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3Université de Nantes, LMJL, CNRS UMR 6629, 2 rue de la Houssinière, 44322 Nantes, France. Email:
marianne.bessemoulin@univ-nantes.fr

April 27, 2020

Abstract

In this work, we carry out the convergence analysis of a positive DDFV method for approximating
solutions of degenerate parabolic equations. The basic idea rests upon different approximations of the
fluxes on the same interface of the control volume. Precisely, the approximated flux is split into two terms
corresponding to the primal and dual normal components. Then the first term is discretized using a centered
scheme whereas the second one is approximated in a non evident way by an upstream scheme. The novelty
of our approach is twofold: on the one hand we prove that the resulting scheme preserves the positivity
and on the other hand we establish energy estimates. Some numerical tests are presented and they show
that the scheme in question turns out to be robust and efficient. The accuracy is almost of second order on
general meshes when the solution is smooth.

Keywords. Finite volume scheme, positive, degenerate parabolic equations, convergence.

1 Problem statement and goal of the paper

Nonlinear degenerate parabolic equations are the main core to study some complex problems arising, for
instance, from petroleum engineering, hydrology and biology. Hence, seeking for analytical or approximate
solutions of these equations is of an immense advantage. Throughout this work, we will be interested in
approximating, thanks to a new finite volume scheme, the solution to the academic problem:

∂tu−∇ ·
(
f(u)Λ∇u

)
= 0 in QT := Ω× (0, T )

u = 0 on ∂Ω× (0, T )

u(·, 0) = u0 in Ω

, (1.1)

where Ω is a bounded polygonal open of Rd (d = 1, 2, 3), T a fixed positive number, ∂Ω the boundary
of Ω, Λ a given d-square matrix (tensor) and f a given nonnegative function. In the context of porous
media flows, the function f is usually called the mobility while the tensor Λ stands for the permeability.
More precisely, the problem (1.1) describes the infiltration of a single fluid through a porous medium with
no gravity effects [21]. It is derived from the Darcy law together with the mass conservation equation.

This work is supported by: Ministère de l’Enseignement Supérieur, de la Recherche Scientifique et de la Formation des Cadres
du Maroc, CNRST and l’Institut Français au Maroc, and Project MoHyCon – ANR-17-CE40-0027-01
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On the other hand, this problem in known under the name of the porous medium equation [50] whenever
f(u) = um, for some nonnegative real number m. In view of the theoretical study, the elliptic term of (1.1)
can be formulated otherwise by introducing the so-called Kirchhoff transformation F . With some general
assumptions on F , this formulation is sometimes said to be the simplified Stefan problem [30], which is used
to model free boundary value problems. Even if this function seems to have no physical interpretation, it
will play a remarkable role to carry out the analysis of the scheme we consider here. It is then defined by

F (u) =

∫ u

0

f(s) ds, ∀u ∈ R. (1.2)

In this discretization, we will also introduce the semi-Kirchhoff transform denoted by ξ and defined as

ξ(u) =

∫ u

0

√
f(s) ds, ∀u ∈ R. (1.3)

Different approximations, with various assumptions on the data, have been conducted to discretize problems
involving nonlinear diffusion equations of type (1.1). For an upstream finite difference method, we cite the
work [43]. Concerning finite volume schemes, we refer to this battery of contributions [5, 8, 9, 10, 12, 26,
33, 32, 35, 46]. Plenty of these discretizations stipulate restrictive constraints, especially an orthogonality
condition on the mesh in the sense of Eymard et al. [31], which excludes a large variety of interesting
meshes. For example, in Hydrology, most geological layers are quite deformed, then the meshes used to
discretize the field should be distorted. In this case, the orthogonality condition can not be satisfied for
most of the edges. In addition, in the presence of anisotropic media, we may encounter the same difficulties.
Yet, some works have combined finite volume and finite element methods [1, 9, 28, 34, 42, 48]. Carrying
out the analysis of these schemes, the authors required a positivity assumption on the stiffness coefficients
that does not hold for all sort of meshes. To overcome this issue, positive schemes with their convergence
studies have been proposed in [16, 18, 38]. More generally, a gradient scheme [27, 30] has been suggested
to discretize the Stefan problem, which is an equivalent formulation of (1.1) using the Kirchhoff transform.
The Gradient schemes framework encompasses a lot of popular discretizations, but it may produce under-
shoots and overshoots in general. There is no hope of proving such bounds without further assumptions.

In this paper, we are concerned with the Discrete Duality Finite Volume (DDFV) method for the discretiza-
tion of the problem (1.1). This method belongs to the gradient schemes family and is viewed as a particular
class of the finite volume methods. It has been first introduced for the Laplace equation in [40, 41]. It has
been also proved to be equivalent to a nonconforming finite element approach in [25]. In two dimensions,
the convergence analysis of the DDFV scheme was carried out later on for many types of partial differential
equations of second order in several works [6, 19, 20, 24, 25]. Such results have been extended to 3D in
[3, 4, 22, 45]. The strength of this discretization consists of producing a consistent discrete whole gradient
on almost general grids and allowing the use of any tensor. This is of a great importance since most of
the meshes coming from physics are somehow distorted. On the other hand, the reconstruction gradient
operator verifies the discrete Stokes formula, which is a powerful tool to analyze such a scheme. Moreover,
the DDFV method is unconditionally coercive, which ensures the stability of the scheme.

Practically (cf. FVCA5 benchmark) [39] the DDFV schemes fail to satisfy an explicit discrete maximum
principle. This property is crucial whenever we deal with positive physical quantities by their nature like
saturation and concentration. As to be more precise, let us consider the DDFV discretization of the linear
diffusion equation −∆u = f with Dirichlet boundary conditions. Formally, it yields a stiffness matrix which
is not monotone in the case of non admissible meshes in the sense of Eymard et al. [31]. By choosing
an appropriate positive source term, we can acquire a solution with some negative values. In general, the
monotonicity of the DDFV scheme has been a drawback for the method since it has appeared. However,
in the work of [14] the authors were able to design a monotone nonlinear DDFV scheme for the diffusion
equation. It basically rests upon the DDFV idea together with a nonlinear monotone two-point finite vol-
ume method as investigated in [37, 47, 51]. Unfortunately, there is no convergence proof of the numerical
schemes proposed in [14, 37, 47, 51] since they suffer from the lack of coercivity as pointed out in [15, 26].
Recently, in [19] the authors have employed a nonlinear technique to establish the nonnegativity of the
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approximate solution in the case of a linear drift equation enclosed with Neumann boundary conditions.
Then, the contribution of our paper is to propose a new scheme that fulfills the physical ranges of the
discrete solution even on almost general meshes and for possibly anisotropic tensors. Given an interface of
a control volume (primal or dual), the key point of our approach consists of approximating the flux across
this interface with a TPFA (Two-Point Flux Approximation) scheme with respect to the unit normal to
the same interface and an upwind scheme with respect to the corresponding dual interface. This technique
is not standard in the framework of DDFV methods, and it moreover allows to gather the main ingredients
to conduct the convergence analysis. From a practical perspective our scheme yields surprising results with
optimal convergence rates.

We have chosen to introduce the proposed scheme for degenerate diffusive equations involving homogeneous
Dirichlet boundary conditions. The only reason behind the choice of the model problem is the ease read-
ability of our scheme. This approach can be easily extended to more general boundary conditions as done in
[7, 25] as well as to models including convective and source terms [19, 20, 23]. Indeed, the convective term
does not provide any supplementary difficulties, since it can be approximated using adequate upstream ap-
proaches in order to ensure the discrete maximum principle and get the main elements for the convergence
analysis.

The remainder of this paper is structured as follows. In Section 2, we give the DDFV discretization, some re-
lated notations and definitions of discrete operators. In Section 3, we sketch out how to derive the proposed
DDFV scheme. In Section 4, we prove that this scheme preserves the physical ranges of the approximate
solution and we derive some energy estimates on the discrete gradients. In Section 5, we establish that the
nonlinear algebraic system has a solution using a monotony criterion. In Section 6, we state some compact-
ness properties and we apply Kolmogorov’s theorem to ensure the existence of a convergent subsequence
of a family of discrete solutions. In Section 7, we demonstrate that this subsequence tends towards the
unique weak solution of the continuous problem. In Section 8, we exhibit some numerical results to show
the efficiency and robustness of our scheme.

Let us now formulate the main assumptions on the data.

(A1) The initial condition u0 is assumed to be in L∞(Ω) with 0 ≤ u0 ≤ 1.

(A2) The function f belongs to C0([0, 1],R) with{
f(u) > 0, for all u ∈ (0, 1),

f(u) = 0, for all u ∈ R\(0, 1).

As a consequence, F and ξ are Lipschitz continuous nondecreasing functions. We also assume that
v :=

√
f is absolutely continuous. This latter regularity on v is required so that the Engquist-Osher

scheme, to be presented later (Section 3), can be defined.

(A3) The tensor Λ : Ω → Sd(R), where Sd(R) is the space of d-square symmetric matrices, is assumed to
be in L∞(Ω)d×d and verifies the uniform ellipticity condition

Λ |ζ|2 ≤ Λ(x)ζ · ζ ≤ Λ |ζ|2 , for all ζ ∈ Rd and a.e. x ∈ Ω,

for some positive constants Λ and Λ.

We next define the natural space L2(0, T ;H1
0 (Ω)) where the solution to the problem (1.1) will be sought

H1
0 (Ω) = {v ∈ H1(Ω) / v = 0 on ∂Ω}.

Moreover, H1
0 (Ω) is a Hilbert space endowed with the norm

||v||H1
0 (Ω) = ||∇v||L2(Ω)d .

This leads us to the definition of the weak solution.
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Definition 1.1. (Weak solution) A measurable function u : QT −→ [0, 1] is called a weak solution of the
problem (1.1) provided

ξ(u) ∈ L2(0, T ;H1
0 (Ω)),

−
∫
QT

u ∂tϕdxdt+

∫
QT

Λ∇F (u) · ∇ϕdxdt−
∫

Ω

u0 ϕ(·, 0) dx = 0, ∀ϕ ∈ C∞c
(

Ω× [0, T )
)
.

The existence of a weak solution to the problem (1.1) has been investigated in [2] for general parabolic
degenerate equatoins, whereas in [21] the authors establish the existence of solutions for two phase immiscible
flow in porous media and they also show the maximum principle on the saturation. The uniqueness proof
is addressed in [36].

2 DDFV discretization

For the simplicity of the exposition, we follow most of the notations given in the works [6, 20]. From now
on, we only focus on the two dimensional discretization in space.

2.1 Meshes and notations

A DDFV discretization requires three kinds of meshes, a primal mesh, dual mesh and diamond mesh. The
primal mesh is denoted by M = M∪ ∂M, where M is a partition of Ω with polygonal open disjoint subsets
usually called control volumes and ∂M is the set of boundary edges viewed as degenerate control volumes.
These primal grids are not necessarily convex. For every K ∈M, the center of gravity of K is denoted by
xK . We further define V as the family of these centers.

We designate by V∗ the set of all the vertices of the mesh M. It is composed of inner vertices V∗int
and boundary ones V∗ext. For each xK∗ ∈ V∗int (resp. xK∗ ∈ V∗ext), we associate a unique dual con-
trol volume K∗ which is a polygon whose vertices are given by the set {xK ∈ V/xK∗ ∈ K, K ∈ M}
(resp.{xK∗} ∪ {xK ∈ V/xK∗ ∈ K, K ∈ ∂M} ). With these dual sub-domains, we construct the dual mesh
denoted by M∗ = M∗ ∪ ∂M∗ (see Figure 1).

By E (resp. E∗) we mean the set of all the edges of M (resp. M∗). Two cells are said to be neighbors
if they share at least one edge. To be more precise, for every couple of neighboring primal (resp. dual)
control volumes K and L (resp. K∗ and L∗ ), there exists σ ∈ E (resp. σ∗ ∈ E∗) such that σ = K ∩L (resp.
σ∗ = K∗ ∩ L∗).

The diamond mesh D = (Dσ,σ∗)(σ,σ∗)∈E×E∗ is also a partition of Ω by diamond cells. For every primal edge

σ with σ * ∂Ω, the subset Dσ,σ∗ is a quadrilateral constructed by connecting the endpoints of σ and σ∗.
In the case where σ ∈ E∩∂Ω, this quadrilateralDσ,σ∗ is nothing more than a triangle as depicted in Figure 2.

Figure 1: From left to right, the primal mesh, dual mesh and the diamond mesh.
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The DDFV mesh is then given by the union of T = (M,M∗) and D. For every M ∈ T (primal or dual
cell), the notation mM represents the measure of M , EM contains all the edges of M , DM is made of all the
diamonds Dσ,σ∗ such that m(Dσ,σ∗ ∩M) > 0, and dM refers to the diameter of M . For each Dσ,σ∗ ∈ D, the
vertices of Dσ,σ∗ are the extremities of both σ and σ∗ i.e. (xK , xK∗ , xL, xL∗). The center xD of D := Dσ,σ∗
is defined as the intersection of its main diagonals. mD stands for the measure of D, dD its diameter, and
αD is the angle between (xK , xL) and (xK∗ , xL∗). For every edge e ∈ E ∪ E∗, we define me as its measure.
By nσK (resp. nσ∗K∗) we mean the unit normal to σ (resp. σ∗) outwards K (resp. K∗). Similarly, τK,L

(resp. τK∗,L∗) is the unit tangent vector to σ∗ (resp. σ) oriented from K (resp. K∗) to L (resp. L∗).

Figure 2: Interior (left) and boundary (right) diamond cells.

Now, we define the regularity of the DDFV mesh that determines how flat the diamond cells are. It also
provides information about the difference between the size of a primal (resp. dual) control volume and the
size of a diamond cell whenever their intersection is nonempty. This regularity must be controlled as the
size of the mesh becomes small in order to perform the convergence analysis of the scheme. Let us denote

hD the largest diameter of the diamond cells, αT the unique real number in ]0,
π

2
] such that

sin(αT ) := min
D∈D

|sin(αD)| ,

and ρK (resp. ρK∗) the radius of the biggest inscribed ball in K (resp. K∗) whose center is xK (resp. xK∗).
Then, the regularity of the mesh is defined by

reg(T ) = max

(
1

sin(αT )
,max
D∈D

hD√
mD

, max
K∈M

dK√
mK

, max
K∗∈M∗

dK∗√
mK∗

,

max
K∈M

(dK
ρK

+
ρK
dK

)
, max
K∗∈M∗

(dK∗
ρK∗

+
ρK∗

dK∗

))
It follows from this relation that there exists a positive constant C depending only on reg(T ) such that

mσmσ∗ ≤ CmK , m2
σ∗ ≤ CmD, m2

σ ≤ CmD, mσmσ∗ ≤ CmD.

A time discretization of the interval (0, T ) is given by an increasing sequence of real numbers (tn)n=0,...,N

such that
t0 = 0 < t1 < · · · < tN = T.

For every n ∈ {0, . . . , N − 1}, we denote δtn = tn+1 − tn and we define δt = max
0≤n≤N−1

δtn. To avoid heavy

notations, we assume that the time step δtn is uniform. Then δt = δtn, for all n ∈ {0, . . . , N − 1}.

5



2.2 Discrete operators

We now survey the discrete version of the unknowns and operators that will allow us to define the nonlinear
DDFV discretization for the problem (1.1). To begin with, let us specify the structure of the space R#T .
Any vector uT of this space is written under the form

uT =
(

(uK)K∈M, (uK∗)K∗∈M∗
)
.

Next, R#T is endowed by following scalar product

JuT , vT KT =
1

2

( ∑
K∈M

mKuKvK +
∑

K∗∈M∗
mK∗uK∗vK∗

)
, ∀uT , vT ∈ R#T .

Additionally, the set (R2)#D represents the space of vector fields of the form ζD = (ζD)D∈D whose compo-

nents are basically considered on the diamond cells. This space is endowed by the inner product
(
·, ·
)
D,Λ

defined as (
ζD, ϕD

)
D,Λ

=
∑
D∈D

mDζD · ΛDϕD, ∀ζD, ϕD ∈ (R2)#D,

where

ΛD =
1

mD

∫
D

Λ(x) dx, ∀D ∈ D.

2.2.1 Discrete gradient

In the framework of the DDFV method, the discrete gradient operator denoted ∇D is a linear mapping
from R#T to (R2)#D. It is defined for every uT ∈ R#T by

∇DuT =
(
∇DuT

)
D∈D

,

where the quantity ∇DuT is referred to as the restriction of the approximate gradient on the diamond cell
D ∈ D. On the one hand, for D ∈ D with {D ∩ ∂Ω} ∩ E = ∅, such a restriction is defined so that one can
get

∇DuT · τK,L =
uL − uK
mσ∗

, ∇DuT · τK∗,L∗ =
uL∗ − uK∗

mσ
,

or equivalently,

∇DuT =
1

sin(αD)

(uL − uK
mσ∗

nσK +
uL∗ − uK∗

mσ
nσ∗K∗

)
.

On the other hand, our model problem is complemented with Dirichlet boundary conditions. This latter
states that the solution is known on ∂Ω. Consequently, for every D ∈ D with D ∩ ∂Ω ∈ E (see Figure 2),
one has

∇DuT =
1

sin(αD)

(u|∂Ω(xD)− uK
mσ∗

nσK +
u|∂Ω(xL∗)− u|∂Ω(xK∗)

mσ
nσ∗K∗

)
.

Notice that the two components of the discrete gradient are reproduced so that one can ensure a consistent
approximation of the continuous gradient.

For given uT , vT ∈ R#T and D ∈ D, we define δDuT =

[
uK − uL
uK∗ − uL∗

]
. Then, one sets

(
∇DuT ,∇DvT

)
D,Λ

=
∑
D∈D

δDuT · AD,ΛδDvT , (2.1)

where the local matrix AD,Λ reads

AD,Λ =
1

4mD

[
m2
σΛDnσK · nσK mσmσ∗Λ

DnσK · nσ∗K∗
mσmσ∗Λ

DnσK · nσ∗K∗ m2
σ∗ ΛDnσ∗K∗ · nσ∗K∗

]
, ∀D ∈ D. (2.2)
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One also defines

AD =
1

4mD

[
m2
σ mσmσ∗nσK · nσ∗K∗

mσmσ∗nσK · nσ∗K∗ m2
σ∗

]
, ∀D ∈ D. (2.3)

These matrices are positive-definite as given in Lemma A.2. Therefore, the bracket (·, ·)D,Λ is indeed an

inner product on (R2)#D.

In order to make a conspicuous scheme later, we will denote

aKL :=
1

sin(αD)

mσ

mσ∗
ΛDnσK · nσK > 0, ηDσσ∗ :=

1

sin(αD)
ΛDnσK · nσ∗K∗ ∈ R

gM := g(uM ), ∀M ∈ {K,L,K∗, L∗} and g ∈ {F, ξ}
δLKu := uL − uK , δL∗K∗u := uL∗ − uK∗ .

2.2.2 Discrete divergence

The discrete divergence has been originally introduced in [25] so as to reproduce a discrete counterpart of
Green’s formula. It is defined by a mapping from (R2)#D to R#T as follows:

divT ΨD =
(

divM ΨD,divM∗ ΨD,div∂M
∗

ΨD

)
, ∀ΨD = (ΨD)D∈D ∈ (R2)#D,

with divM ΨD = (divK ΨD)K∈M, divM∗ ΨD = (divK∗ ΨD)K∗∈M∗ and div∂M
∗

ΨD = (divK∗ ΨD)K∗∈∂M∗ .
Each component is explicitly given by

divK ΨD =
1

mK

∑
Dσ,σ∗∈DK

mσΨD · nσK , ∀K ∈M,

divK∗ ΨD =
1

mK∗

∑
Dσ,σ∗∈DK∗

mσ∗ΨD · nσ∗K∗ , ∀K∗ ∈M∗,

divK∗ ΨD =
1

mK∗

( ∑
Dσ,σ∗∈DK∗

mσ∗ΨD · nσ∗K∗ +
∑

Dσ,σ∗∈DK∗∩∂Ω

mσ∗

2
ΨD · nσ∗K∗

)
, ∀K∗ ∈ ∂M∗.

2.3 Approximation spaces

This subsection is devoted to describing the discrete spaces together with some related notations. First,
a DDFV mesh is composed of three different partitions. Let us therefore define the discrete functions on
these meshes.

(i) We will denote uM (resp. uM∗) the first (resp. second) reconstruction on the primal (resp. dual)
mesh, which is a piecewise constant function defined as

uM =
∑
K∈M

uK1K , uM∗ =
∑

K∗∈M∗
uK∗1K∗ .

where 1K is the characteristic function of K. We then define the discrete function uh of L1(Ω) as
follows:

uh =
1

2

(
uM + uM∗

)
.

We henceforth denote XT the set of all these functions uh.

(ii) The third reconstruction uD is built on the diamond mesh. It is about piecewise constant functions of
the form uD :=

∑
D∈D

uD1D for a given vector (uD)D∈D. The set of all these functions will be denoted

by XD.
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As a consequence, the time-dependent approximation spaces read:

XT ,δt =
{
uh,δt ∈ L1(QT ) : uh,δt(x, t) = un+1

h (x) / uh ∈ XT ,∀t ∈ (tn, tn+1],∀n = 0, · · · , N − 1
}

XD,δt =
{
uD,δt ∈ L1(QT ) : uD,δt(x, t) = un+1

D (x) / uD ∈ XD,∀t ∈ (tn, tn+1],∀n = 0, · · · , N − 1
}
.

For each uh,δt ∈ XT ,δt, its gradient ∇Duh,δt ∈ XD,δt ×XD,δt is written by

∇Duh,δt(x, t) = ∇Dun+1
h (x), ∀t ∈ (tn, tn+1], ∀n = 0, · · · , N − 1.

As for uh,δt ∈ XT ,δt, we take

uM,δt(x, t) = un+1
M (x), uM∗,δt(x, t) = un+1

M∗
(x) ∀t ∈ (tn, tn+1], ∀n = 0, · · · , N − 1.

Let us now consider a nonlinear function F : R −→ R. We will denote by Fh,δt the mean value of F(uM,δt)
and F(uM∗,δt):

Fh,δt =
1

2

(
F(uM,δt) + F(uM∗,δt)

)
.

We next equip the finite dimensional space XT with the norm |·|p,T . For every uh ∈ XT , we define

|uh|p,T =
(1

2

∑
K∈M

mK |uK |p +
1

2

∑
K∗∈M∗

mK∗ |uK∗ |p
)1/p

, for 1 ≤ p < +∞

The norm of the discrete gradient is defined by∥∥∇Duh
∥∥p
p

=
∑
D∈D

mD
∣∣∇Duh∣∣p , ∀1 ≤ p < +∞.

Observe that ∥∥∇Duh
∥∥2

2
=
∑
D∈D

δDuT · ADδDuT .

3 Numerical scheme

Belonging to the family of finite volume methods, the DDFV scheme is basically obtained by integrating
the first equation of (1.1) over M×]tn, tn+1], where M is a primal or an internal dual cell. Performing
Green’s formula yields the balance equation. Then the resulting fluxes are approximated by introducing
the definition of the discrete gradient and that of the numerical flux function.

For the convenience of the reader, we briefly look at the discretization of (1.1) on the primal mesh and it
is deduced similarly in the case of the dual mesh. So, let n ∈ {0, . . . , N − 1} and K be a primal control
volume. Then, one gets∫ tn+1

tn

∫
K

∂tu dxdt−
∑
σ∈EK

∫ tn+1

tn

∫
σ

f(u) Λ∇u · nσK dσ dt = 0. (3.1)

The evolution term is approximated thanks to the Euler scheme∫ tn+1

tn

∫
K

∂tu dxdt ≈ mK

(
un+1
K − unK

)
, (3.2)

where umK is the mean value of u(., tm) over K for m = n, n+1. Concerning the diffusion part, let us remark
that from the definitions (1.2) of the Kirchhoff function F (u) and (1.3) of the semi-Kirchhoff function ξ(u)
that we have

f(u)∇u = ∇F (u), f(u)∇u = v(u)∇ξ(u),
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with v(u) =
√
f(u). Then, we propose to approximate the diffusive flux by splitting it into two terms

corresponding to the primal and dual normal component of the discrete gradient making use of the two
expressions of f(u)∇u given above. We thus consider the following discretization

−
∫ tn+1

tn

∫
σ

f(u)Λ∇u · nσK dσ dt ≈ δt
(
aKL(F (un+1

K )− F (un+1
L )) + vn+1

KL η
D
σσ∗(ξ(u

n+1
K∗ )− ξ(un+1

L∗ ))

)
,

(3.3)

where vn+1
KL is an upstream approximation of v(u) on the primal edge σ. Basically, the first term of (3.3)

represents a central discretization of the flux in the direction τK,L whereas the second contribution is an
upstream approximation of the same flux in the direction τK∗,L∗ . Since aKL > 0, the central part is
therefore monotone, and the upstream correction is needed to reinforce positivity in the second term since
the quantity ηDσσ∗(ξ(u

n+1
K∗ )− ξ(un+1

L∗ )) is a real number which is not necessarily positive. We next provide
the construction of vn+1

KL . This consists of considering the Engquist-Osher scheme [49], which reads

vn+1
KL =

{
v↓(u

n+1
L ) + v↑(u

n+1
K ) if ηDσσ∗ (ξn+1

K∗ − ξ
n+1
L∗ ) ≥ 0

v↓(u
n+1
K ) + v↑(u

n+1
L ) else ,

(3.4)

where the functions v↓, v↑ are given by

v↑(u) :=

∫ u

0

(
v′(s)

)+

ds, v↓(u) := −
∫ u

0

(
v′(s)

)−
ds,

and x+ = max(x, 0), x− = max(−x, 0) for all x ∈ R. This convention will be adopted hereafter. In light of
hypothesis (A2), the functions v↑, v↓ exist.
The computation of the numerical fluxes will essentially depend on (3.3). For polynomial expressions of
f , the integrals appearing in v↓, v↑, can be obtained straightforwardly; and for more general expressions,
we can use an adequate approximation of integrals thanks to prior tables. In the case of general problems
exhibiting a complex mobility function [1, 5, 12, 18], an alternative strategy to calculate the fluxes is to
consider the following Godunov scheme

vn+1
KL =


max
u∈In+1

KL

v(u) if ηDσ,σ∗(ξ
n+1
K∗ − ξ

n+1
L∗ )(uK − uL) ≥ 0

min
u∈In+1

KL

v(u) otherwise
,

where In+1
KL = [min(un+1

K , un+1
L ),max(un+1

K , un+1
L )]. One defines vn+1

K∗L∗ in a similar way. Let us however
address a remarkable drawback of this choice. First, it is not known how to compute analytically these
expressions for general shape functions. This necessitates an external algorithm that determines extrema’s
of the function v on each interface K|L and at every time iteration which could be too expensive and slow
the solver.
We wish to emphasize that one can rewrite the quantity vn+1

KL η
D
σσ∗(ξ

n+1
K∗ − ξ

n+1
L∗ ) thanks to a numerical flux

function G as follows

G(un+1
K , un+1

L ; ηDσσ∗δ
n+1
L∗K∗ξ(u)) = vn+1

KL η
D
σσ∗(ξ

n+1
K∗ − ξ

n+1
L∗ ).

We recall that a function G of arguments (a, b, c) ∈ R3 is said to be a numerical flux if the assertions below
are satisfied: 

(H1) G(·, b, c) is nondecreasing and continuous for all b, c ∈ R,
and G(a, ·, c) is nonincreasing and continuous for all a, c ∈ R;

(H2) G(a, b, c) = −G(b, a,−c) for all a, b, c ∈ R;

(H3) G(a, a, c) = v(a)c for all a, c ∈ R.

(3.5)

As stressed in [6, 20], we require a penalization operator, which is crucial to pass to the limit in the scheme.
This penalty term permits to check that the approximate solution on the primal mesh and the dual mesh
tend to the same limit. It will be also a key point in our study for the convergence of the diffusive term.
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To this purpose, let ε ∈]0, 2[ and uT ∈ R#T . The penalization PT is a map from R#T to R#T defined, for
all uT , by

PT uT =
(
PMuT ,PM∗uT ,P∂M

∗
uT

)
,

where PMuT = (PKuT )K∈M, PM∗uT = (PK∗uT )K∗∈M∗ , P∂M∗uT = (PK∗uT )K∗∈∂M∗ such that

PKuT =
1

mK

1

hεD

∑
K∗∈M∗

mK∩K∗
(
F (uK)− F (uK∗)

)
, ∀ K ∈M, (3.6)

PK∗uT =
1

mK∗

1

hεD

∑
K∈M

mK∩K∗
(
F (uK∗)− F (uK)

)
, ∀ K∗ ∈M∗. (3.7)

Owing to the homogeneous Dirichlet boundary condition, one sets PK∗uT = 0 ∀ K∗ ∈ ∂M∗. Based on
the the following elementary inequality, which a consequence of the Cauchy-Schwarz inequality,

(F (a)− F (b))(a− b) ≥ (ξ(a)− ξ(b))2, ∀a, b ∈ R, (3.8)

one can check that

JPuT , uT KT =
1

2

( ∑
K∈M

mKPKuT uK +
∑

K∗∈M∗
mK∗PK∗uT uK∗

)
=

1

2

1

hεD

∑
K∗∈M∗

∑
K∈M

mK∩K∗ (F (uK)− F (uK∗))(uK − uK∗)

≥ 1

2

1

hεD

∥∥ξ(uM)− ξ(uM∗)
∥∥2

L2(Ω)
. (3.9)

Thanks to the DDFV discretization, an approximate solution for the problem (1.1) is defined as a function
uh,δt ∈ XT ,δt satisfying the set of equations:

u0
M =

1

mM

∫
M

u0(x) dx, ∀M ∈ T , (3.10)

mK

δt

(
un+1
K − unK

)
+

∑
Dσ,σ∗∈DK

(
aKL (Fn+1

K − Fn+1
L ) +G(un+1

K , un+1
L ; ηDσσ∗δ

n+1
L∗K∗ξ(u))

)
+ γ mKPKun+1

T = 0, ∀K ∈M, n ≥ 0, (3.11)
mK∗

δt

(
un+1
K∗ − u

n
K∗

)
+

∑
Dσ,σ∗∈DK∗

(
aK∗L∗ (Fn+1

K∗ − F
n+1
L∗ ) +G(un+1

K∗ , u
n+1
L∗ ; ηDσσ∗δ

n+1
LK ξ(u))

)
+ γ mK∗PK∗un+1

T = 0, ∀K∗ ∈M∗, n ≥ 0. (3.12)

To take into account the boundary condition, we impose un+1
M = 0 for all M ∈ ∂M ∪ ∂M∗. The coefficient

γ is a positive parameter. Let us next check that G defines a numerical flux function. This is the object of
the following result.

Lemma 3.1. The numerical flux function G satisfies (H1), (H2) and (H3) given in (3.5).

Proof. Observe that items (H1), (H3) of (3.5) are direct consequences of the expression of vn+1
KL given in

(3.4) and the assumption (A2). It remains to check that the assertion (H2) holds. To this end, we first
point out that the discrete gradient on a fixed diamond, which we recall below, is uniquely defined

∇DuT =
1

sin(αD)

(uL − uK
mσ∗

nσK +
uL∗ − uK∗

mσ
nσ∗K∗

)
.
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In other words, we associate to the primal interface σ = K|L a unique dual interface σ = K∗|L∗. Now if
we permute K,L then K∗, L∗ are automatically permuted, but the coefficient ηDσσ∗ keeps the same sign. In
particular, this asserts that ηDσσ∗ = ηDσ∗σ. Accordingly

ηDσσ∗
(
ξn+1
K∗ − ξ

n+1
L∗

)
= − ηDσσ∗

(
ξn+1
L∗ − ξ

n+1
K∗

)
.

According to this identity and the definition of vn+1
KL introduced in (3.4), one finds

vn+1
KL = vn+1

LK .

Hence
G
(
un+1
K , un+1

L , ηDσσ∗(ξ
n+1
K∗ − ξ

n+1
L∗ )

)
= − G

(
un+1
L , un+1

K , ηDσσ∗(ξ
n+1
L∗ − ξ

n+1
K∗ )

)
.

Remark 3.1. In the case where Λ = Id, the coefficient ηDσσ∗ measures the flatting of the diamond cells. In
particular, if ηDσσ∗ ≡ 0 for all D, meaning that the mesh is orthogonal [31], the above discretization reduces
to the pioneer TPFA (Two-Point Flux Approximation) scheme for the problem (1.1) on the primal mesh
and on the dual mesh separately. Its convergence analysis can be found in [33].

Remark 3.2. Let us fix the penalty coefficient to γ = 0. According to Lemma 3.1, the above numerical
scheme is locally conservative i.e. there exists a unique discrete flux Jn+1

D such that the following relationship
holds

Jun+1
T − unT + δtdivT Jn+1

D , ψT KT = 0, ∀ψT ∈ R#T and n ≥ 0. (3.13)

Indeed, the function Jn+1
D = (Jn+1

D )D∈D is defined via its two projections with respect to the primal and
dual unit normals. In other words, it is sufficient to set

Jn+1
D · nσK =

1

mσ

(
aKL (Fn+1

K − Fn+1
L ) +G(un+1

K , un+1
L ; ηDσσ∗δ

n+1
L∗K∗ξ(u))

)
,

Jn+1
D · nσ∗K∗ =

1

mσ∗

(
aK∗L∗ (Fn+1

K∗ − F
n+1
L∗ ) +G(un+1

K∗ , u
n+1
L∗ ; ηDσσ∗δ

n+1
LK ξ(u))

)
.

As a consequence, Jn+1
D is expressed in a unique way thanks to the crucial identity [6]

sin(αD)Jn+1
D = (Jn+1

D · nσK)τK,L + (Jn+1
D · nσ∗K∗)τK∗,L∗ .

Finally, (3.13) stems from the definition of the discrete divergence given above and that of the scheme.

4 L∞-bound and a priori estimates

In this section, we show that any solution to the equations of the proposed scheme verifies an L∞-bound.
In addition, some a priori estimates are derived on the discrete gradient of the Kirchhoff function. These
materials are of importance to prove the convergence of the scheme.

4.1 Boundedness of discrete solutions

Lemma 4.1. We assume that 0 ≤ u0 ≤ 1. For each fixed integer 0 ≤ n ≤ N − 1, let (un+1
T ) be a vector of

R#T such that the DDFV scheme (3.10)-(3.12) holds. Then, un+1
M , un+1

M∗ belong to [0, 1].

Proof. The proof is carried out by induction on n. Fix n ∈ {0, · · · , N − 1}. Let us assume that the claim
is true for unM, u

n
M∗ and check that it is so for un+1

M , un+1
M∗ . To this purpose, we perform the proof in two steps .

Step 1 : We consider un+1
K = min

L∈M
(un+1
L ). Multiplying (3.11) by −(un+1

K )− yields

− mK

δt

(
un+1
K − unK

)
(un+1
K )− −

∑
Dσ,σ∗∈DK

(
aKL (Fn+1

K − Fn+1
L ) + G(un+1

K , un+1
L ; ηDσσ∗δ

n+1
L∗K∗ξ(u))

)
(un+1
K )−

− γ mKPKun+1
T (un+1

K )− = 0.
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Since F is a nondecreasing function, we obtain aKL (Fn+1
K − Fn+1

L ) ≤ 0. Furthermore

G(un+1
K , un+1

L ; ηDσσ∗δ
n+1
L∗K∗ξ(u))(un+1

K )− ≤ 0.

Indeed, if 0 ≤ un+1
K then (un+1

K )− = 0. Otherwise, we use the fact that the numerical flux function is
nonincreasing with respect to the second argument and that it is consistent

G(un+1
K , un+1

L ; ηDσσ∗δ
n+1
L∗K∗ξ(u))(un+1

K )− ≤ G
(
un+1
K , un+1

K ; ηDσσ∗δ
n+1
L∗K∗ξ(u)

)
(un+1
K )−

= − v(un+1
K )ηDσσ∗δ

n+1
L∗K∗ξ(u)(un+1

K )− = 0.

The previous equality holds thanks to the degeneracy of the function v on ]−∞, 0]. Let us next demonstrate
that

−mKPKun+1
T (un+1

K )− ≥ 0. (4.1)

It follows from the definition of the penalization term highlighted in (3.6) that

−mKPKun+1
T (un+1

K )− =
1

hεD

∑
K∗∈M∗

mK∩K∗
(
− F (un+1

K )(un+1
K )− + F (un+1

K∗ )(un+1
K )−

)
=

1

hεD

∑
K∗∈M∗

mK∩K∗F (un+1
K∗ )(un+1

K )−.

We used the fact that F is extended by 0 on (−∞, 0) to see that F (un+1
K )(un+1

K )− = 0. Since F (un+1
K∗ ) ≥ 0,

regardless the sign of un+1
K∗ , inequality (4.1) holds. Whence

−
(
un+1
K − unK

)
(un+1
K )− =

∣∣(un+1
K )−

∣∣ 2 + (un+1
K )−unK ≤ 0,

which implies, using the induction assumption, that (un+1
K )− = 0. Hence, un+1

K ≥ 0.

Step 2 : We here switch the role of the control volume K and take now un+1
K = max

L∈M
(un+1
L ). Multiplying

(3.11) by (un+1
K − 1)+ gives

mK

δt

(
un+1
K − unK

)
(un+1
K − 1)+

+
∑

Dσ,σ∗∈DK

(
aKL (Fn+1

K − Fn+1
L ) + G(un+1

K , un+1
L ; ηDσσ∗δ

n+1
L∗K∗ξ(u))

)
(un+1
K − 1)+

+ γ mKPKun+1
T (un+1

K − 1)+ = 0.

It is now evident that aKL (Fn+1
K − Fn+1

L )(un+1
K − 1)+ ≥ 0. Next, let us establish

G(un+1
K , un+1

L ; ηDσσ∗δ
n+1
L∗K∗ξ(u))(un+1

K − 1)+ ≥ 0.

So, if un+1
K ≤ 1 then (un+1

K − 1)+ = 0. Otherwise, un+1
K > 1, we utilize once again the consistency of G and

the fact that it is nonincreasing with respect to the second variable. Therefore

G(un+1
K , un+1

L ; ηDσσ∗δ
n+1
L∗K∗ξ(u))(un+1

K − 1)+ ≥ G
(
un+1
K , un+1

K ; ηDσσ∗δ
n+1
L∗K∗ξ(u)

)
(un+1
K − 1)+

= − v(un+1
K )ηDσσ∗δ

n+1
L∗K∗ξ(u)(un+1

K − 1)+ = 0.

Let us show that mKPKuT (un+1
K − 1)+ ≥ 0. We first observe that

mKPKun+1
T (un+1

K − 1)+ =
1

hεD

∑
K∗∈M∗

mK∩K∗
(
F (un+1

K )− F (1) + F (1)− F (un+1
K∗ )

)
(un+1
K − 1)+.
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On the one hand, (F (un+1
K )−F (1))(un+1

K − 1)+ = 0 for every un+1
K ≥ 0 since F is extended by F (1) on the

interval (1,+∞). On the other hand, F (1)−F (un+1
K∗ ) ≥ 0 for all un+1

K∗ ∈ R. Thus, mKPKuT (un+1
K −1)+ ≥ 0.

Utilizing now the identity(
un+1
K − unK

)
(un+1
K − 1)+ = (un+1

K − 1)+2

+ (un+1
K − 1)+(1− unK),

we deduce that (un+1
K − 1)+ = 0, which yields un+1

K ≤ 1.

Similarly, we mimic the same steps so that we prove the property in the case of the dual mesh. Hence, the
proof of the Lemma is concluded.

Remark 4.1. The degeneracy of the function v and the flux splitting scheme (3.4) enforce the boundedness
of the discrete solution. Also, this particular approach ensures the coercivity of the discrete elliptic operator.

In the sequel, we will denote by C different constants in various occurrences, which depend only on the
physical data together with the regularity of the mesh and are independent of the discretization parameters
δt, hD.

4.2 Estimates on the discrete gradients

We first recall the following remarkable formula.

Lemma 4.2. (Discrete integration by parts) Let M be a primal or dual mesh of the domain Ω. For every
K ∈ M, we denote by N(K) the set of neighbors of K. Let AKL, K ∈ M and L ∈ N(K) be a real value
with AKL = −ALK , and let ϕ be a piecewise constant function on the cells of M. Then∑

K∈M

∑
L∈N(K)

AKLϕK = −1

2

∑
K∈M

∑
L∈N(K)

AKL(ϕL − ϕK).

Particularly, if AKL = TKL(cL − cK), with TKL = TLK , one infers∑
K∈M

∑
L∈N(K)

TKL(cL − cK)ϕK = −1

2

∑
K∈M

∑
L∈N(K)

TKL(cL − cK)(ϕL − ϕK).

Proof. The proof of this lemma is omitted since it is similar to that given in [10].

We next refer to [11, 31] for the proof of the following fundamental inequality.

Lemma 4.3. (Discrete Poincaré inequality) Consider T a mesh of Ω. Then there exists a constant Cp,
only depending on the diameter of Ω, such that for every wh ∈ XT one has

|wh|2,T ≤ ‖wM‖L2(Ω) +
∥∥wM∗

∥∥
L2(Ω)

≤ Cp
∥∥∇Dwh

∥∥
2
.

Proposition 4.1. (Discrete gradient estimate) Let (unh), for n = 0, . . . , N , be a sequence such that the
DDFV scheme (3.10)-(3.12) holds. Then

N−1∑
n=0

δt
∥∥∇Dξn+1

h

∥∥2

2
+

γ

hεD

N−1∑
n=0

δt
∥∥∥ξ(un+1

M )− ξ(un+1

M∗
)
∥∥∥2

L2(Ω)
≤ C, (4.2)

for some appropriate positive constant C.

Proof. We multiply the first (resp. second) equation of the DDFV scheme (3.11)-(3.12) by un+1
K (resp.

un+1
K∗ ) and sum up over all the primal (resp. dual) cells and the integers n. Adding together the resulting

equations leads to
T1 + T2 + T3 = 0,
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where we have set

T1 =

N−1∑
n=0

∑
K∈M

mK(un+1
K − unK)un+1

K +

N−1∑
n=0

∑
K∗∈M∗

mK∗(u
n+1
K∗ − u

n
K∗)u

n+1
K∗ ,

T2 =

N−1∑
n=0

δt
∑
K∈M

∑
Dσ,σ∗∈DK

(
aKL (Fn+1

K − Fn+1
L ) + vn+1

KL ηDσσ∗ (ξn+1
K∗ − ξ

n+1
L∗ )

)
un+1
K

+

N−1∑
n=0

δt
∑

K∗∈M∗

∑
Dσ,σ∗∈DK∗

(
aK∗L∗ (Fn+1

K∗ − F
n+1
L∗ ) + vn+1

K∗L∗ η
D
σσ∗ (ξn+1

K − ξn+1
L )

)
un+1
K∗ ,

T3 =2

N−1∑
n=0

δt γ JPun+1
T , un+1

T KT .

First of all, observe that

x(x− y) ≥ 1

2
(x2 − y2), ∀x, y ∈ R.

According to the above inequality, one can underestimate T1

1

2

∑
K∈M

mK

(
(uNK)2 − (u0

K)2
)

+
1

2

∑
K∗∈M∗

mK∗

(
(uNK∗)

2 − (u0
K∗)

2
)
≤ T1. (4.3)

Let us now turn our attention to the term T2. To this end, we perform a discrete integration by parts as
given in Lemma 4.2 to obtain

T2 = T21 + T22,

with

T21 =

N−1∑
n=0

δt
∑
D∈D

(
aKL (Fn+1

K − Fn+1
L )(un+1

K − un+1
L ) + aK∗L∗ (Fn+1

K∗ − F
n+1
L∗ )(un+1

K∗ − u
n+1
L∗ )

)
,

T22 =

N−1∑
n=0

δt
∑
D∈D

(
vn+1
KL ηDσσ∗ (ξn+1

K∗ − ξ
n+1
L∗ )(un+1

K − un+1
L ) + vn+1

K∗L∗ η
D
σσ∗ (ξn+1

K − ξn+1
L )(un+1

K∗ − u
n+1
L∗ )

)
.

The practical inequality (3.8) implies that

T21 ≥
N−1∑
n=0

δt
∑
D∈D

aKL (ξn+1
K − ξn+1

L )2 +

N−1∑
n=0

δt
∑
D∈D

aK∗L∗ (ξn+1
K∗ − ξ

n+1
L∗ )2.

Thanks the monotonicity of the functions v↑, v↓ and the definition of vn+1
KL , we find

vn+1
KL

(
un+1
K − un+1

L

)
ηDσσ∗

(
ξn+1
K∗ − ξ

n+1
L∗

)
≥ ηDσσ∗

(
ξn+1
K − ξn+1

L

)(
ξn+1
K∗ − ξ

n+1
L∗

)
.

Similarly

vn+1
K∗L∗

(
un+1
K∗ − u

n+1
L∗

)
ηDσσ∗

(
ξn+1
K − ξn+1

L

)
≥ ηDσσ∗

(
ξn+1
K − ξn+1

L

)(
ξn+1
K∗ − ξ

n+1
L∗

)
.

As a result we get

T22 ≥ 2

N−1∑
n=0

δt
∑
D∈D

ηDσσ∗
(
ξn+1
K − ξn+1

L

)(
ξn+1
K∗ − ξ

n+1
L∗

)
.
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We deduce that

T2 ≥
N−1∑
n=0

δt
(
∇Dξn+1

T ,∇Dξn+1
T

)
D,Λ

. (4.4)

In view of the relationship (2.1) and Lemma A.1 we assert

T2 ≥ C
N−1∑
n=0

δt
∥∥∇Dξn+1

h

∥∥2

2
,

for some constant C > 0. Next, owing to the inequality (3.8), we claim

T3 = 2

N−1∑
n=0

δt γ JPun+1
T , un+1

T KT

=
γ

hεD

N−1∑
n=0

δt
∑

K∗∈M∗

∑
K∈M

mK∩K∗ (F (un+1
K )− F (un+1

K∗ ))(un+1
K − un+1

K∗ )

≥ γ

hεD

N−1∑
n=0

δt
∥∥∥ξ(un+1

M )− ξ(un+1

M∗
)
∥∥∥2

L2(Ω)
. (4.5)

Also, observe that

T2 + T3 = −T1 ≤
∥∥u0
∥∥2

L2(Ω)
.

Finally, combining(4.3)-(4.5), the energy estimate (4.2) follows as required.

Corollary 4.1. From the previous proposition, one gets

N−1∑
n=0

δt
∥∥∇DFn+1

h

∥∥2

2
≤ C,

Proof. This result is a direct consequence of Lemma A.1 together with inequality (4.2). It is sufficient to
observe that

F (a)− F (b) = v(x0)
(
ξ(a)− ξ(b)

)
,

for some x0 ∈ [min(a, b),max(a, b)] and notice that the function v is bounded.

5 Existence of discrete solutions

In this section, we prove that the nonlinear algebraic system, which comes from the DDFV scheme, admits
a solution. To this end, we will need the following fundamental lemma, that can be found in [29]. This
result ensures the existence of at least one zero to some specific vector fields.

Lemma 5.1. Let A be a finite dimensional Hilbert space with inner product (·, ·) and norm || · ||, and let L
be a continuous mapping from A into itself which verifies

(L(x), x) > 0, for ||x|| = r > 0.

Then, there exists x∗ ∈ A with ||x∗|| < r such that

L(x∗) = 0.

We now state the existence result in the proposition below.

Proposition 5.1. The DDFV scheme (3.10)-(3.12) has at least one solution un+1
T for every n = 0, . . . , N−

1.
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Proof. We proceed by induction on n. We then assume that unT is given and prove the existence of un+1
T

satisfying the numerical scheme (3.11)-(3.12). To this purpose, we define the mapping L : R#T −→ R#T

that associates for each un+1
T the vector :

L(un+1
T ) =

(
LM
)
M∈T

,

where

LK =
mK

δt
(un+1
K − unK)

+
∑

Dσ,σ∗∈DK

(
aKL (Fn+1

K − Fn+1
L ) + vn+1

KL ηDσσ∗ (ξn+1
K∗ − ξ

n+1
L∗ )

)
+ γmKPKun+1

T , if M = K ∈M,

LK∗ =
mK∗

δt
(un+1
K∗ − u

n
K∗)

+
∑

Dσ,σ∗∈DK∗

(
aK∗L∗ (Fn+1

K∗ − F
n+1
L∗ ) + vn+1

K∗L∗ η
D
σσ∗ (ξn+1

K − ξn+1
L )

)
+ γmK∗PK∗un+1

T , if M = K∗ ∈M∗,

LK∗ = 0, if M = K∗ ∈ ∂M∗.

The functional L is well-defined and continuous. It remains to demonstrate that(
L(un+1

T ), un+1
T

)
> 0, for ||un+1

T ||R#T = r, (5.1)

for some sufficiently large r. It follows from the calculation of the previous section, Lemma 4.1, stating that
0 ≤ unK , unK∗ ≤ 1 for all K,K∗, and the Poincaré inequality given in Lemma 4.3 that(

L(un+1
T ), un+1

T

)
≥ 1

δt

∑
K∈M

mK

(
(un+1
K )2 − (unK)2

)
+

1

δt

∑
K∗∈M∗

mK∗

(
(un+1
K∗ )2 − (unK∗)

2
)

+ C
∥∥∇Dξn+1

T
∥∥2

2

≥ C ′
∣∣un+1
T
∣∣2
2,T −

2 |Ω|
δt

,

for some constants C,C ′ > 0. Thanks to the equivalence of the usual norms || · ||R#T , |·|2,T on the finite

dimensional space R#T , inequality (5.1) is fulfilled provided a large r. We therefore obtain the existence of
at least one solution to the nonlinear DDFV scheme (3.10)-(3.12).

6 Convergence

We first give some standard compactness properties. Their proofs follow similar arguments as, for instance,
in [6, 31].

Lemma 6.1. (Space translates)
Let uh,δt be a discrete solution to the DDFV scheme (3.10)-(3.12). Then∫ T

0

∫
Ω′
|ξh,δt(x+ y, t)− ξh,δt(x, t)|dxdt ≤ ω(|y|), for every y ∈ R2, (6.1)

where Ω′ = {x ∈ Ω / x + y ∈ Ω} and ω is a modulus of continuity independent of δt, hD, verifying
ω(|y|) −→ 0 as |y| −→ 0.

Lemma 6.2. (Time translates)
Let uh,δt be a solution to the DDFV scheme (3.10)-(3.12). Then there exists a constant C that does not
depend on hD nor on δt such that∫ T−τ

0

∫
Ω

∣∣ξ(uM,δt(x, t+ τ))− ξ(uM,δt(x, t))
∣∣2 dx dt

+

∫ T−τ

0

∫
Ω

∣∣∣ξ(uM∗,δt(x, t+ τ))− ξ(uM∗,δt(x, t))
∣∣∣2 dxdt ≤ Cτ, (6.2)
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for all τ ∈ (0, T ).

We now claim a weak convergence of the discrete gradient and a strong convergence of uh,δt.

Proposition 6.1. Let Th be a sequence of DDFV meshes such that hD, δt tend to zero and reg(Th) is
bounded. Then, the following convergences hold up to a subsequence:

uh,δt, uMh,δt, uM∗h,δt −→ u a.e. in QT , (6.3)

∇DFh,δt −→ ∇F (u) weakly in L2(QT )2. (6.4)

Moreover

0 ≤ u ≤ 1 a.e. in QT . (6.5)

Proof. The space and time translate estimations are the main ingredients that allow us to apply a discrete
version [31] of Kolmogorov’s compactness theorem [13], claiming that the sequences ξ(uMh,δt), ξ(uM∗h,δt)

are relatively compact in L1(QT ). This ensures the existence of unlabeled subsequences still denoted
ξ(uMh,δt), ξ(uM∗h,δt) that converge almost everywhere as follows

ξ(uMh,δt) −→ ξ1 a.e. in QT , and ξ(uM∗h,δt) −→ ξ2 a.e. in QT ,

for some functions ξ1 and ξ2. Since ξ−1 is continuous, we deduce that

uMh,δt −→ u1 := ξ−1(ξ1) a.e. in QT , and uM∗h,δt −→ u2 := ξ−1(ξ2) a.e. in QT .

In light of Proposition 4.1, we assert∥∥∥ξ(uM,δt)− ξ(uM∗,δt)
∥∥∥2

L2(QT )
≤ ChεD. (6.6)

Thus, up to another unlabeled subsequence, we get

ξ(uM,δt)− ξ(uM∗,δt) −→ 0, a.e. in QT .

Therefore
uM,δt − uM∗,δt −→ 0, a.e. in QT .

We then verify that u1 = u2 := u. Consequently

uh,δt −→ u a.e. in QT , and ξh,δt −→ ξ(u) a.e. in QT .

Thanks to the L∞ bound given in Lemma 4.1, we deduce from Lebesgue’s dominated convergence theorem
that

lim
hD,δt→0

‖uh,δt − u‖L2(QT ) = 0.

Thereby
lim

hD,δt→0
‖Fh,δt − F (u)‖L2(QT ) = 0.

Next, thanks to Corollary 4.1, the sequence (∇DFh,δt) is bounded in (L2(QT ))2. Following [6] we establish
that

∇DFh,δt −→ ∇F (u) weakly in (L2(QT ))2.
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7 Passage to the limit

In this section we prove that any limit of the approximate solution sequence converges towards the weak
solution of the main problem.

Theorem 7.1. Under hypotheses (A1)–(A3) and assuming a uniform boundedness of the mesh regularity,
the limit function u of Proposition 6.1 is the weak solution to the problem (1.1) in the sense of Definition
1.1.

Proof. Let ψ ∈ C∞c
(

Ω× [0, T )
)

, we denote by ψn+1
K = ψ(xK , t

n+1) and ψn+1
K∗ = ψ(xK∗ , t

n+1). We multiply

the equations (3.11), (3.12) by
1

2
δtψn+1

K ,
1

2
δt ψn+1

K∗ respectively, sum over K, K∗ and n. Next, one performs

an integration by parts, adds and substracts
N−1∑
n=0

δt
(
∇DFn+1

Th ,∇Dψn+1
Th

)
D,Λ

to get

S1
Th,δt + S2

Th,δt + S3
Th,δt + S4

Th,δt = 0,

where

S1
Th,δt =

N−1∑
n=0

Jun+1
Th − u

n
Th , ψ

n+1
Th KTh ,

S2
Th,δt =

N−1∑
n=0

δt
(
∇DFn+1

Th ,∇Dψn+1
Th

)
D,Λ

=

∫
QT

Λ∇DFn+1
Th · ∇Dψn+1

Th dxdt,

S3
Th,δt =

1

2

N−1∑
n=0

δt
∑
D∈Dh

ηDσσ∗

[
vn+1
KL

(
ξn+1
K∗ − ξ

n+1
L∗

)
−
(
Fn+1
K∗ − F

n+1
L∗

)](
ψn+1
K − ψn+1

L

)

+
1

2

N−1∑
n=0

δt
∑
D∈Dh

ηDσσ∗

[
vn+1
K∗L∗

(
ξn+1
K − ξn+1

L

)
−
(
Fn+1
K − Fn+1

L

)](
ψn+1
K∗ − ψ

n+1
L∗

)
,

S4
Th,δt = γ

N−1∑
n=0

δt JPun+1
Th , ψn+1

Th KTh .

Let us start off by establishing

lim
hD,δt→0

S1
Th,δt = −

∫
Ω

u0 ψ(·, 0) dx−
∫
QT

u ∂tψ dxdt.

Using a summation by parts in time and the fact that ψNK = ψNK∗ = 0, yields

S1
Th,δt = −Ju0

Th , ψTh(·, 0)KTh −
N−1∑
n=0

JunTh , ψ
n+1
Th − ψ

n
Th

KTh

=: S1,1
Th,δt + S1,2

Th,δt.

Thanks to the strong convergence of (ψTh(·, 0)), one obtains

lim
hD,δt→0

S1,1
Th,δt = −

∫
Ω

u0 ψ(·, 0) dx.

Expanding the term S1,2
Th,δt entails

S1,2
Th,δt = −

N−1∑
n=0

JunTh , ψ
n+1
Th − ψ

n
Th

KTh

= −1

2

N−1∑
n=0

∑
K∈M

mK

∫ tn+1

tn
unK∂tψ(xK , t) dx dt− 1

2

N−1∑
n=0

∑
K∗∈M∗

mK∗

∫ tn+1

tn
unK∗∂tψ(xK∗ , t) dx dt.
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Bearing in mind that (∂tψ(xK , ·))K∈M and (∂tψ(xK∗ , ·))K∗∈M∗ converge uniformly towards ∂tψ, we apply
(6.3) together with the Lebesgue dominated convergence theorem to find

lim
hD,δt→0

S1,2
Th,δt = lim

hD,δt→0
S1,2
Th,δt = −

∫
QT

u ∂tψ dx dt.

Let us next prove the convergence of the diffusion part. To do so, we recall that the sequence (∇DFn+1
Th )

converges weakly towards ∇F (u) whereas (Λ∇Dψn+1
Th ) converges uniformly towards Λ∇ψ. Thereby

lim
hD,δt→0

S2
Th,δt =

∫
QT

Λ∇F (u) · ∇ψ dxdt.

Let us turn our attention to the convergence of S3
Th,δt. This term can be split up into two parts as follows

S3
Th,δt = S3,1

Th,δt + S3,2
Th,δt,

where we have set

S3,1
Th,δt =

1

2

N−1∑
n=0

δt
∑
D∈Dh

ηDσσ∗

[
vn+1
KL

(
ξn+1
K∗ − ξ

n+1
L∗

)
−
(
Fn+1
K∗ − F

n+1
L∗

)](
ψn+1
K − ψn+1

L

)
,

S3,2
Th,δt =

1

2

N−1∑
n=0

δt
∑
D∈Dh

ηDσσ∗

[
vn+1
K∗L∗

(
ξn+1
K − ξn+1

L

)
−
(
Fn+1
K − Fn+1

L

)](
ψn+1
K∗ − ψ

n+1
L∗

)
.

Next, the first mean value theorem guarantees the existence of a constant

uK∗L∗ ∈ [min(un+1
K∗ , u

n+1
L∗ ),max(un+1

K∗ , u
n+1
L∗ )]

satisfying

Fn+1
K∗ − F

n+1
L∗ = v(uK∗L∗)

(
ξn+1
K∗ − ξ

n+1
L∗

)
.

Thus, using Assumption (A3) on the tensor Λ and the regularity of the mesh, we get

∣∣∣S3,1
Th,δt

∣∣∣ ≤ C N−1∑
n=0

δt
∑
D∈Dh

mD
∣∣vn+1
KL − v(uK∗L∗)

∣∣ ∣∣∇DξT ,δt∣∣ ∣∣∣∇DψTh,δt ∣∣∣ .
for some constant C > 0. We set

ξ
n+1

D := max
M∈VD

{ξ(un+1
M )}, ξn+1

D := min
M∈VD

{ξ(un+1
M )}

ξT ,δt|D×(tn,tn+1] := ξ
n+1

D , ξT ,δt|D×(tn,tn+1] := ξn+1

D ,

where VD stands for the set of vertices of the diamond D. The function ξ is increasing and continuous on
[0, 1] then its inverse is continuous on the compact [0, ξ(1)]. Therefore, there exists a modulus of continuity
ω of v ◦ ξ−1, which is continuous and bounded on the same interval with ω(0) = 0. This latter fact and the
Cauchy-Schwarz inequality yields

∣∣∣S3,1
Th,δt

∣∣∣ ≤ C ‖∇ψ‖∞ N−1∑
n=0

δt
∑
D∈Dh

mD ω
(
ξ
n+1

D − ξn+1

D

) ∣∣∇DξT ,δt∣∣
≤ C

(N−1∑
n=0

δt
∑
D∈Dh

mD ω
(
ξ
n+1

D − ξn+1

D

)2
)1/2

×
(N−1∑
n=0

δt
∑
D∈Dh

mD
∣∣∇DξT ,δt∣∣2)1/2

≤ C
(∫

QT

ω
(
ξT ,δt − ξT ,δt

)2

dxdt

)1/2

×
(N−1∑
n=0

δt
∥∥∇Dξn+1

T
∥∥2

2

)1/2

,
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for some positive constant C. In view of Lemma A.2 together with (4.2), we deduce that

lim
hD,δt→0

S3,1
Th,δt = 0.

Similarly, we establish that
lim

hD,δt→0
S3,2
Th,δt = 0.

Finally, let us demonstrate that
lim

hD,δt→0
S4
Th,δt = 0.

Owing to the definition of the penalization term we explore

N−1∑
n=0

δt
∣∣JPun+1

Th , ψn+1
Th KTh

∣∣ =

∣∣∣∣∣∣12 1

hεD

N−1∑
n=0

δt
∑

K∗∈M∗

∑
K∈M

mK∩K∗
(
F (un+1

K )− F (un+1
K∗ )

)(
ψn+1
K − ψn+1

K∗

)∣∣∣∣∣∣
≤ 1

2

‖v‖∞
hεD

N−1∑
n=0

δt
∑

K∗∈M∗

∑
K∈M

mK∩K∗
∣∣ξn+1
K − ξn+1

K∗

∣∣ ∣∣ψn+1
K − ψn+1

K∗

∣∣
≤ 1

2

‖v‖∞
hεD

∥∥∥ξMh,δt − ξM∗h,δt
∥∥∥
L2(QT )

∥∥∥ψMh,δt − ψM∗h,δt

∥∥∥
L2(QT )

.

On the other hand, the regularity of the function ψ ensures the existence of a constant C depending only
on the regularity of the mesh such that (see [20] for deep details)∥∥∥ψMh,δt − ψM∗h,δt

∥∥∥
L2(QT )

≤ ChD ‖ψ‖W 1,∞(Ω) .

Utilizing the energy estimate (4.2) and the fact that ε < 2 we obtain∣∣S4
Th,δt

∣∣ ≤ Ch1−ε/2
D −→ 0, hD, δt −→ 0.

This ends the proof of the theorem.

8 Numerical results

In this section, we present some numerical tests so that we can show the efficiency and the stability of the
proposed DDFV scheme. As highlighted in the introduction of this work, this method will allow us to take
into account almost general meshes and any tensor. We also stress that boundary conditions of Dirichlet
type are prescribed. To take them into consideration, it is sufficient to take the trace of a given exact
solution on the boundary. This particularity provides analytical solutions of the continuous problem and
enables us to compare them with the discrete ones.

To begin with, let us consider the unit square Ω = [0, 1]2 as the domain of our study. Next, the primal
meshes are given by a sequence of distorted quadrangulation, Kershaw and triangular meshes of Ω. The
first family is denoted by M1 while the second one is denoted by M2. These kinds of meshes are taken from
the FVCA5 benchmark [39]. Their corresponding dual meshes are constructed as described in Section 2.
The first element of the sequence M2 as well as the third element of the family M1 are depicted on Figure
3. The mobility function is chosen as follows

f(u) = um(1− u)m, ∀u ∈ [0, 1] and m ∈ {1, 2}.

Notice that this function presents some degeneracy at u = 0 and at u = 1. Additionally, we require the
computation of the functions v↑(u) and v↓(u) in order to calculate the numerical flux. In our study, the
function v admits a unique global maximum u = 1/2. Hence, one gets in a straightforward way that

v↑(u) = v
(

min{u, 1

2
}
)
, and v↓(u) = v

(
max{u, 1

2
}
)
− v(

1

2
), for all u ∈ (0, 1)2.
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Figure 3: From left to right, Kershaw, quadrangle and triangular meshes.

We also focus on the case of anisotropic media to verify the validity of our discretization. To this end, we
select a diagonal tensor Λ :

Λ =

(
Λxx 0

0 Λyy

)
.

The DDFV scheme is formulated in a nonlinear algebraic system, which is solved thanks to Newton’s method
with a given tolerance of 10−10. We underline that the numerical scheme (3.11)-(3.12) is fully implicit in
time, unconditionally stable and convergent. Yet, we require the time step to be proportional to the square
of the mesh size as mentioned in [19] to assess numerical errors.
As we are interested in the accuracy of scheme, we are going to evaluate the error of the proposed dis-
cretization. In all the tests, we denote by ERL2 the difference between the analytical solution and the
numerical one in L∞(0, T ;L2(Ω)). Moreover, we study the error between the gradient of the continuous
semi-Kirchhoff function ξ and its discrete counterpart in L2(Ω× (0, T ))2, which is denoted by ERGL2. The
convergence rate will be designated by Rate. More precisely

ERL2 = ||uex − uh,δt||L∞(0,T ;L2(Ω)), ERGL2 = ||∇ξ(uex)−∇ξ(uh,δt)||L2(Ω×(0,T ))2 .

Rate =
log
(
Erri+1/Erri

)
log
(
hi+1
D /hiD

) , Err = ERL2, ERGL2,

where i refers to the index of the space discretization Ti for i = 1, · · · , 5. In all the tables below umin (resp.
umax) stands for the minimum (resp. maximum) of the computed solution. The parameter hiD is the biggest
diameter of the diamonds build on Ti.

Test 1

In this test, we investigate the numerical convergence of the DDFV scheme (3.10)-(3.12) using the exact
solution:

uex(x, t) = 80x2
1(1− x1)2 × t, ∀x = (x1, x2) ∈ Ω, t ∈ (0, T ). (8.1)

Substituting this expression in the main problem (1.1) yields a nonnegative source term. One notices that
this solution degenerates at the line {x1 = 0} and at {x1 = 1}. The mobility function f(u) = u2(1− u)2 is
considered. Here, the final time is fixed to T = 0.15.

First, we have seen that the penalization term has played a crucial role to establish that the two recon-
structions of the solution on the primal and dual meshes converge to the same limit. Second, this fact
holds numerically without the penalty term. To see this, we compute the difference in L2(Ω× (0, T )) norm
between the approximate solution on the primal mesh and that on the dual mesh. For this, we consider
two values of the stabilization parameter γ = 0 and γ = 0.5 with a fixed ε = 1. As shown in Table 1,
the presence or the absence of the penalization term does not influence the convergence of the sequence
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γ = 0 γ = 0.5

hD #T ||uM,δt−uM∗,δt|| Rate ||uM,δt − uM∗,δt|| Rate

0.342 41 0.111 E-01 - 0.110 E-01 -
0.174 145 0.575 E-02 0.974 0.574 E-02 0.973
0.092 545 0.296 E-02 1.034 0.295 E-02 1.034
0.047 2113 0.146 E-02 1.059 0.146 E-02 1.059
0.019 8321 0.705 E-03 0.823 0.705 E-03 0.823

Table 1: The norm ||uM,δt − uM∗,δt||L2(QT ) with and without penalization term for n = m = 2.

||uM,δt − uM∗,δt||L2(Ω×(0,T )). One can as well check that the convergence rate is almost one.

Since the penalty term turns out to be useless numerically then we set the parameter γ to zero in the
sequel. Let us now return back to the accuracy assessment of the scheme using the exact solution (8.1).
In Table 2 we list the obtained results with an isotropic tensor Λxx = Λyy = 1. We can observe that the
convergence rate of the solution is almost of second order for both kinds of meshes. We thus reach the well
known order of DDFV schemes for linear problems [19, 24, 41]. Despite of being of order between 1 and
2 for linear problem, the convergence rate of the discrete gradient may be deteriorated with respect to the
nonlinearity, the anisotropy and/or the discretization error. For instance we refer to [6] where the authors
have found an accuracy of order 0.4 for an anisotropic Laplace equation. Here, for our nonlinear problem,
we observe that the convergence rate of the gradient is close to 1 in the case of the mesh family M1 whereas
it is close to 2 for the Kershaw meshes. We also verify that the computed solution preserves a maximum
principle property. Table 3 gives the errors in the anisotropic case where the tensor entries are Λxx = 1
and Λyy = 0.01. It demonstrates that the numerical solution is always nonnegative with convergence rates
which are slightly similar to the isotropic case.

M1

hD ERL2 Rate ERGL2 Rate umin umax

0.342 0.127 E-01 - 0.324 E-01 - 0 0.703
0.174 0.629 E-02 1.048 0.218 E-01 0.590 0 0.747
0.092 0.216 E-02 1.669 0.134 E-02 0.755 0 0.748
0.047 0.665 E-03 1.766 0.799 E-02 0.781 0 0.750
0.019 0.126 E-03 1.880 0.345 E-02 0.947 0 0.750

M2

hD ERL2 Rate ERGL2 Rate umin umax

0.271 0.135 E-02 - 0.996 E-01 - 0 0.703
0.135 0.369 E-03 1.870 0.265 E-01 1.910 0 0.744
0.090 0.168 E-03 1.934 0.119 E-01 1.975 0 0.747
0.067 0.959 E-04 1.954 0.671 E-02 1.990 0 0.749
0.054 0.619 E-04 1.964 0.430 E-02 1.995 0 0.750

Table 2: Numerical convergence with isotropic tensor and n = m = 2.

Test 2

We now test the accuracy and the stability of our scheme thanks to the analytical solution

uex(x, t) = 6x2
1 × t, ∀x = (x1, x2) ∈ Ω, t ∈ (0, T ),
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M1

hD ERL2 Rate ERGL2 Rate umin umax

0.342 0.130 E-01 - 0.327 E-01 - 0 0.736
0.174 0.649 E-02 1.030 0.221 E-01 0.583 0 0.748
0.092 0.244 E-02 1.529 0.142 E-01 0.695 0 0.749
0.047 0.898 E-03 1.499 0.909 E-02 0.666 0 0.751
0.019 0.180 E-03 1.812 0.416 E-02 0.883 0 0.750

M2

hD ERL2 Rate ERGL2 Rate umin umax

0.271 0.146 E-02 - 0.997 E-01 - 0 0.739
0.135 0.402 E-03 1.856 0.267 E-01 1.903 0 0.746
0.090 0.184 E-03 1.928 0.120 E-01 1.923 0 0.748
0.067 0.105 E-03 1.948 0.683 E-02 1.967 0 0.749
0.054 0.680 E-04 1.957 0.441 E-02 1.963 0 0.750

Table 3: Numerical convergence with anisotropic tensor and n = m = 2.

where the mobility function is chosen to be f(u) = u(1−u). Note that this function is not a perfect square
with f(0) = f(1) = 0. This solution fulfills the continuous problem (1.1) with a corresponding source term,
which is also nonnegative. It vanishes at the line {x1 = 0}. The final time is taken as T = 0.15. Tables
4 and 5 present the numerical convergence of the scheme including the isotropic tensor, and anisotropic
one (with Λxx = 1 and Λyy = 0.001) respectively. On the mesh family M1, the first table shows that the
numerical scheme is accurate of almost second order whereas the second one exhibits an accuracy of order
1.5 which might be explained by the impact of anisotropy. Although the distortion of the mesh family M2,
we get a super-convergence for the solution and the gradient of its semi Kirchhoff transform. In both cases
we have not recorded any undershoots nor overshoots.

M1

hD ERL2 Rate ERGL2 Rate umin umax

0.342 0.104 E-01 - 0.367 E-01 - 0 0.840
0.174 0.425 E-02 1.335 0.242 E-01 0.622 0 0.895
0.092 0.132 E-02 1.821 0.138 E-01 0.878 0 0.897
0.047 0.365 E-03 1.933 0.696 E-02 1.026 0 0.900
0.019 0.114 E-03 1.312 0.385 E-02 0.667 0 0.900

M2

hD ERL2 Rate ERGL2 Rate umin umax

0.271 0.124 E-02 - 0.102 E-00 - 0 0.882
0.135 0.365 E-03 1.767 0.357 E-01 1.519 0 0.892
0.090 0.173 E-03 1.849 0.212 E-01 1.286 0 0.897
0.067 0.100 E-03 1.890 0.151 E-01 1.171 0 0.898
0.054 0.654 E-04 1.914 0.118 E-01 1.111 0 0.900

Table 4: Numerical convergence with isotropic tensor and n = m = 1.
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M1

hD ERL2 Rate ERGL2 Rate umin umax

0.342 0.116 E-01 - 0.380 E-01 - 0 0.840
0.174 0.506 E-02 1.245 0.263 E-01 0.547 0 0.895
0.092 0.199 E-02 1.459 0.173 E-01 0.659 0 0.897
0.047 0.754 E-03 1.453 0.108 E-01 0.703 0 0.900
0.019 0.207 E-03 1.459 0.580 E-02 0.701 0 0.900

M2

hD ERL2 Rate ERGL2 Rate umin umax

0.271 0.210 E-02 - 0.118 E-00 - 0 0.881
0.135 0.672 E-03 1.646 0.533 E-01 1.148 0 0.893
0.090 0.326 E-03 1.783 0.359 E-01 0.974 0 0.897
0.067 0.193 E-03 1.833 0.272 E-01 0.961 0 0.898
0.054 0.127 E-03 1.852 0.220 E-01 0.966 0 0.900

Table 5: Numerical convergence with anisotropic tensor and n = m = 1.

Test 3

This test concerns the porous medium equation. First, we compare our scheme with the following two
dimensional exact solution [17] to the main problem (1.1)

uex(x, t) =
λ1(x1 − 0.5)2 + λ2(x2 − 0.5)2

1− t
, ∀x = (x1, x2) ∈ Ω, t ∈ (0, T ),

with λ1 = 1
16Λxx

and λ2 = 1
16Λyy

. The mobility function is f(u) = 2u. Note that this choice does not

match with the assumption (A2). We then record the numerical convergence results in Table 6 and Table
7 with a final time set to T = 0.2. On the first mesh sequence, one can check that the method is accurate
of second order even in the presence of anisotropy (Λxx = 0.1 and Λyy = 10). Analogous results have been
observed in [17] for the same problem using a VAG (Vertex Approximate Gradient) scheme. In contrast,
the super-convergence is lost in the isotropic case for the second family of meshes. This is due to the severe
distortion of the mesh in the x2-direction which yields overlapped dual grids. A similar accuracy reduction
has been observed in [44], and it not caused by the absence of penalty. As expected, the second order is
recovered in the anisotropic case since the contribution of the term in x1 is less important. In any case, one
can see that the method preserves the positivity.

Finally, we provide an example which exhibits a low space regularity due to the degenerate nature of the
considered problem. This test has been also treated in [17] using the VAG discretization. It is about the
one dimensional weak solution

uex(x, t) = max(2Λxxt− x1, 0) ∀x = (x1, x2),∈ Ω, t ∈ (0, T ),

to the porous medium equation (1.1) (we recall f(u) = 2u) complemented with the Dirichlet boundary
condition corresponding to this exact solution. In this test-case, we consider a sequence of refined triangu-
lations of Ω as primal meshes. We take Λxx = 1 and Λyy = 10. The final time is T = 0.25. The obtained
results are given in Table 8. As expected, it is shown that the discrete solution is nonnegative. It addi-
tionally converges with an order strictly less than 2 because of the anisotropy and its low regularity. This
phenomenon has been also indicated in [17]. We emphasize that this loss in the convergence rate is not due
to the absence of the penalization in the scheme.

Test 4

In this last test, we exhibit the efficiency of the proposed scheme using a non polynomial exact solution in
space. We also illustrate the impact of the computation of the mesh size hD on the results. To this end,
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M1

hD ERL2 Rate ERGL2 Rate umin

0.342 0.426 E-03 - 0.945 E-02 - 0.206 E-03
0.174 0.260 E-03 0.733 0.773 E-02 0.299 0.243 E-04
0.092 0.789 E-04 1.860 0.462 E-02 0.803 0.304 E-05
0.047 0.213 E-04 1.965 0.252 E-02 0.909 0.612 E-06
0.019 0.450 E-05 1.755 0.115 E-02 0.882 0.234 E-06

M2

hD ERL2 Rate ERGL2 Rate umin

0.271 0.410 E-03 - 0.679 E-01 - 0.537 E-05
0.135 0.250 E-03 0.713 0.481 E-01 0.495 0.108 E-04
0.090 0.186 E-03 0.732 0.367 E-01 0.667 0.554 E-05
0.067 0.149 E-03 0.764 0.294 E-01 0.773 0.739 E-06
0.054 0.125 E-03 0.802 0.244 E-01 0.831 0.507 E-08

Table 6: Numerical convergence of the scheme with Λxx = Λyy = 1.

M1

hD ERL2 Rate ERGL2 Rate umin

0.342 0.340 E-01 - 0.103 E-00 - 0.734 E-03
0.174 0.123 E-01 1.516 0.621 E-01 0.752 0.131 E-03
0.092 0.336 E-02 2.022 0.335 E-01 0.963 0.178 E-04
0.047 0.847 E-03 2.068 0.168 E-01 1.040 0.449 E-05
0.019 0.222 E-03 1.509 0.884 E-02 0.728 0.234 E-06

M2

hD ERL2 Rate ERGL2 Rate umin

0.271 0.286 E-02 - 0.251 E-00 - 0.130 E-05
0.135 0.713 E-03 2.004 0.119 E-00 0.987 0.108 E-05
0.090 0.317 E-03 2.000 0.794 E-01 0.991 0.563 E-06
0.067 0.179 E-03 1.991 0.598 E-01 0.988 0.739 E-07
0.054 0.115 E-03 1.990 0.479 E-01 0.990 0.172 E-08

Table 7: Numerical convergence of the scheme with Λxx = 0.1 and Λyy = 10.

Triangular meshes

hD ERL2 Rate ERGL2 Rate umin

0.250 0.176 E-01 - 0.165 E-00 - 0
0.125 0.106 E-01 0.728 0.971 E-01 0.761 0
0.063 0.583 E-02 0.865 0.612 E-01 0.667 0
0.031 0.324 E-02 0.850 0.386 E-01 0.663 0
0.017 0.177 E-02 0.875 0.242 E-01 0.674 0

Table 8: Numerical convergence of the scheme with Λxx = 1 and Λyy = 10.

we consider an isotropic permeability tensor with Λxx = Λyy = 1. The taken analytical solution is

uex(x, t) = 5t
(

cos(πx1) + 1
)
∀x = (x1, x2) ∈ Ω, t ∈ (0, T ).
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The mobility function is such f(u) = u2. The final time is fixed to T = 0.1. Inserting these data in
the problem (1.1) yields a nonnegative source term. We show in Tables 9-10 the obtained results. We
have considered two options to calculate hD: the maximum value and the averaged value of the diamond
diameters. The accuracy is optimal for both cases. We observe that the errors as well as the convergence
rates are sensible to the choice of mesh size computation.

M1

hD ERL2 Rate ERGL2 Rate umin

0.342 0.868 E-02 - 0.363 E-01 - 0
0.174 0.221 E-02 1.936 0.768 E-02 2.207 0
0.092 0.682 E-03 1.840 0.229 E-02 1.886 0
0.047 0.179 E-03 2.003 0.745 E-03 1.687 0
0.019 0.339 E-04 1.862 0.164 E-03 1.703 0

M2

hD ERL2 Rate ERGL2 Rate umin

0.271 0.603 E-03 - 0.174 E-01 - 0
0.135 0.187 E-03 1.686 0.424 E-02 2.037 0
0.090 0.881 E-04 1.861 0.187 E-02 2.022 0
0.067 0.509 E-04 1.908 0.104 E-02 2.015 0
0.054 0.333 E-04 1.895 0.672 E-03 1.992 0

Table 9: Results with maximum computation of the mesh size.

M1

hD ERL2 Rate ERGL2 Rate umin

0.225 0.768 E-02 - 0.179 E-01 - 0
0.126 0.232 E-02 1.739 0.480 E-02 1.916 0
0.063 0.680 E-03 1.774 0.148 E-02 1.695 0
0.031 0.179 E-03 1.923 0.584 E-03 1.348 0
0.015 0.339 E-04 2.363 0.150 E-03 1.923 0

M2

hD ERL2 Rate ERGL2 Rate umin

0.085 0.643 E-03 - 0.178 E-02 - 0
0.042 0.188 E-03 1.792 0.463 E-03 1.966 0
0.028 0.885 E-04 1.877 0.209 E-03 1.968 0
0.021 0.512 E-04 1.911 0.119 E-03 1.975 0
0.017 0.333 E-04 1.933 0.767 E-04 1.982 0

Table 10: Results with averaged computation of the mesh size.

Conclusion

We have proposed and investigated a DDFV scheme preserving a maximum principle for nonlinear parabolic
equations. The basic idea of this scheme consists in correcting the oscillatory fluxes owing to an upwind
approach which is widely known in the context of hyperbolic problems. Thanks to these nonstandard
approximations of the fluxes, we derived some energy estimates. The existence of solutions is proved by an
inheriting result of Brouwer’s fixed point theorem. With the help of some compactness properties, we have
established the convergence of a sequence of approximate solutions towards the weak one of the continuous
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problem. Numerical tests showed that our scheme is accurate with optimal convergence rates and that
the computed solutions are always nonnegative. Consequently, our theoretical predictions are confirmed as
required. As far as we know this work is the first one which proves the discrete maximum principle together
with the convergence of the numerical scheme in the context of DDFV methods.

A Appendix: Technical lemmas

Let D be a fixed diamond cell. We define the following 2× 2 matrices

AD =
1

4mD

[
m2
σ mσmσ∗

mσmσ∗ m2
σ∗

]
=:

[
ADσ ADσ,σ∗
ADσ,σ∗ ADσ∗

]
, (A.1)

AD,Λ =
1

4mD

[
m2
σΛnσK · nσK mσmσ∗ΛnσK · nσ∗K∗

mσmσ∗ΛnσK · nσ∗K∗ m2
σ∗ Λnσ∗K∗ · nσ∗K∗

]
=:

[
AD,Λσ AD,Λσ,σ∗

AD,Λσ,σ∗ AD,Λσ∗

]
, (A.2)

and

BD,Λ =

∣∣AD,Λσ

∣∣+
∣∣∣AD,Λσ,σ∗

∣∣∣ 0

0
∣∣∣AD,Λσ,σ∗

∣∣∣+
∣∣∣AD,Λσ∗

∣∣∣
 , ∀D ∈ D. (A.3)

The following lemma claims a crucial property of the matrix AD,Λ. In particular, it states that AD,Λ is
positive definite.

Lemma A.1. [19] There exist some positive constants λ0 and λ1 depending only on the mesh regularity
and on Λ, Λ satisfying

AD,Λx · x ≤ BD,Λx · x ≤ λ1AD,Λx · x, ∀x ∈ R2, (A.4)

λ0ADx · x ≤ AD,Λx · x, ∀x ∈ R2. (A.5)

Lemma A.2. Consider the following piecewise constant functions

ξ
n+1

D := max
M∈VD

{ξ(un+1
M )}, ξn+1

D := min
M∈VD

{ξ(un+1
M )},

ξT ,δt|D×(tn,tn+1] := ξ
n+1

D , ξT ,δt|D×(tn,tn+1] := ξn+1

D ,

where we denote VD = {K,L,K∗, L∗}. Then

lim
hD,δt→0

∥∥∥ξT ,δt − ξT ,δt∥∥∥L2(QT )
= 0. (A.6)

Proof. The proof extends similar ideas provided in [20].
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