))a1

+
((

x0
2 + x1

2 + x2
2 + x3

2)a3
2− 4

(
y2

2 + y3
2 + y0

2 + y1
2))(v1

2 +1
)
= 0 (13)

General Constraints To obtain the constraint equations of the whole mechanism from
the canonical constraint equations, coordinate transformations are applied in the base
and moving platform. To facilitate the comparison of the constraint equations derived
by two different approaches, the coordinate transformations should be consistent with
the global frames FO and FP as shown in Fig. 1a. The necessary transformations can
be done directly in the image space P7 [9] by the mapping
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

x0
x1
x2
x3
y0
y1
y2
y3


7→



2
(
v0

2 +1
)

x0
−2v0

2x1 +4v0x2 +2x1
2
(
v0

2 +1
)

x3
2v0

2x2 +4v0x1−2x2
((r0− r1)x1 +2y0)v0

2−2x2 (r0− r1)v0 +(−r0 + r1)x1 +2y0
((r0− r1)x0−2y1)v0

2 +4v0y2 +(r0− r1)x0 +2y1
((−r0− r1)x2 +2y3)v0

2−2 (r0 + r1)x1v0 +(r0 + r1)x2 +2y3
((r0 + r1)x3 +2y2)v0

2 +4v0y1 +(r0 + r1)x3−2y2


, (14)

where v0 = tan(γi), i = 1,2,3, γ1 = 0,γ2 =
2π

3
and γ3 =

4π

3
. The general constraint

equations are obtained by transforming the fi of Eq.12 with Eq.14. The transformed
equations are denoted fi1 = fi2 = 0, i = 1,2,3, and determine together with S = 0 and
N = 0, the ideal J :

J = 〈 f11, f12, f21, f22, f31, f32,S ,N 〉 ⊆ k[x0,x1,x2,x3,y0,y1,y2,y3] (15)

3.3 Ideal Comparison

A careful observation of the ideals spanned by the canonical constraint polynomials of
both approaches reveals that g4 = f2 and g1 = f1(x2

0 + x2
1 + x2

2 + x2
3)− 2(x2

0 + x2
2)(v

2
1 +

1)S . Since x2
0 + x2

1 + x2
2 + x2

3 cannot be null, these ideals are the same. Thus, it follows
that the ideals I and J spanned by the constraint equations of the whole manipulator
are also contained in each other: I ⊆J ⊆ I . Since I and J determine the same
ideal, the variety of the constraint polynomials must be the same [2]. Therefore, the
set of constraint equations derived in Section 3.2 is used for further computations as it
contains only quadratic equations.

4 Direct Kinematics: Numerical Examples

Because of the complexity of the manipulator, it is not possible to compute the di-
rect kinematics without using some numerical values. In the following subsections, the
following arbitrary values are assigned to the design parameters of the manipulator,
a1 = 3, a3 = 5, r0 = 11, r1 = 7.

Identical Actuated Joints Assuming the actuated joint angles are equal, θi1 =
π

2
, i =

1,2,3 for simplicity, the system of constraint equations in Eq. (15) yields the following
real solutions and the corresponding manipulator poses are shown in Fig. 2.

(a)

{
x0 =

√
23023
154

,y3 =−
3
2

x0,x3 =−
3
√

77
154

,y0 =
3
2

x3,x1 = x2 = y1 = y2 = 0

}
,

(b)

{
x0 =

√
23023
154

,y3 =−
3
2

x0,x3 =
3
√

77
154

,y0 =
3
2

x3,x1 = x2 = y1 = y2 = 0

}
,
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Fig. 2: A numerical example: solutions to direct kinematics corresponding to (16)

(c) {x0 = 1,x1 = x2 = x3 = y0 = y1 = y2 = y3 = 0} ,
(d) {x0 = 1,x1 = x2 = x3 = y0 = y1 = y2 = 0,y3 =−3} . (16)

Different Actuated Joints Substituting distinct arbitrary inputs, setting x0 = 1 and
computing a Groebner basis of the resulting polynomials with pure lexicographic or-
dering yields a univariate polynomial

x3 ·P(x3) = 0, where degree(P(x3)) = 80. (17)

Translational Operation Mode The univariate polynomial of the previous section
shows that this manipulator exhibits two operation modes. The one corresponding to
x3 = 0 yields pure translational motions of the moving platform with the identity as the
orientation, similar to the motion of the famous delta robot [1]. From S follows also
y0 = 0. The set of original constraint equations reduces to

[
(
3y3− y1

2− y2
2− y3

2−4y1
)

t12−6(y1 +2) t1− y1
2− y2

2− y3
2−4y1−3y3,

−
(
2t22 +3t2 +2

)
y2
√

3+
(
−y1

2− y2
2− y3

2 +2y1 +3y3
)

t22 +(3y1−12) t2− y1
2

− y2
2− y3

2 +2y1−3y3,
(
2t32 +3t3 +2

)
y2
√

3+
(
−y1

2− y2
2− y3

2 +2y1 +3y3
)

t32

+(3y1−12) t3− y1
2− y2

2− y3
2 +2y1−3y3]. (18)

This system of equations yields a quadratic univariate in one of the yi variables, which
gives a parametrization of the motion as a function of the input variables vi1 = tan(θi1/2),
i = 1,2,3.
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5 Conclusion

In this paper, the constraint equations of a 3-RUU PM were derived by two different
approaches: geometrical approach, where all possible constraints were listed based on
the geometry of the manipulator and through LIA, which yields the constraints by spec-
ifying the parametric equations and the desired degree. Both approaches have benefits
and disadvantages such that it is possible to miss a constraint by merely observing the
manipulator geometry while it is hard to interpret the physical meaning of the equa-
tions derived through LIA. However, it turns out that the ideals spanned by the con-
straint polynomials with both approaches are the same. As a result, the simplest set of
equations was chosen for further analysis. Due to the complexity of the mechanism,
a primary decomposition of these ideals is not possible and therefore a final answer
to possible operation modes can not be given. However, the factorization of the final
univariate polynomial of the direct kinematics algorithm gives strong evidence that this
manipulator has a translational and a general three DoF operation mode.
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5. Husty, M.L., Pfurner, M., Schröcker, H.P., Brunnthaler, K.: Algebraic methods in mechanism

analysis and synthesis. Robotica 25, 661 – 675 (2007)
6. Nurahmi, L., Caro, S., Wenger, P.: Operation modes and singularities of 3-PRS parallel ma-

nipulators with different arrangements of P-joints. In: DETC 2015. ASME (2015)
7. Nurahmi, L., Caro, S., Wenger, P., Schadlbauer, J., Husty, M.: Reconfiguration analysis of a

4-RUU parallel manipulator. Mechanism and Machine Theory 96, 269–289 (2016)
8. Nurahmi, L., Schadlbauer, J., Husty, M., Wenger, P., Caro, S.: Kinematic analysis of the

3-RPS Cube Parallel Manipulator. ASME Journ. of Mech. and Robotics 7(1), 1–11 (2015)
9. Pfurner, M.: Analysis of spatial serial manipulators using kinematic mapping. Doctoral

thesis, University Innsbruck (2006)
10. Schadlbauer, J., Nurahmi, L., Husty, M., Wenger, P., Caro, S.: IAK: Proc. of the Intern.

Conf., Lima, Peru, September 9-11, 2013, chap. Operation Modes in Lower-Mobility Parallel
Manipulators, pp. 1–9. Springer International Publishing (2015)

11. Schadlbauer, J., Walter, D.R., Husty, M.L.: The 3-RPS parallel manipulator from an algebraic
viewpoint. Mechanism and Machine Theory 75, 161–176 (2014)

12. Walter, D.R., Husty, M.L.: On implicitization of kinematic constraint equations. Machine
Design and Research 26, 218–226 (2010)


	Algebraic Analysis of a 3-RUU Parallel Manipulator

