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Abstract Multistage stochastic optimization problems are, by essence, complex because their solutions
are indexed both by stages (time) and by uncertainties (scenarios). Their large scale nature makes
decomposition methods appealing. The most common approaches are time decomposition — and state-
based resolution methods, like stochastic dynamic programming, in stochastic optimal control — and
scenario decomposition — like progressive hedging in stochastic programming. We present a method
to decompose multistage stochastic optimization problems by time blocks, which covers both stochastic
programming and stochastic dynamic programming. Once established a dynamic programming equation
with value functions defined on the history space (a history is a sequence of uncertainties and controls),
we provide conditions to reduce the history using a compressed “state” variable. This reduction is done
by time blocks, that is, at stages that are not necessarily all the original unit stages, and we prove a
reduced dynamic programming equation. Then, we apply the reduction method by time blocks to two
time-scales stochastic optimization problems and to a novel class of so-called decision-hazard-decision
problems, arising in many practical situations, like in stock management. The time blocks decomposition
scheme is as follows: we use dynamic programming at slow time scale where the slow time scale noises
are supposed to be stagewise independent, and we produce slow time scale Bellman functions; then, we
use stochastic programming at short time scale, within two consecutive slow time steps, with the final
short time scale cost given by the slow time scale Bellman functions, and without assuming stagewise
independence for the short time scale noises.

Keywords: multistage stochastic optimization, dynamic programming, decomposition, time blocks,
two time-scales, decision-hazard-decision.

MSC: 90C06,90C39,93E20.

1 Introduction

Multistage stochastic optimization problems are, by essence, complex because their solutions are indexed
both by stages (time) and by uncertainties. Their large scale nature makes decomposition methods
appealing. The most common approaches are time decomposition — and state-based resolution methods,
like stochastic dynamic programming, in stochastic optimal control — and scenario decomposition —
like progressive hedging in stochastic programming.

On the one hand, stochastic programming deals with an underlying random process taking a finite
number of values, called scenarios [I0]. Solutions are indexed by a scenario tree, the size of which explodes
with the number of stages, hence generally few in practice. However, to overcome this obstacle, stochastic
programming takes advantage of scenario decomposition methods (progressive hedging [9]). On the other
hand, stochastic control deals with a state model driven by a white noise, that is, the noise is made of
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a sequence of independent random variables. Under such assumptions, stochastic dynamic programming
is able to handle many stages, as it offers reduction of the search for a solution among state feedbacks
(instead of functions of the past noise) [21[8].

In a word, dynamic programming is good at handling multiple stages — but at the price of assuming
that noises are stagewise independent — whereas stochastic programming does not require such assump-
tion, but can only handle a few stages. Could we take advantage of both methods? Is there a way to
apply stochastic dynamic programming at a slow time scale — a scale at which noise would be statis-
tically independent — crossing over short time scale optimization problems where independence would
not hold? This question is one of the motivations of this paper.

We will provide a method to decompose multistage stochastic optimization problems by time blocks.
In Sect.[2] we present a mathematical framework that covers both stochastic programming and stochastic
dynamic programming. First, in §2.1] we sketch the literature in stochastic dynamic programming, in
order to locate our contribution. Second, in §2.2] we formulate multistage stochastic optimization prob-
lems over a so-called history space, and we obtain a general dynamic programming equation. Then, we
lay out the basic brick of time blocks decomposition, by revisiting the notion of “state” in Sect. |3] We
lay out conditions under which we can reduce the history using a compressed “state” variable, but with
a reduction done by time blocks, that is, at stages that are not necessarily all the original unit stages.
We prove a reduced dynamic programming equation, and apply it to two classes of problems in Sect. [d]
In §4.3] we detail the case of two time-scales stochastic optimization problems. In §4.2] we apply the
reduction method by time blocks to a novel class consisting of decision-hazard-decision models. In the
appendix, we relegate technical results, as well as the specific case of optimization with noise process.

2 Stochastic Dynamic Programming with Histories

We recall the standard approaches used to deal with a stochastic optimal control problem formulated in
discrete time, and we highlight the differences with the framework used in this paper.

2.1 Background on Stochastic Dynamic Programming

We first recall the notion of stochastic kernel, used in the modeling of stochastic control problems. Let
(X,X) and (Y,Y) be two measurable spaces. A stochastic kernel from (X, X) to (Y,Y) is a mapping p :
X x Y —[0,1] such that

— for any Y €Y, p(-,Y) is X-measurable;
— for any x € X, p(z,-) is a probability measure on Y.

By a slight abuse of notation, a stochastic kernel is also denoted as a mapping p : X — A(Y) from the
measurable space (X, X) towards the space A(Y) of probability measures over (Y,Y), with the property
that the function = € X — {, p(z,dy) is measurable for any ¥ € Y.

We now sketch the most classical frameworks for stochastic dynamic programming.

Witsenhausen Approach. The most general stochastic dynamic programming principle is sketched by
Witsenhausen in [12]. However, we do not detail it as its formalism is too far from the following ones. We
present here what Witsenhausen calls an optimal stochastic control problem in standard form (see [11]).
The ingredients are the following:

1. time t = tg,to + 1,...,T — 1,T is discrete, with integers ty < T}

2. Xty Xty), -5 (X7, X7) are measurable spaces (“state” spaces);

3. (Uty, Uty ),y - -5 (Up—1,Ur—1) are measurable spaces (decision spaces);

4. J; is a subfield of Xy, for t = tg,...,T — 1 (information);

5. fr: (Xg x U, Xy @ Uy) — (Xyg1, Xi41) is measurable, for ¢t = tg,...,T — 1 (dynamics);
6. m, is a probability on (Xy,, Xy, );
7. j: (Xp,X7) — R is a measurable function (criterion).

With these ingredients, Witsenhausen formulates a stochastic optimization problem, whose solutions
are to be searched among adapted feedbacks, namely A : (X, X;) — (U, U;) with the property that



Ar 1(ut) c J; for all t = tg,...,T — 1. Then, he establishes a dynamic programming equation, where
the Bellman functions are function of the (unconditional) distribution of the original state x; € X, and
where the minimization is done over adapted feedbacks.

The main objective of Witsenhausen is to establish a dynamic programming equation for nonclassical
information patterns.

Eustigneev Approach. The ingredients of the approach developed in [6] are the following:

1. time t = tg,t0 + 1,...,T — 1 is discrete, with integers tg < T}

. (Ug, Uso)se - -y (Up—1,Up_1) are measurable spaces (decision spaces);

. (£2,9) is a measurable space (Nature);

AT}, 11 is a filtration of F (information);

. P is a probability on ({2, F);

3 (T ety, 71 Ue x 2,4, 7 W ®F) — R is a measurable function (criterion).
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With these ingredients, Evstigneev formulates a stochastic optimization problem, whose solutions are
to be searched among adapted processes, namely random processes with values in [[,_, ~ , ; U; and
adapted to the filtration {&"t}t07___7T_1. Then, he establishes a dynamic programming equation, where the
Bellman function at time ¢ is an F-integrand depending on decisions up to time ¢ (random variables)
and where the minimization is done over F;-measurable random variables at time ¢.

The main objective of Evstigneev is to establish an existence theorem for an optimal adapted process
(under proper technical assumptions, especially on the function j, that we do not detail here).

Bertsekas and Shreve Approach. The ingredients of the approach developed in [3] are the following:

1. time t = tg,t0 + 1,...,T — 1,T is discrete, with integers to < T

2. (Xty, Xty), -+ -y (X7, X7) are measurable spaces (state spaces);

3. (Uty, Uty ), - -, (Up—1,Ur—1) are measurable spaces (decision spaces);

4. (Wi, Wy,), .., (W, Wr) are measurable spaces (Nature);

5. fr o (X x Uy x Wi, X @ Uy @ Wy) — (Xi11,Xpy1) is a measurable mapping, for ¢t = ¢g,..., 7T — 1
(dynamics);

6. pr—1:t: Xp—1 X Upmqg — A(W,) is a stochastic kernel, for ¢ = tg,...,T — 1;

T. Ly : Xg x U x Wy > R fort =tg,...,7—1and K : X7 — R, measurable functions (instantaneous

and final costs).

With these ingredients, Bertsekas and Shreve formulate a stochastic optimization problem with time
additive additive cost function over given state spaces, action spaces and uncertainty spaces (note that
state and action spaces are assumed to be of fixed sizes when time varies, thus a “state” is a priori given).
They introduce the notion of history at time ¢ which consists in the states and the actions prior to ¢ and
study optimization problems whose solutions (policies) are to be searched among history feedbacks (or
relaxed history feedbacks), namely sequences of mappings Xy, X HZ:O (Us x X441) — Uy. They identify
cases where no loss of optimality results from reducing the search to (relaxed) Markovian feedbacks
X¢; — U;. Then, they establish a dynamic programming equation, where the Bellman functions are
function of the state x; € X;, and where the minimization is done over controls u; € U;. For finite horizon
problems, the mathematical challenge is to set up a mathematical framework (the Borel assumptions)
for which optimal policies exists.

The main objective of Bertsekas and Shreve is to state conditions under which the dynamic program-
ming equation is mathematically sound, namely with universally measurable Bellman functions and with
universally measurable relaxed control strategies in the context of Borel spaces. The interested reader
will find all the subtleties about Borel spaces and universally measurable concepts in [3] Chapter 7).

Puterman Approach. The ingredients of the approach developed in [§] are the following:

1. time t = tg,tg+ 1,...,T — 1,T is discrete, with integers ty < T

2. (Xty, Xty), -+ -y (X, X7) are measurable spaces (state spaces);

3. (Uty, Usy),- - -, (Up—1,Ur—1) are measurable spaces (decision spaces);

4. pr_1.4: X1 x Us1 = A(X}) is a stochastic kernel, for ¢t = tg,..., T — 1;

5. Ly Xy x Uy - R, fort =tp,...,7 — 1 and K : Xy — R, measurable functions (instantaneous and

final costs).



Puterman shares most of his ingredients with Bertsekas and Shreve, but he does not require uncertainty
sets and dynamics, as he directly considers state transition stochastic kernels. With these ingredients,
Puterman formulates a stochastic optimization problem, whose solutions are to be searched among
history feedbacks, namely sequences of mappings Xy, x ]_[Z;io (Us x X541) — Uy, Then, he establishes
a dynamic programming equation, where the Bellman functions are function of the history h; € X, x
]_[2;150 (Us x Xs41). He identifies cases where no loss of optimality results from reducing the search to
Markovian feedbacks X; — U;. In such cases, the Bellman functions are function of the state z; € Xy,
and the minimization in the dynamic programming equation is done over controls u; € Uy.

The main objective of Puterman is to explore infinite horizon criteria, average reward criteria, the
continuous time case, and to present many examples.

Approach in this Paper. The ingredients that we will use are the following:

1. time t = tg,tg + 1,...,T — 1,T is discrete, with integers ty < T

2. (U, Usy),- - -, (Up—1,Upr_1) are measurable spaces (decision spaces);

3. (W, Wy, ),. .., (Wp, Wr) are measurable spaces (Nature);

4. pr_1.e: Wy x Hi;B(US x Wei1) — A(W,) is a stochastic kernel, for ¢ = ¢g,...,T — 1,

5. 7:(Wq x ]_[ST;Ol (Us x Wei1), Wo ® ®ST:_01 (Us ® Ws41)) — R is a measurable function (criterion).

The main features of the framework developed in this paper are the following: the history at time ¢
consists of all uncertainties and actions prior to time ¢ (rather than states and actions); the cost is a unique
function depending on the whole history, from initial time ¢y to the horizon T'; the probability distribution
of uncertainty at time ¢ depends on the history up to time ¢t — 1. We will state a dynamic programming
equation, where the Bellman functions are function of the history h; € Wy x Hi:o(Us x Weyq1) and
where the minimization is done over controls u; € Us.

Our main objective is to establish a dynamic programming equation with a state, not at any time t €
{0,..., T}, but at some specified instants 0 =ty < t; < --- < t;y = T. The state spaces are not given a
priori, but introduced a posteriori as image sets of history reduction mappings. With this, we can mix
dynamic programming and stochastic programming.

Our framework is rather distant with the one of Evstigneev in [6]. It falls in the general framework
developed by Witsenhausen (see [II] and [4, § 4.5.4]), except for the stochastic kernels (we are more
general) and for the information structure (we are less general). Finally, our framework is closest to the
one found in Bertsekas and Shreve [3] and Puterman [8], exzcept for the state spaces, not given a priori,
and for the criterion, function of the whole history.

2.2 Stochastic Dynamic Programming with History Feedbacks

We now present a framework that is adapted to both stochastic programming and stochastic dynamic
programming. Time is discrete and runs among the integers ¢t = 0,1,2...,7 — 1,T, where T € N*. For
0 <r < s<T, we introduce the interval (r:s) = {teN |r <t < s}

2.2.1 Histories and Feedbacks

We first define the basic and the composite spaces that we need to formulate multistage stochastic
optimization problems. Then, we introduce a class of solutions called history feedbacks.

Histories and History Spaces. For each time ¢t = 0,1,2...,T — 1, the decision u; takes its values in a
measurable set U; equipped with a o-field U;. For each time ¢t = 0,1,2...,T, the uncertainty w; takes
its values in a measurable set W; equipped with a o-field W;.

Fort=0,1,2...,T, we define the history space H; equipped with the history field H; by

t—1 t—1
Hy = Wo x [ [(Us x Wei1) and 3 = Wo® @ (Us @ Wayr) , t=0,1,2...,T, (1)
s=0 s=0

with the particular case Hy = Wq, Hy = Wy. A generic element h; € H; is called a history:

hy = (wo, (u87ws+1)s:0,..‘7t71) = (wO7U07w1,U1;w27 cee aUt727wt71>Ut717wt) e H; .



For 1 < r < s <t, we introduce the (r:s)-history subpart
hr:s = (urfla Wyy - v 7“571,11)3) )
so that we have hy = (hy—1, hpy).

History Feedbacks. When 0 < r <t < T — 1, we define a (r:t)-history feedback as a sequence {vs},_,.
of measurable mappings o
vs : (Hg, Hs) — (Us, Us) -

We call I',..; the set of (r:t)-history feedbacks.

The history feedbacks reflect the following information structure. At the end of the time interval [t —
1,¢[, an uncertainty variable w; is produced. Then, at the beginning of the time interval [t,¢ + 1[, a
decision-maker takes a decision u;, as follows

wo YW Ug YW W1 YW Up v > W1 YW U1 YW W . (2)
2.2.2 Optimization with Stochastic Kernels

We introduce a family of optimization problems with stochastic kernels. Then, we show how such prob-
lems can be solved by stochastic dynamic programming.

In what follows, we say that a function is numerical if it takes its values in [—o0, +00] (also called
extended or extended real-valued function).

Family of Optimization Problems with Stochastic Kernels. To build a family of optimization problems
over the time span {0,...,T — 1}, we require two ingredients:

— a family {ps_1.s},<,<p Of stochastic kernels
ps—l:s N (Hs_l,ﬂfs_l) —>A(Wg) , 8= 1,...,T, (3)
that represents the distribution of the next uncertainty ws parameterized by past history hs_1 (see
the chronology in (2)),
— a numerical function, playing the role of a cost to be minimized,
j : (HTag{T) - [Oa +OO] ) (4)
assumed to be nonnegativeﬂ and measurable with respect to the field Hyp.

We define, for any {vs},_, 14 € It.71, a new family of stochastic kernels
Pl (Hy, He) — A(Hr) ,

that capture the transitions between histories when the dynamics hgy1 = (hs,us,ws+1) is driven by
us = vs(hs) for s = t,...,T—1 (see Definition[f]in §A.2]for the detailed construction of p],;; note that p;.
generates a probability distribution on the space Hyp of histories over the whole horizon {0,...,T}).
We consider the family of optimization problems, indexed by ¢ = 0,...,T7 — 1 and parameterized by
the history h; € Hy:
Ye:T—1€EL -1

inf | e s ) V€ H (5)
Hr

the integral in the right-hand side of the above equation corresponding to the cost induced by the
feedback 7;.r—1 when starting at time ¢ with a given history h;. For all t = 0,...,T — 1, we define the
minimum value of Problem by

‘/;&(ht) = inf J ](hfll—v)p?T(ht,dh{Iv) s Vht € Ht s (6&)
Hr

Ye:T—1€l:7—1
and we also define

Vr(hr) = j(hr), Vhr € Hr . (6b)

The numerical function V; : H; — [0, +00] is called the value function at time ¢.

1 We could also consider any j : H; — R, measurable bounded function, or measurable and uniformly bounded below
function. However, for the sake of simplicity, we will deal in the sequel with measurable nonnegative numerical functions.
When j(hr) = 400, this materializes joint constraints between uncertainties and controls.



Bellman Operators and Dynamic Programming. We show that the value functions in @ are Bellman
functions, in that they are solution of the Bellman or dynamic programming equation.

Fort=0,...,T, let Li(Ht, J:) be the space of universally measurable nonnegative numerical func-
tions over H; (see [3] for further details). For ¢t = 0,...,T — 1, we define the Bellman operator by, for
all ("2 Lg_(Ht+1,}Ct+1) and for all ht € Ht7

(Bt+1:t<,0) (he) = inf ©(he, wg, Wi 1) pepy1 (b, dwigr) - (7)

u €U Wit

Since p € Lg(HtH, Hit1), we have that Bii1.1 is a well defined nonnegative numerical function.
The proof of the following theorem is inspired by [3], and given in §A.3.1]

Theorem 1 Assume that all the spaces introduced in §2.2.1] are Borel spaces, the stochastic kernels
m are Borel-measurable, and that the criterion j in (E is a nonnegative lower semianalytic function.
Then, the Bellman operators in map LY (Hey1, Hipr) into LO (Hy, He)

By : Li(HtHJ{tH) - Lg(thf}ft) )

and the value functions V; defined in @ are universally measurable and satisfy the Bellman equation,
or (stochastic) dynamic programming equation,

VT :j 3 (83)
Vi = BiyriVisr, for t=T—1,...,1,0. (8b)

This theorem is mainly inspired by [3], with the feature that the state x; is in our case the history hy,
with the dynamics:

hiy1 = (htautywt+1) . 9)

This very general dynamic programming result will be the basis of all future developments in this paper.
In the sequel, we assume that all the assumptions of Theorem [I] are fulfilled, that is,

— all the spaces (like the ones introduced in §2.2.1)) will be supposed to be Borel spaces,

— all the stochastic kernels (like the ones introduced in ) will be supposed to be Borel-measurable,

— all the criteria (like the one introduced in ) will be supposed to be nonnegative lower semianalytic
functions.

3 State Reduction by Time Blocks and Dynamic Programming

In this section, we consider the question of reducing the history using a compressed “state” variable.
Differing with traditional practice, such a variable may be not available at any time ¢ € {0,...,T}, but
at some specified instants 0 = tg < t; < --- < ty = T. We have see in the previous section that the
history h; is itself a canonical state variable in our framework with associated dynamics @D However
the size of this canonical state increases with ¢, which is a nasty feature for dynamic programming.

3.1 State Reduction on a Single Time Block

We first present the case where the reduction only occurs at two instants denoted by r and t:
0<r<t<T.

Definition 1 Let (X,,X,) and (X, X;) be two measurable state spaces, 6, and 6; be two measurable
reduction mappings
GTZHT*)XT,QtZHtHXt, (10&)

and f,..; be a measurable dynamics
fr:t X X Hpy1 — Xy (1Ob)



The triplet (0, 0:, fr¢) is called a state reduction across (r:t) if we have
gt((hra hrJrl:t)) = fr:t (ar(hr); hr+1:t) ) vht € Ht . (100)

The state reduction (0,6, f,.+) is said to be compatible with the family {ps_1.s}r+1<s<t Of stochastic

kernels if

— there exists a reduced stochastic kernel
ﬁT:T’Jrl X, — A(WT+1) s (113)

such that the stochastic kernel p;.,.+1 in can be factored as

pr:r+l(hradwr+1) = 5r:r+1(ar(hr)adwr+l) 5 Vhr € Hr ) (11b)
— for all s =r+2,...,t, there exists a reduced stochastic kernel
Ps—1:s 0 Xp X Hypy1:6-1 — A(Ws) ) (110)

such that the stochastic kernel ps;_1.s can be factored as

ps—lzs((hra hr-&-l:s—l), dwe) = ﬁs—l:s ((gr(hr)a hr+1:s—1)adws> ) Vhs—l € Hs—l . (11d)

According to this definition, the triplet (6,,6;, f,+) is a state reduction across (r : t) if and only
if the diagram in Figure [1| is commutative; it is compatible if and only if the diagram in Figure [2] is
commutative.

I
Hy X Hyp1 —9%— Hy
0, 1 0
f7':t

Xr % Hr+1:t >y Xy

Fig. 1 Commutative diagram in case of state reduction (0, 60t, fr:¢)

H'r X Hr+l:s—1 ﬂ A(Ws)

Xy X HT+1:571

Fig. 2 Commutative diagram in case of state reduction (0r,0¢, fr:¢) compatible with the family {ps—1:s}r+1<s<t

We define the Bellman operator across (t:r) By, : Lg (Hy, H;) — ]Lg (H,., ) by
Bt:r = Bt:t—l 0---0 Br+1:r 5 (12)

where the one time step operators Bs.;_1, for 7 + 1 < s < t are defined in
The following proposition, whose proof is given in is the key ingredient to formulate dynamic
programming equations with a reduced state.



Proposition 1 Suppose that there exists a state reduction (0,0, fr.t) that is compatible with the fam-
ily {ps—1.s}r+1<s<t Of stochastic kernels (see Definition . Then, there exists a reduced Bellman
operator across (t:7)

B : LY (X4, X4) — LG (X0, X0) (13)
such that, for all 3, € L% (Xy,X;), we have that
(gtzrczt) o 07" = Bt:r(&t o et) . (14)

For all measurable nonnegative numerical function @y : Xy — [0, +0] and for all x, € X,., we have that

(gt:'r'@t)(xr) = inf ﬁr:rJrl(xraderrl)

ur€Ur Jyy, ;.

inf f Pr+1ir+2 (xra Up, Wr+1, dwr+2) e
Ur+1€Ur+1 Jyy,

inf J @t(fr:t(xr,ur,wT+1,...,ut_l,wt))
Wy

ut—1€UL—1

ﬁtflzt(xmur;wTJrla--~7ut72>wt71;dwt) . (15)

Proposition |1| can be interpreted as follows. Denoting by 6; : LY (X;, X;) — LY (Hy, ¥;) the operator
defined by
07 (P1) = Proby, V3, € LI(Xe, Xy)
the relation rewrites
9: © gt:r = By 0 9: s
that is, Proposition 1] states that the diagram in Figure |3|is commutative.

Bt.r
LY (He, He) —E" LY (Hy, Hr)

0; 0%

r

By.
L9 (X¢, X¢) —2"— LY (Xr, Xr)

Fig. 3 Commutative diagram for Bellman operators in case of a compatible state reduction (0,6, fr:t)

3.2 State Reduction on Multiple Consecutive Time Blocks and Dynamic Programming Equations

Proposition [I| can easily be extended to the case of multiple consecutive time blocks [t;,t;+1], i =
0,...,N —1, where
O=ty<ti <---<ty=T. (16)

Definition 2 Let {(X¢,,X¢,)},_ n be a family of measurable state spaces, {0, } ~ be a family

i=0,...,
of measurable reduction mappings 6;, : Hy, — X, and {fi,.4,,, } be a family of measurable
dynamics fti,iti+1 : Xti X Hti+13ti+1 — Xti+1.

The triplet ({X¢, b, n o {08 bico, N {fristinn }1‘:0 ) is called a state reduction across the con-

i=0,...,N—1

secutive time blocks [t ti11], i =0,...,N — 1 if every triplet (6;,,6;,,,, ft.:t,.,) is a state reduction, for
i1=0,...,N—1.

The state reduction across the consecutive time blocks [¢;,t;41] is said to be compatible with the
family {ps—1.s}1<s<r of stochastic kernels given in if every triplet (0;,,0:,,,, [t,;:t,.,) is compatible
with the family {ps—1.s}t,+1<s<t fori=0,...,N —1.

i4+1)



Assuming the existence of a state reduction across the consecutive time blocks [t;,¢;11] compatible
with the family of stochastic kernels , we obtain the existence of a family of reduced Bellman operators
across the consecutive (¢;41:¢;) as an immediate consequence of multiple applications of Proposition
that is,

Byt LY (X

xt —>L3(X,§i,xti), iZO,...,N—l,

i+17 i+l)

such that, for any function @, ,, € L9 (Xy,,,,X¢,,,), we have that
(Bti+12t¢¢ti+1) © oti = BtiJrl:ti (‘)Ztul © 0ti+1) .

We now consider the family of optimization problems and the associated value functions @
Thanks to the state reductions, we are able to state the following theorem which establishes dynamic
programming equations across consecutive time blocks. Its proof is an immediate consequence of multiple
applications of Theorem [T and Proposition

Theorem 2 Suppose that a state reduction ({X¢, };_o N0t }tizo, N {fristinn }i:O,..A,N—l) exists across
the consecutive time blocks [t; tiv1], ¢ = 0,...,N — 1 as in , that is compatible with the fam-
ily {ps—1:s1<s<r of stochastic kernels given in (3).

Assume that there exists a reduced criterion

j: Xy —[0,+0],
such that the cost function j in can be factored as
Jj= 50 Oty -

We define the family of reduced value functions {17}1.}1-=0W,N by

Vii = BiyrtiViry , fori=N—1,...,0. (18b)
Then, the family {Vy, }io.... N in @ satisfies
Vi, =V 06, , i=0,....,N. (18¢)

To obtain such a dynamic programming equation across time blocks, we needed the detour of Sect.
with a dynamic programming equation over the history space. Thus equipped, it is now possible to pro-
pose a decomposition scheme for optimization problems with multiple time scales, using both stochastic
programming and stochastic dynamic programming. We detail applications of this scheme in Sect. [4]

4 Applications of Time Blocks Dynamic Programming

We present in this section two applications of the state reduction result stated in Theorem

The first one corresponds to a two time-scales optimization problem. A typical instance of such
a problem is to optimize long-term investment decisions (slow time-scale) — for example the renewal
of batteries in an energy system — but the optimal long-term decisions highly depend on short-term
operating decisions (fast time-scale) — for example the way the battery is operated in real-time.

The second application corresponds to a class of stochastic multistage optimization problems arising
often in practice, especially when managing stocks (dams for instance). The decision-maker takes two
decisions at each time step ¢: at the beginning of the time interval [¢, ¢ + 1[, the first decision (quantity of
water to be turbinated to produce electricity for instance) is taken without knowing the uncertainty that
will occur during the time step (decision-hazard framework); at the end of the time interval [¢,¢ + 1],
an uncertainty variable w41 is produced and the second decision (quantity of water to be released to
avoid dam overflow for instance) is taken once the uncertainty at time step ¢ is revealed (hazard-decision
framework). This new class of problems is called decison-hazard-decision optimization problems.



4.1 Two Time-Scales Multistage Optimization Problems

In this class of problems, each time index t is represented by a couple (d,m) of indices, with d €
{0,...,D + 1} and m € {0,..., M}: we can think of the index d as an index of days (slow time-scale),
and m as an index of minutes (fast time-scale). The corresponding set of time indices is thus

T ={0,...,D} x {0,...,M} U {(D+1,0)} . (19)

At the end of every minute m—1 of every day d, that is, at the end of the time interval [(d, m—1), (d, m))7
0<d< Dand1l<m< M, an uncertainty variable wg,,, becomes available. Then, at the beginning
of the minute m, a decision-maker takes a decision uq4,,,. Moreover, at the beginning of every day d, an
uncertainty variable wq o is produced, followed by a decision uq. The interplay between uncertainties
and decision is thus as follows (compare the chronology with the one in ):

w0,0 A U/O,O A wO,l A U/O,l A e e e
RV VS w07M71 NS> uO,M*l NS> wO,M (VS uO,M A wl,O N> ul,O A wl,l e
s> WD N W UD M Y WDL0 -

We assume that a state reduction (as in Definition [2]) is available at the beginning of each day d, so that
it becomes possible to write dynamic programming equations by time blocks as stated by Theorem
Such state reductions will be for example available when the noises of the different days are stochastically
independent.

We present the mathematical formalism to handle such type of problems. In this application, the
difficulty to apply Theorem [2|is mainly notational.

Time Span. We consider the set T equipped with the lexicographical order

0,0)<(0,)<---<(@M)<(d+1,0)<---<(D,M—-1)<(D,M) < (D+1,0). (20a)
The set T of couples in is in one to one correspondence with the (linear) time span {0, ..., T}, where
T=D+1)x(M+1)+1, (20b)

by the lexicographic mapping T
7:{0,..., T} > T (20c)
t—7(t) = (d,m) . (20d)
In the sequel, we will denote by (d,m) € T the element of {0, ...,T} given by 771(d,m) = dx (M +1)+m:
Ts(d,m) -7 dm)=dx (M+1)+me{0,...,T}. (20e)

For (d,m) < (d',m'), as ordered by the lexicographical order (20a)), we introduce the time interval
((d,m):(d';m’)) = {(d",m") € T [ (d,m) < (d",m") < (d',m') }.

History Spaces. For all (d,m) € {0,...,D}x{0,..., M}, the decision ugq ., takes its values in a measurable
set Uy equipped with a o-field Ug, . For all (d,m) € {0,...,D} x {0,....,M} v {(D + 1,0)}, the
uncertainty wq ,,, takes its values in a measurable set Wy ,,, equipped with a o-field Wy, .

With the identification , for all (d,m) € T, we define the history space Hg, )

Hgm) = Wo,0 x Upo x Wo 1 x -+« X Ugm—1 X Wy , (21a)

equipped with the history field 3 (g, as in . For all d € {0,...,D + 1}, we define the slow scale
history hg element of the slow scale history space Hy

ha = h,0) € Ha = Hgp) , (21b)

equipped with the slow scale history field Hy = Hg). For all d € {1,..., D}, we define the slow scale
partial history space Hg.q41

Ha.a+1 = Hg1):a+1,0) = Ugo x Wa 1 x - x Ugapr—1 X Waar x Ugpr X Waya0, (21c)
equipped with the associated slow scale partial history field H4.4+1, the case d = 0 being
Ho.1 = H1,0) = Wo,0 x Upgo X Wo 1 x -+ x Ugnpr—1 x Wo s X Ug s X Wy . (21d)
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Stochastic Kernels. Because of the jump from one day to the next, we introduce two families of stochastic
kerneld?

— a family { Pd, M):(dﬂ,o)}o <q<p Of stochastic kernels across consecutive slow scale steps
p(d,M):(d+1,0) : H(d,M) - A(Wd+170) y d= O, ey D s (22&)
— a family {p(d)m,l):(d,m)}0<d<D 1<m<ny Of stochastic kernels within consecutive slow scale steps

p(d,m—l):(d,m) . H(d,m—l) - A(Wd)m) 5 d= 0, ce 7l) , M= 1, ey M . (22b)

History Feedbacks. A history feedback at index (d,m) € T is a measurable mapping

Yd,m) * Hiam) = Ua,m) -

For (d,m) < (d',m’), as ordered by the lexicographical order (20a)), we denote by I 4 m):(a,m’) the set of
((d,m):(d’,m'))-history feedbacks.

Slow Scale Value Functions. We suppose given a nonnegative numerical function
J:Hpy1 — [0, +00] , (23)
assumed to be measurable with respect to the field Hp, 1 associated to Hp1.

Ford =0,...,D, we build the new stochastic kernels p?d 0):(D+1,0) - Hd = A(Hp41) (see Deﬁnition
in for their construction), and we define the slow scale value functions

. . L1 ¥ ’
Va(hg) = veF(dl,?):f(D,M) JHDH J( D+1)p(d,0);(D+170)(hda th+1) , YhegeHy, (24a)
Vg1 =7 . (24b)
For d =0,..., D, we define a family of slow scale Bellman operators across (d + 1:d)
Bd+1td : HJ(J)F(HdJrlvj{dJrl) - Lg(Hda :}Cd) ) d= Oa ceey D 5 (253)
by
Bat1:a = Bia+1,0):(a,0) = B(a+1,0):(a,0) © Ba,ary:(d,pr—1) © - - - © B, 1):(d,0) - (25b)

Then, applying repeatedly Theorem [1|leads to the fact that the family {Vy}4—o,... p+1 of slow scale value
functions satisfies

VD+1 =.7 ) (263)
Vd IBd+1;dVd+1 5 fOI‘dID,D—].,...,O . (26b)

2 These families are defined over the time span {0,...,7} = T by the identification (20€) in such a way that the notation
is consistent with the notation .
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Compatible State Reductions. We now rewrite Definition [2|in the context of the two time-scales problem.

Definition 3 (Compatible slow scale reduction) Let {(X4,X4)},_ . p, be afamily of measurable
state spaces, {04},_  p, e family of measurable reduction mappings such that

9d : Hd g Xd s
and {fg.a+1} d=o,... p be a family of measurable dynamics such that
Jadvr : Xg x Hg.g1 — Xgqa -

The triplet ({Xd}dzo,....D—H Abatao. pia 7{fd:d+1}d20,“.7D) is said to be a slow scale state reduction
ifforalld=0,...,D

O0a+1((ha, ha:a+1)) = faar1(0a(ha), haas1) 5 V(ha, haarr) € Hayn -

The slow scale state reduction ({Xd}d:0 o pa1o0dtaco . pe1sUfaarita—o. D) is said to be compat-

ible with the two families {P(d7M):(d+1,0)}0<d<D and {p(dvm_l):(dvm)}0<d<D LemeM of stochastic kernels
defined in (22a)—(22b) if for any d = 0,..., D, we have that

— there exists a reduced stochastic kernel

P(d,M):(d+1,0) * Xa X Hg0y:(a,0) = AWaqr1,0) ,
such that the stochastic kernel p(g,ar):(d+1,0) in (22a) can be factored as

P(d,a):(d+1,0) (ha.nr, dWar1,0) = Paary:a+1,0) (0a(ha)s a0y dWasr1,0) 5 Yhan € Hegary
— for each m =1,..., M | there exists a reduced stochastic kernel
Pld,m—1):(d,m) * Xd X Hg0y:(a,m-1) = AWam) ,
such that the stochastic kernel p(g ,—1):(d4,m) in (22b)) can be factored as

P(dm—1):(dym) (Pdm—1, AWd,m) = Diam—1:(d,m) (0a(ha)s (a,0):(d,m—1) Wd,m) 5 Vham—1 € Higm_1) -

Dynamic Programming Equations. Using the reduced stochastic kernels of Definition [3] we apply Propo-
sition [1| and obtain a family of slow scale reduced Bellman operators across (d + 1:d)

Batra LY Xy, Xag1) = LY (Xa, Xa) , d=0,...,D. (29)
We are now able to state the main result of this section.

Theorem 3 Assume that there exists a compatible slow scale state reduction
({Xd}d:() D+ 0ata—o  pristfaaritao. D ) and that there exists a reduced criterion

J:Xpy1 —[0,+0]
such that the cost function j in can be factored as
j=Jjolpii.
We define the family of reduced value functions {Vd}dzo,...,DH by
Va1 =7, (31a)
Vd = gd+1:d‘~/d+1 , ford=D,...,0. (31b)

Then, the family {Va}a=o... . p+1 of slow scale value functions satisfies

.....

Vy=Vy400,, d=0,...,D. (31c)
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Proof Since the triplet ({Xa}y_o  py1:{0ata—o. . pi1sifadr1}a—o . p) 1 a state reduction across the
time blocks [(d,0), (d+1,0)], which is compatible with the family {p(d,o):(dﬂ,o
kernels, the proof is an immediate consequence of Theorem

)}0<d<D of stochastic

Thanks to Theorem [3] we are able to replace the optimization problem formulated on the whole time
set T by a sequence of D optimization subproblems formulated each on a single time block [(d, 0), (d+1,0)].
Moreover, the numerical burden of the method remains reasonable provided that the dimensions of the
spaces X4 remain small, thus avoiding the curse of dimensionality. This is the benefit induced by dynamic
programming which makes possible a time decomposition of the problem. However, to make the method
operational, we need to compute the functions V;, whose expression is available thanks to Proposition

Vi(zq) = inf J P(d,0):(d,1) (T, dwa1) . . .
Wa,1

ud,0€Uq,0
inf J Ped,M—1):(d, M) (Zd, U0, Wa,1, -+ Wa,M—1,dWa,nr)
ug,v—1€Ua, -1 Wy e
inf J Vit (faar1(@a, a0, Wa,1, - Ud,M—1, Wa M, Ud, M, Wat1,0))
ugq, M €EUq, pr Wasi1.0
P(d,M):(d+1,0)(Zd, Ua,0, Wa,1, -+, wa,n,dwarro) - (32)

In many practical situations, this computation is tractable by using stochastic programming. For example,
if the stochastic kernels p(4 ):(d,m+1) do not depend on the past controls (Ud,05" " s Ud,m—1), then it is
possible to approximate the optimization problem by using scenario tree techniques. Note that these
last techniques do not require stagewise independence of the noises. We are thus able to take advantage
of both the dynamic programming world and the stochastic programming world:

— use dynamic programming at slow time scale across consecutive slow time steps, when the slow time
scale noises are supposed to be stochastically independent; produce slow time scale Bellman functions;

— use stochastic programming at short time scale, within two consecutive slow time steps; the final
short time scale cost is given by the slow time scale Bellman functions; no stagewise independence
assumption is required for the short time scale noises.

4.2 Decision-Hazard-Decision Optimization Problems

We apply the reduction by time blocks to the so-called decision-hazard-decision dynamic programming.

4.2.1 Motivation for the Decision-Hazard-Decision Framework

We illustrate our motivation with a single dam management problem. We can model the dynamics of
the water volume in a dam by
St+1 = min{Sﬁ, St —qt +agp1}, (33)

where t = tg,t9 +1,...,7 — 1 and

— S%is the maximal dam volume,
— S, is the volume (stock) of water at the beginning of period [¢,t + 1],
— ay41 is the inflow water volume (rain, etc.) during [¢,¢ + 1],
— g is the turbined outflow volume during [¢,¢ 4+ 1| (control variable),
— decided at the beginning of period [t,t + 1[,
— chosen such that 0 < ¢; < Sy,
— supposed to depend on the stock S; but not on the inflow water a;1.

The min operation in Equation ensures that the dam volume always remains below its maximal
capacity, but induces a non linearity in the dynamics.
Alternatively, we can model the dynamics of the water volume in a dam by

Sir1 =5 —q¢ — az41 — T4, (34)
where t = tg,tg+1,...,T —1 and
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— 741 is the spilled volume
— decided at the end of period [¢t,t + 1],
— supposed to depend on the stock S; and on the inflow water a;1,
— and chosen such that 0 < S; — q; + ar11 — repq < S%

Thus, with the formulation , we pay the price to add one control r;11, but we obtain a linear model
instead of the nonlinear model . This is especially interesting when using the stochastic dual dynamic
programming (SDDP), for which the linearity of the dynamics is used to obtain the convexity properties
required by the algorithm.

4.2.2 Decision-Hazard-Decision Framework

We consider stochastic optimization problems where, during the time interval between two time steps,
the decision-maker takes two decisions. At the end of the time interval [s — 1, s[, an uncertainty vari-
able wz is produced, and then, at the beginning of the time interval [s, s + 1[, the decision-maker takes
a head decision uf. What is new is that, at the end of the time interval [s, s + 1[, when an uncertainty
variable wg +1 is produced, the decision-maker has the possibility to make a tail decision uz +1- This lat-

ter decision uz +1 can be thought as a recourse variable for a two stage stochastic optimization problem

that would take place inside the time interval [s,s + 1[. We call wg the uncertainty happening right
before the first decision. The interplay between uncertainties and decisions is thus as follows (compare
the chronology with the one in ):

w%wu%ww?wu?wugwwgw ng_lwubs,_lwuﬁs_lwwlgwug_

Let S € N*. For each time s = 0,1,2...,5 — 1, the head decision ug takes values in a measurable
set U%, equipped with a o-field ug. For each time s = 1,2...,5, the tail decision uz takes values in
measurable set UZ, equipped with a o-field UZ. For each time s = 1,2...,5, the uncertainty wz takes its
values in a measurable set WZ, equipped with a o-field WZ For time s = 0, the uncertainty wg takes its
values in a measurable set Wg, equipped with a o-field Wg.

Again, in this application, the difficulty to apply Theorem [2|is mainly notational.

History Spaces. For s =0,1,2...,5, we define the head history space

s—1
HE = Wg X H (Uﬁs, X W, x UZ,H) ) (35a)
s'=0
and its associated head history field 9—(2. We also define, for s = 1,2...,.5, the tail history space
H, =H |, xU"_ | xW, (35b)

and its associated tail history field fH';.

Stochastic Kernels. We introduce a family of stochastic kernels {ps_1.s}1<s<s, with

Ps—1:s * Hﬁ71 - A(WZ) . (36)

S

History Feedbacks. For s =0,...,5 — 1, a head history feedback at time s is a measurable mapping
A - U

We call I'! the set of head history feedbacks at time s, and we define FS:S =Tfx--x I’g. We also define,
for all s =1,2...,5, a tail history feedback at time s as a measurable mapping

VZ:HZ_’UZ-

We call Fsb the set of tail history feedbacks at time s, and we define F;E:S =TI?x---x Fg.
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Value Functions. We consider a nonnegative numerical function

j:HL — [0, +o0] (38)
assumed to be measurable with respect to the head history field J—Cg.
For s =0,...,S5 , we define value functions by
Va(hf) = inf f J(Hs)pYg" (B, dlY) , VhE € HE (39)
Avel? o yvelt | o Jub '

where p] & " has to be understood as pl.g (see Definition , with

s (hE) = (h“) , VhieH!, (40a)
o (%) :( )7k (R2, A2 (R, ))), Vs'=s+1,...,5—1, Vi’ e, (40b)
vs(hs) =% (h">, Vhiy € Hy . (40¢)

The following proposition, whose proof has been relegated in characterizes the dynamic pro-
gramming equations in the decision-hazard-decision framework.

Proposition 2 For s =0,...,5 — 1, we define the Bellman operator

Bgyi:s: L (H§+1,g—cs+1) - Lg(Hg,ng) (41a)
such that, for all ¢ € LY (Hgﬂ,ﬂ{sﬂ) and for all hf e HE,
(Besrow) (h) = inf (, f ol Wy 1) )P (B dwlyy) . (41b)
ufet? Jwp s+1€U

Then the value functions satisfy
VS :j ) (41C)
Vs:Bs-f-l:s‘/s-f-l) VSZO,,S—l (41d)
Compatible State Reductions. We now rewrite Definition [2|in the context of a decision-hazard-decision

problem.

Definition 4 (Compatible state reduction) Let {Xs} _, g be a family of state spaces, {05}, ¢
be a family of measurable reduction mappings such that

6, : Hf —X,,

and {fss+1}s_0 g1 be a family of measurable dynamics such that

b
fssr1 1 X x Ug X Wsiq % Us+1 — Xsq1 -

The triplet ({Xs}szo g 0steo g {fss1tog S—l) is said to be a decision-hazard-decision state
reduction if, for all s =0,...,5 — 1, we have that

05+1((h87u§7w5+17u2+1)) = fs:s+1(95(hs)7uivws+1au2+1) )

V(he,uf, weyr, vl ) € HE x U x Wy x U2,

The decision-hazard-decision state reduction is said to be compatible with the family {ps.s+1}o<s<s—1 of
stochastic kernels in if there exists a family {ps.s+1}o<s<s—1 of reduced stochastic kernels

ﬁs:s-kl : Xs - A(Ws+l) 5
such that, for each s =0,...,5 — 1, the stochastic kernel ps.s41 in can be factored as

ps:s+1(hﬁ3a dws+1) = ﬁs:erl (Hs(hg), dw8+1) ’ ths € Hus .
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Dynamic Programming Equations. We state the main result of this section.

Theorem 4 Assume that there exists a decision-hazard-decision state reduction
({Xs}s:o,...,s AbOstoo. .5 {fs:s+1}5207_,,,5_1) and that there exists a reduced criterion

j:Xg — [0, +o0],
such that the cost function j in can be factored as
j=jobs.

We define a family of reduced Bellman operators across (s + 1:s)

~

Bosiis : LY (Xop1, Xoy1) = LY (X, Xs), s=1,...,5—1, (45a)

by, for any measurable function @ : X511 — [0, +00],

(Bs+1:59)(xs) = inf ( inf @(f515+1(x5,uﬁs,w5+1,uz+1)))ﬁs;s+1(ms7dws+1) . (45D)

fept b b
uSeUs JW, g Sug €07,

*We define the family of reduced value functions {‘73}3:0,...,5 by

Vo= (46a)
‘N/S :gSﬂ:S‘N/Sﬂ fors=5—-1,...,0. (46D)

Then, the value functions Vs defined by satisfy
Vo=V,o00,, s=0,...,5. (47)

Proof Tt has been shown in the proof of Proposition [2] that the setting of a decision-hazard-decision
problem was a particular kind of two time-scales problem. The proof of the theorem is then a direct
application of Theorem

Theorem [4 allows to develop dynamic programming equations in the decision-hazard-decision frame-
work. Such equations can be solved using the stochastic dual dynamic programming (SDDP) algorithm
provided that convexity of the value functions is preserved. This requires linearity in the dynamics, a
feature that may be recovered by modeling the problem in the decision-hazard-decision framework as

illustrated in §4.2.1]

5 Conclusion and Perspectives

As said in the introduction, decomposition methods are appealing to tackle multistage stochastic opti-
mization problems, as they are naturally large scale. The most common approaches are time decompo-
sition (and state-based resolution methods, like stochastic dynamic programming, in stochastic optimal
control), and scenario decomposition (like progressive hedging in stochastic programming). One also finds
space decomposition methods [IJ.

This paper is part of a general research program that consists in mizing different decomposition
bricks. Here, we tackled the issue of mixing time decomposition (stochastic dynamic programming) with
scenario decomposition. For this purpose, we have revisited the notion of state, and have provided a
way to perform time decomposition but only accross specified time blocks. Inside a time block, one can
then use stochastic programming methods, like scenario decomposition. Our time blocks decomposition
scheme is especially adapted to multi time-scales stochastic optimization problems. In this vein, we have
shown its application to two time-scales and to the novel class of decision-hazard-decision problems.

We are currently working on how to mix time decomposition (stochastic dynamic programming) with
space/units decomposition.

Acknowledgements. We thank Roger Wets for the fruitful discussions about the possibility of
mixing stochastic dynamic programming with progressive hedging. We thank an anonymous reviewer for
challenging our first version of the paper: the current version has been deeply restructured.
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A Technical Details and Proofs

In this section, we provide technical details, constructions and proofs of results in the paper.

A.1 Histories, Feedbacks and Flows

We introduce the notations

t

Wr:t:HWs, 0<T<t<T
s=r
t

Ur:t:HU57 o<r<t<sT-1
s=r

t—1

Hy.p = 1_[ (USXWSle):]Urfl XWp X x U1 x Wy, 1<r<t<T.

s=r—1
Let 0 <7 < s<t<T. From a history h¢ € H;, we can extract the (r:s)-history uncertainty part
[helig = (Wry ..., ws) = Wris € Wris, 0ST <5<t
the (r:s)-history control part (notice that the indices are special)
[he]s = (ur—1, - us—1) = Up—1:5-1 € Up_1:5-1, 1<T<s<t,
and the (r:s)-history subpart
[hilris = (Ur—1,Wry . Us—1,Ws) = hpis € Hpis, 1<r<s<t,

so that we obtain, for 0 <r+ 1< s <t

ht = (W0, U0, W1, ..., Up—1, Wr, Up, Wyt 1, ... U2, W1, Ut—1,Wt) = (Rr, hry1:t)

Ay hrg1:t

Flows. Let r and t be given such that 0 < r < ¢t < T. For a (r:t — 1)-history feedback v = {vs}
define the flow 4531 by

qu;/:t cHi x Wr+1:t — H

(hrywr1:t) = (he, e (Rr)y Wt 1, Ve (Bey v (he)s Wrg1), wrg2, -+ s Ye—1(Re—1), we)
that is,
¢z:t(hT7wT+1:t) = (h'm Up, Wr41,Ur4+1, Wr42, ..., utfl,wt) )
with hs = (hryurywrntlw-wusfl’ws) , r<s<t,

and us =vs(hs), r<s<t—1.
When 0 <r =t < T, we put

SpZ:r:HT‘—)HT‘u hy = hy .

(48a)

(48b)

(48c)

(49a)

(49Db)

(49c)

(49d)

Lt—1 € F’r:tfl) we

(50a)
(50b)

(50c)
(50d)
(50e)

(50f)

With this convention, the expression @, makes sense when 0 < r < ¢t < T: when r = ¢, no (r:r — 1)-history feedback
exists, but none is needed. The mapping 45:”5 gives the history at time t as a function of the initial history h, at time r

and of the history feedbacks {vs}

s=r,

dsz:t+1(hr7wr+1:t+l) = ((-p:;t(hrywr-#l:t),'yt (Qz:t(hTwa+1:t))7wt+1) 5 0sr<t<T-1 s

¢:;t(hr7wr+1:t) = ¢Z+1:t((h1"7’yr(h7‘)7w’l‘+1))w’!‘+2:t) , 0<r<t<T.
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A.2 Building Stochastic Kernels from History Feedbacks

Definition 5 Let r and ¢ be given such that 0 < r <t < T.

— When 0<r<t<T, for
1. a (r:t — 1)-history feedback v = {ys},_,.
2. a family {ps—l;s}r+1<s<t of stochastic kernels

t—1 € lyrit—1,

psflzs:Hsfl_’A(Ws)7 s=r+1,...,t,

we define a stochastic kernel
Py Hr — A(Hy) (52a)

by, for any ¢ : Hy — [0, +00], measurable nonnegative numerical function, that is, ¢ € ]Lg (Hg, He), E'

jH PR, Ry 1.)p (s dBG) =
t

t
f (p(@z:t(hr,wr+1;t)) 1_[ Ps—l:s(éz:‘s,l(hww wr+1:s—l)7dws) . (52b)
Wri1:t s=r+1
— When 0 <r =t < T, we define
PZ;T ‘Hr — A(HT‘) ) pz:r(hT"dh;") = 6hr (dh/r) . (520)

The stochastic kernels p;’:t on H, given by , are of the form
P;Y:t(hrvdhft) = plt(hn dh/rdhlr+1:t) = 5h7~(dh/r) ® QZ:t(hh dh/r+1:t) ) (53)

where, for each h, € H,, the probability distribution g::t(hr, dh/r+1:t) only charges the histories visited by the flow from r+1
to t. The construction of the stochastic kernels p., is developed in [3} p. 190] for relaxed history feedbacks and obtained
by using [3 Proposition 7.45].

Proposition 3 Following Deﬁnition@ we can define a family {pzzt} of stochastic kernels. This family has the flow

r<s<t
property, that is, for s <t,
pzzt(hadhé) = J. ps:s+1(h57dws+1)pz+1;t((h5775(hs)7ws+1)7dhé) . (54)
Wst1
Proof Let s < t. For any ¢ : Hy — [0, +00], we have that
RO (552)
t

t
:f ¢(¢Z:t(hs7w5+1it)) H Ps! —1:s/ (QZ:Slfl(h‘S?werl:s/—l)vdws’)
W1t s'=s+1

by the definition (52b) of the stochastic kernel p.,,

t
:j @(QZ;t(hs’ws+1:t))ﬂs:s+1(hs:dws+1) 1_[ Ps’—1:s (qv’z;s/,l(hsvws+1:s’71)7dws’)
Wai1:e s'=s+2

by the property (50f) of the flow &7.,,

:j (D71 1.4 ((hs, s (hs), wst1), wst2:t))
W1t

t
ps:s+l(h37d’ws+1) 1_[ Ps!—1:s’ (¢Z+1:S/_1((h87'75(h5)7ws+1)7ws+2:s’—l)7dws’)

s'=s5+2
by the flow property (51b)),
[ b dwnn) [ 0@ (e (), wer), wer2))
Wei1 W ot

t
H Ps!—1:s’ (@z+115/71 ((h57 'Ys(hs)7 ws+1)7 ws+2:5/,1), dws’)
s'=s54+2

3 See Footnote
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by Fubini Theorem [7}, p.137],

= fW Ps:s+1 (h87 dws+1) J]HI w((h.lsv’y\s(hg)7 w,s+1)7 h;+2:t)p3+1;t ((h57 Vs (hS)v wS+1)7 dh;)
s+1

t

by definition (52b]) of pz+1:t,

:jH (p((h;,73(h;)7w;+1)7h{;+2;t) jw Ps:s+1(hs,dw5+1)PZ+1;t((hsa75(hs)vw5+1)7dh;) (55b)
t s+1

by Fubini Theorem and by definition (52b) of p7,,. As the two expressions (55a)) and (55b)) are equal for any ¢ : Hy — [0, +00],
we deduce the flow property . This ends the proof.

A.3 Proofs

A.3.1 Proof of Theorem[]]

Proof We only give a sketch of the proof, as it is a variation on different results of [3], the framework of which we follow.
We take the history space H; for state space, and the state dynamics

f(he,ug, wer1) = (b, ug, weqr) = hegr € Hegpn = Hy x Up x Wegg . (56)

Then, the family {ps_hs}lgng of stochastic kernels gives a family of disturbance kernels that do not depend on the
current control. The criterion to be minimized (4) is a function of the history at time 7', thus of the state at time 7.
Problem is thus a finite horizon model with a final cost and we are minimizing over the so-called state-feedbacks. Then,
the proof of Theorem [1| follows from the results developed in Chap. 7, 8 and 10 of [3] in a Borel setting. Since we are
considering a finite horizon model with a final cost, we detail the steps needed to use the results of [3, Chap. 8].

The final cost at time T can be turned into an instantaneous cost at time 7' — 1 by inserting the state dynamics
in the final cost. Getting rid of the disturbance in the expected cost by using the disturbance kernel is standard practice.
Then, we can turn this non-homogeneous finite horizon model into a finite horizon model with homogeneous dynamics
and costs by following the steps of [3] Chap. 10]. Using [3l Proposition 8.2], we obtain that the family of optimization
problems , when minimizing over the relaxed state feedbacks, satisfies the Bellman equation ; we conclude with [3]
Proposition 8.4] which covers the minimization over state feedbacks.

To summarize, Theorem |1 is valid under the general Borel assumptions of [3, Chap. 8] and with the specific (F ™)
assumption needed for [3| Proposition 8.4]; this last assumption is fulfilled here since we have assumed that the criterion
is nonnegative.

A.83.2 Proof of Proposition
Proof Let @t : X4 — [0,+0] be a given measurable nonnegative numerical function, and let ¢ : Hy — [0, +00] be
Yt =@t o0t . (57)

Let ¢, : Hy, — [0, 4+00] be the measurable nonnegative numerical function obtained by applying the Bellman operator By,
across (t:7) (see (12)) to the measurable nonnegative numerical function ;:

Pr = Bt:v‘@t = Br+1:7" ©---0 Bt:tfl%t . (58)
We will show that there exists a measurable nonnegative numerical function
&r : Xy — [0, +00]

such that
r =@rob,. (59)

First, we show by backward induction that, for all s € {r,...,t}, there exists a measurable nonnegative numerical
function B such that @s(hs) = B4(0r(hr), hry1:s). Second, we prove that the function @, = ,. satisfies (59).

— For s = t, we have, by and by (10c), that

oi(he) = (0t (he)) = Gt (frit (Or(hr), hrt1:t))

so that the measurable nonnegative numerical function @, is given by @¢ o fr:¢.
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— Assume that, at s + 1, the result holds true, that is,

<Ps+1(hs+1) = ¢s+1(er(hr)’ hr+1:3+1) . (60)
Then, by ,
Sos(hs) = (Bs+1:s¢s+l)(hs)

= inf J. @s+1((h31u37ws+1))Ps:s+1(h37dws+1)
us€Us Jwy, 4 q

by definition of the Bellman operator

= inf JW ¢S+1((9r(hr),(hr+1;s,us,ws+1)))ps;s+1(h5,dws+1)
s+1

ugs€lUg

by induction assumption

= ulrelﬁfj ¢s+1((er(hr)7 (hrt1:s, Us,ws+1)))5s:5+l ((er(hr)7 hr+1:s)adws+1)
s s Ws+1

by compatibility of the stochastic kernel

= P, (Gr(hr), hr+1:8) )

where

Pg (ivrahr+1:s) = uHElI[fJ J‘W ¢5+1(($T‘7 (h’r‘+1:57u31wS+1)))ﬁS:S+1(($T‘7h’l‘+1:S)7 dws+1) .
s=ue s+1

The result thus holds true at time s.

The induction implies that, at time 7, the expression of ¢, (h,) is

SDT‘(hT) = @r(er(hf‘)) )

since the term h,4 1., vanishes. Choosing @, = @, gives the expected result.

A.3.8 Proof of Proposition 4

Proof We now show that the setting in is a particular kind of two time scales problem as seen in For this purpose,
we introduce a spurious uncertainty variable wg taking values in a singleton set Wﬂs = {Eﬁs}, equipped with the trivial
o-field {7, Wg}, for each time s = 1,2...,S. Now, we obtain the following sequence of events:

o wfbgfl o u%fl Naaed wg_l o uﬁs_l o wg o u"s T

f
S

which coincides with a two time scales problem:

wo,0 = wg WA U0 = ug w1 = w? WA UQ T = U

slow time cycle

i

b b
w1,0 = Wy W UL = Uq W W] = Wo W UL T = Ug v

slow time cycle

b b
s W10 = wﬁS—l W US_1,0 = u{iS'—l W WG] = Wg W US—11 = Ug YW WS 0 = wg .

slow time cycle

We introduce the sets
Wy =W, for de{0,...,5},
Waq =Wy, for de{0,...,S— 1},
Ugo = UY, for de{0,...,5 1},
Ugy = U0, for de{0,...,S—1}.

As a consequence, we observe that the two time scales history spaces in are in one to one correspondence with the
decision-hazard-decision history spaces and fields in (35a])—(35b|) as follows:
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ford=0,1,2...,85,

¥
L

Hd,O = Wg X (Ud’,o X Wd’,l X Ud’,l X Wd'+1,0)

&
[
= o

_ vl f b b i
=Wy x (Ud’ X Worgy X Uggq % Wd’+1)

a &
[
= o

= Wg x (U(ui' x WZ'+1 x UZ'+1) = Hﬁl ’

&
[l
<)

ford=0,1,2...,S,

d—1
b b
g{d,O = W?J ® ® (ugy W /41 ®uU /41 ®WZ’+1) )
d’'=0

ford=0,1,2...,5 —1,

-8
|
—

Hd,l = Wg X (Ud/,() X Wd’,l X Ud’,l X Wd’+1,0) X Ud,O X Wd,l

a &
Lo
= o

= Wj x (U5 X Wy X Uy X W5/+1) x Ul x Wiy

&
Il
= o

d7
_ b b b b
=Whx [] (U, x Woy ) x 0%, ) x U x Wy =HE,
d’'=0

ford=0,1,2...,5—1,
Hag =Whe @ (W @W) @, @W,,, ) @ULQW),, .

For any element h of Hg o or Hy 1 we call [h]ﬁ the element of ]HI or H—]Ill’i corresponding to h with all the spurious
uncertainties removed. By a slight abuse of notation, the criterion j in (38) (decision-hazard-decision setting) corresponds

to jo [ . ]Ii in the two time scales setting in The feedbacks in the two time scales setting in are in one to one
correspondence with the same elements in the decision-hazard-decision setting, namely

va0 =501 a1 =10 ]

Now we define two families of stochastic kernels
— a family {p(d@):(d,l) } 0<d<D of stochastic kernels within two consecutive slow scale indexes
p(d,0):(d,1) : Ha,o = AWq 1),
hd,0 = pd:a+1 © []u
— a family {p(d71):(d+170)}0<d<D—1 of stochastic kernels across two consecutive slow scale indexes

P(d,1):(d+1,0) P Ha,1 = AWay10),
hg1— 0_ 9,
a1 w§l+1( )

where we recall that W10 = WEHI = {E?:H»l}'
With these notations, we obtain Equation (41b)), where only one integral appears because of the Dirac in the stochastic
kernels p(g,1):(a+1,0)- Indeed, for any measurable function ¢ : Hgy1,0 — [0, +00], we have that

(Bat1:a¢)(hao) =  inf JW p(d,O):(d,1)<hd,Ovdwd,1)
d,1

uq,0€Uq,0

inf f @(hd,o,ud,(),wd,hUd,hwd+1,0)ﬂ(d,1):(d+1,o)(hd,mhd:d+1,dwd+1,o)~
ug,1€0a,1 Jwy o
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Now, if there exists @ : HF

941 — [0, +00] such that ¢ = @o [ ]u, we obtain that

(Bag1:a¢)(hao) =  inf J\w P(d,o):(d,l)(hd,mdwd,l) inf  3([ha,0]" ua,0, wa, 1, ua,1)
d,1

ug,0€U04,0 ug,1€U0q4,1

J- P(d,1):(d+1,0) (hd,o, ha:d+1, dwd+1,0)
Wat1,0

—  inf J;W p(d,O);(d,1)<hd,0,dwd,1) inf ‘z([hd,o]uvud,mwd,hud,l)
d,1

uq,0€Uq,0 ug,1€U0q,1

by the Dirac probability of the stochastic kernels p(g,1):(a+1,0)>
= [of j L P(d0):(d1) (hﬂ, deH) , inf G(R, uly iy ul )
ub el JWy gy 1€Ug

This ends the proof.

B Dynamic Programming with Unit Time Blocks

Here, we recover the classical dynamic programming equations when a state reduction exists at each time t =0,..., 7T —1,
with associated dynamics. Following the setting in §2.2.2] we consider a family {p:—1.¢}1<t<7 Of stochastic kernels as in
and a measurable nonnegative numerical cost function j as in .

B.1 The General Case of Unit Time Blocks

First, we treat the general criterion case. We assume the existence of a family of measurable state spaces {X;},_,  and
the existence of a family of measurable mappings {0¢},_,  with 0; : Hy — X;. We suppose that there exists a family of
measurable dynamics {fe:t+1},_g  p_q With frep1 0 Xe x Up x Wep1 — Xgq1, such that

Or 1 ((ht, ut, wig1)) = fror1 (0e(he), ue, wegn) , V(he,ut,wer1) € He x Up x Wiy . (65)

The following proposition is a immediate application of Theorem [2| and Proposition

Proposition 4 Suppose that the triplet ({Xe},_o 7, {0t}i—o . 7 {ft:t+1}4—o . 1_1), which is a state reduction across
the consecutive time blocks [t,t+1];—o,... 7—1 of the time span, is compatible with the family {p;_1.¢}t=1,..., 7 of stochastic

kernels in (see Definition @)
Suppose that there exists a measurable nonnegative numerical function
J:Xr —[0,+00]

such that the cost function j in can be factored as

j=jobr.

Define the family {\N/t}t o T of functions by the backward induction

yeeey

Vr(zr) = j(ar) , Vor e Xp (67a)
Vi(zt) = uilelufj f ‘7t+1(fm+1(wt,ut,wt+1))ﬁt:t+1(l‘t,dwt+1) , Vay e Xy, (67b)
EERE IWa

fort=T-1,...,0.
Then, the family {V;f}t:O,...,T of value functions defined by the family of optimization problems @ satisfies

Vi=Viob, t=0,...,T. (68)
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B.2 The Case of Time Additive Cost Functions

A time additive stochastic optimal control problem is a particular form of the stochastic optimization problem presented
previously. As in 3, we assume the existence of a family of measurable state spaces {X¢},_o 1, the existence of a

family of measurable mappings {6:},_, 1, and the existence of a family of measurable dynamics such that Equation (65
is fulfilled.
We then assume that, for ¢ = 0,...,T —1, there exist measurable nonnegative numerical functions (instantaneous cost)

Ly : Xy x Up x Wi — [0, +00] ,
and that there exists a measurable nonnegative numerical function (final cost)
K :Xp — [0, +00]
such that the cost function j in (4) writes

T—-1

jlhr) = Y Le(0:(he), u, wip1) + K (07 (hr)) -
t=0

The following proposition is an immediate consequence of the specific form of the cost function 7 when applying Proposi-

tion @l

Proposition 5 Suppose that the triplet ({X¢},_o 7.0t} 7 {ft:t+1}4o 17_1), which is a state reduction across

the consecutive time blocks [t,t+1];—o,... 7—1 of the time span, is compatible with the family {p;_1.¢}1=1,..., 7 of stochastic
kernels in (see Definition @
We inductively define the family of functions {Vi}i—o,... 7, with V3 : Xy — [0,400], by the relations

Vr(zr) = K(zr), Yor e Xr (70a)

and, fort =T —1,...,0 and for all z¢ € X¢,

‘A/t(xt) = uirellfj (Lt(ﬂﬁtvutth-#l) + ‘A/t+1(ft:t+1(xt7uuwt+1))>5t:t+1($t,dwt+1) . (70b)
EEREIWyg

Then, the family {Vt}tzo,.“,T of value functions defined by the family of optimization problems @ satisfies

t—1
Vt(ht) = Ls(gs(hs)7u57ws+1) +‘/t(9t(ht)) , t= 17---7T7 (71&)

S

0
Vo(ho) = Vo (60(ho)) - (71b)

C The Case of Optimization with Noise Process

In this section, the noise at time ¢ is modeled as a random variable W;. We suppose given a stochastic process {Wt}tzo,m,T
called noise process. Then, optimization with noise process becomes a special case of the setting in @ Therefore, we can
apply the results obtained in Sect.

We moreover assume that, for any s =0,...,7—1, the set Us in is a separable complete metric space.

C.1 Optimization with Noise Process

Noise Process and Stochastic Kernels. Let (£2,A) be a measurable space. For ¢t = 0,...,T, the noise at time ¢ is modeled as
a random variable W defined on {2 and taking values in W. Therefore, we suppose given a stochastic process {Wt},_o o
called noise process. The following assumption is made in the sequel.

Assumption 1 For any 1 < s < T, there exists a regular conditional distribution of the random variable W knowing

the random process Wo.s—1, denoted by [P’xo‘kl (wo:s—1,dws).

s

Under Assumption [1} we can introduce the family {psfljs}léséT of stochastic kernels

Ps—1:s cHe—1 A’A(Ws) , §= 1:'~-7T» (723)
defined by
Woes_
ps—lzs(hs—l’dws) = PWS. ! ([hs—l]‘O)Ys—19dws) , s=1,...,T, (72b)

where [hsfl]g‘fsil = (wop, w1, ..., ws—1) is the uncertainty part of the history hs_1 (see Equation (49a))).
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Then, using Definition the stochastic kernels p::t : H,, — A(H) are defined, for any measurable nonnegative
numerical function ¢ : Hy — [0, + 0], by

f (p(h;)p:t(h’ﬁdh/t) = J W(QZ;t(hT‘y wr+1:t))P$0:r ([hr]})yrydwr+1:t) .

H, Wo1ee Tl
= E|0((hr, Wrs1:) [Wour = [, (73)
where @::t(hr7wr+1;t) = (hr,vr(hr), Wrs1, Yr41(Ar, Yr(Br), Wrg1), Wrg2, - -+, Ye—1(he—1), we) is the flow induced by the
feedback 7 (see §A-T).
Adapted Control Processes. Let t be given such that 0 <t < T — 1. We introduce
Avt ={, 2}, Avt+1 =0(Weg1), .oy, Arr—1 =0(Wig1,...,Wrp_q).

Let 1.9(£2, As.7—1,Upr—1) be the space of A-adapted control processes (U, ..., Up_1) with values in Upp_1, that is, such
that
oc(Us)c Aps, s=1t,...,T—1.

Family of Optimization Problems over Adapted Control Processes. We suppose here that the measurable space (£2,A4) is
equipped with a probability P, so that (£2,A,P) is a probability space. Following the setting given in we consider a
measurable nonnegative numerical cost function j as in Equation .

We consider the following family of optimization problems, indexed by t = 0,...,T — 1 and by h: € Hy,

Vilhe) = inf E[j(he, U, Weg, .., Uro1, W) [ W = [held - (74)
(Upr—1)eLO(2,A¢.7—1,Upr—1)

Proposition 6 Let ¢t € {0,...,T — 1} and ht € Hy be given. Problem and Problem coincide, that is,
Vi(he) = Vi(he) , (75)
where the family of value functions {Vi}i—o,... T is defined by (@

Proof Let t € {0,...,T — 1} and h; € H; be given. We show that Problem and Problem are in one-to-one
correspondence.

— First, for any history feedback v;.7—1 = {’YS}S:t,H.,T—l € Iy.7_1, we define
(Ut:T—l) € LO(Qy-At:T—laUt:T—l) by

U

(Ut,...,Ur1) = [8]p(he, Wen, .o, W) |y s

(76)

where the flow @] ;. has been defined in and the history control part ['][tu+1:T in (49b)). By the expression (72b) of
ps:s+1 (R}, dwst+1) and by Definition [5| of the stochastic kernel pZT, we obtain that

E[j(he, Ut Wesa,. ., Uroy, W) |[Woie = [helily = E[5(800(he, West, ..., W) |[Wou = [hel,

= [ )ity ()
Hp
AS a consequence
inf E|j(he, Uy, Wigt,..., Up_1, Wr) | Wo = [he]d)
(Upr—1)ELO (2, A7 —1,Upr—1) [ ] 0:t
< it |l dhy) (7
ver—1€ler—1 JH ’

— Second, we define a (¢t:1" — 1)-noise feedback as a sequence A = {As},_, p_; of measurable mappings (the mapping

At is constant)
MeUr, As:Wip1s > Us, t4+1<s<T-1.

We denote by As.7_1 the set of (t:T — 1)-noise feedbacks. Let (Uy,..., Ur_1) € LO(02, As.7_1,Up.7_1). As each set
Us is a separable complete metric space, for s = ¢,...,T — 1, we can invoke Doob Theorem (see [5, Chap. 1, p. 18]).
Therefore, there exists a (¢t:T — 1)-noise feedback A = {)‘S}s:t,m,T—l € A¢.7—_1 such that

Ut =X, Us =As(Wip1s), t+1<s<T—1.

Then, we define the history feedback vye.r7—1 = {Vvs}s_; 71 € It.:7—1 by, for any history h}. € Hy, r =¢,..., T — 1:

s=t,..

Ye(hy) = At s

W
Ye+1(hgt1) = >\t+1([h2+1]t+1:t+1) = A1 (wigr)

w
'YT—l(h/T—l) = )‘T—l([h,Tfl]t_H;T_l) = )‘T—l(w£+1v' o 7wlT—1) .
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By the expression (72b]) of ps.s+1(h},dws+1) and by Definition [5| of the stochastic kernel pZT, we obtain that
|, a0 m ety = £ [, Un Wi, U W) [Wae =[]y
Hp
As a consequence
inf (W) pY (B, B
Y7161 »[HIT]( r)ppr (he. dhy)

< in E[j(he, U, Wipn, ., Uro, W) [Wour = [y . (79)
(Ut,., U _1)eLO(2, A0 1, Upr 1)

Gathering inequalities and leads to . This ends the proof.

The following proposition is an immediate consequence of Theorem [I] and Proposition [6}

Proposition 7 The family {\7}} o T of functions in satisfies the backward induction
t=

yeeey

Vr(ht) = j(hr), Yhr e Hr , (80a)
and, fort =T —1,...,0,
‘\Z‘,(ht) = intff ‘7t+1 (ht, Ut , wt+1)P$S:1 ([ht]th, dwt+1) (80b)
“t Wy
= inf E[Vit1 (he, ur, Wei1)|[Woue = [helbly , Vhe € Hy . (80c)

C.2 Two Time-Scales Dynamic Programming

We adopt the notation of @ ‘We suppose given a two time-scales noise process
W0,0):(D+1,0) = (Wo,0, Wo,1,..., Wo,ar, Wio,..., Wp ar, Wpi10) -
For any d € {0,1,..., D}, we introduce the o-fields
Adgo =1{, 2}, Adm =(W(q1):(dm))» m=1,...,M.
The proof of the following proposition is left to the reader.

Proposition 8 Suppose that there exists a family {Xq},_q pi1 of measurable state spaces, with Xo = Wo,0, and a
family {fa.a+1}4_o  p of measurable dynamics

fazdr1 : Xg x Hg.gy1r — Xgy1 -

Suppose that the slow scale subprocesses W (q,1):(d+1,0) = (Wd,l, e ,Wd+170), d=0,...,D, are independent (under the
probability law P).
For a measurable nonnegative numerical cost function

EZXD+1 - [07+OO] )

we define the family {\N/d}d L of functions by the backward induction

=0,...,D+

Vps1(zpt1) = J(zp41) (81a)

Va(zq) = o inf E[Vd+1(fd:d+1(md7Ud,O:Wd,h"' ,Ud,M,WdH,o))] . (81b)
U(a,0):(d, m)ELC (£2,A(4,0):(d, M) U(d,0):(d, M)

Then, the value functions Vd are the solution of the following family of optimization problems, indexed by d = 0,...,D
and by xq € Xg,

Valzgq) = inf E[7(Xp+1)] s (82a)
U(a,0):(D, M) €LY (2,4 (4,0):(D, M) U(d,0):(D,M))
where, for alld =d,...,D,

Xg=2zq, Xagp1 = faorar+1(Xa, Uy 0, W 1, , Uy ar, Wari1 ) - (82b)
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C.3 Decision-Hazard-Decision Dynamic Programming

We adopt the notation of @ ‘We suppose given a noise process
Wo.s = (Wh, WS, ... W) . (83)
For any s € {0,1,...,S5 — 1}, we introduce the o-fields
As ={@, 02}, Ay =o(W> ), s =s+1,...,S. (84)
The proof of the following proposition is left to the reader.

Proposition 9 Suppose that there exists a family {Xs} g of measurable state spaces, with Xo = Wg, and a family

s=0,...,
{fsis+1}ts—0 . g_1 of measurable dynamics

fost1: Xs x UR x W2y x U0, — Xopr .

Suppose that the noise process {WZ}S:O ) is made of independent random variables (under the probability law P).

For a measurable nonnegative nume%ié(ﬁ cost function
j:Xs —[0,+00] (85)
we define the family of functions {‘N/S}s:o,...,s by the backward induction
Vs(zs) = j(@s) , (86a)
Ve(ws) = inf, E[ | inf \78+1(f5,15,+1(xs,ug,wz+l,uz+l))] . (86b)
uz€Us ui €07 44

Then, the value functions Vs in are the solution of the following family of optimization problems, indexed by
s=0,...,5—1 and by zs € X,

Vi(zs) = inf inf E[7(Xs)], (87a)
Ui:5_1€ﬂa°(9vﬂs:s—1,Ui:s_l)UZH;SELO(Q’Aerl:S’Uzﬂ;s)
where
Xy =as, Xgi1 = foop1(Xe, UL W2, U2 ), Vs =5,...,5— 1. (87b)

C.4 Dynamic Programming with Unit Time Blocks

In the setting of optimization with noise process, we now consider the case where a state reduction exists at each time
t=0,...,7 — 1. We will use a standard assumption in Dynamic Programming, that is, {W:},_, 1 is a white noise
process.

C.4.1 The Case of Final Cost Function

We first treat the case of a general criterion, as in

Proposition 10 Suppose that there exists a family {Xi},_, of measurable state spaces, with Xo = Wo, and a family
{ft:t41}i—o.. 71 of measurable dynamics

Srote1 : Xe x Ug x Wi > Xpq .

Suppose that the noise process {Wy},_o 1 is made of independent random variables (under the probability law P).
For a measurable nonnegative numerical cost function

7 :Xp — [0, +00] ,

we define the family {‘Z}t,() ’ of functions by the backward induction

Vr(zr) =j(zr) , YoreXr, (88a)
‘N/t(xt) = IIEI{J E[‘Z+1($t,ut,wt+1)] s Var € X¢ s (88b)
ut t
fort=T-—1,...,0. Then, the value functions V; are the solution of the following family of optimization problems, indezed
byt=0,...,T7—1 and by xt € Xy,
Vi(we) = inf E[5(X1)] (892)
Upr1€L0(2,A¢7_1,Upr—1) [ ]

where
Xs=a¢, Xst1 = fsis+1(Xs,Us, Woy1), Vs=t,...,T—1. (89b)
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Proof We define a family {Ht}tzo,...,T of reduction mappings 6; : Hy — X¢ as in by induction. First, as Xg = Wg = Hp
by assumption, we put 6y = 14 : Hyp — Xp. Then, we use to define the mappings 61, ..., 07. As a consequence, the triplet
({Xt}tzo,...,T , {et}t:O,”.,T , {ftit+1}t:0,...,T71) is a state reduction across the consecutive time blocks [t,¢ + 1]i—o,.... 7—1
of the time span.

Since the noise process {W¢},_o 1 is made of independent random variables (under P), the family {ps—1:s}1<s<r
of stochastic kernels defined in is given by

ps—1:s : Hg—1 > A(Wy), s=1,...,T, (90a)

hs—1 — Pw_ (dws) . (90b)

As a consequence, we have by that the triplet ({Xt},_o  7,{0t},_o 7, {ft:t+1}s—0.  7_1) is compatible (see

Definition [2) with the family {p;—1.¢}¢=1,...,7 of stochastic kernels in .’In’ addition, the reduced stochastic kernels
in coincide with the original stochastic kernels in .

Define the cost function j as N
j=5obp.
Proposition [4] applies, so that the family {Vt}t:O,.H,T of value functions defined for the family of optimization problems
satisfies
Vi =Vi00,, t=0,...,T.

By means of Proposition @ we deduce that - N
Vi(ht) = Vi 00t (ht) ,

for all t = 0,...,7T and for any h; € H¢. From the definition of the family of functions \V/t, we obtain the expression
of functions V4.

C.4.2 The Case of Time Additive Cost Functions

We make the same assumptions than in The proof is left to the reader.

Proposition 11 Suppose that there exists a family {Xt},_o of measurable state spaces, with Xo = Wo, and a family
{ft:t41}i—0.. 71 of measurable dynamics

froa1 0 Xg x Up X Wi — Xggq

Suppose that the noise process {Wt},_ is made of independent random variables (under the probability law P).

We define the family {17}} o T of functions by the backward induction
t

=0,...,

Vr(zr) = K(z7) , Yor € Xr, (91a)

and, fort =T —1,...,0 and for all z¢ € X

Vi(ze) = uhéufj E[Lt(zt,ut, Wes1) + Virr (Fret1 (e, ue, Wegn))] - (91b)
t t
Then, the value functions \7,5 are the solution of the following family of optimization problems, indexed byt =10,...,T —1
and by x¢ € X¢,
R T—1
Vi(xy) = inf E[ Ls(Xs,Us,Wsi1) + K(X7) |, (92a)
(Ut,..,Up_1)eLO (2, A7 —1,Ut.7—1) SZ::t «(Xe, Us +1) (Xr)
where
Xs =Tt , Xs+1 = fs:s+1(X57US7WS+1) ) Vs = tv v 7T —-1. (92b)
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