Skip to Main content Skip to Navigation
Journal articles

On the regularity of abnormal minimizers for rank 2 sub-Riemannian structures

Abstract : We prove the C^1 regularity for a class of abnormal length-minimizers in rank 2 sub-Riemannian structures. As a consequence of our result, all length-minimizers for rank 2 sub-Riemannian structures of step up to 4 are of class C^1
Complete list of metadatas

Cited literature [23 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01757343
Contributor : Davide Barilari <>
Submitted on : Wednesday, October 24, 2018 - 12:11:57 PM
Last modification on : Saturday, April 11, 2020 - 2:04:13 AM

File

sssv7.pdf
Files produced by the author(s)

Identifiers

Citation

Davide Barilari, Yacine Chitour, Frédéric Jean, Dario Prandi, Mario Sigalotti. On the regularity of abnormal minimizers for rank 2 sub-Riemannian structures. Journal de Mathématiques Pures et Appliquées, Elsevier, 2020, 133, pp.118-138. ⟨10.1016/j.matpur.2019.04.008⟩. ⟨hal-01757343v2⟩

Share

Metrics

Record views

366

Files downloads

936