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Abstract 

A concise and factual abstract (written in third person and in one paragraph) of no more than 400 words is 

required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. 

An abstract must be stand alone and complete in itself with no references to the main body of the manuscript. 

References should be avoided, but if essential, then cite the author(s) and year(s). Also, non-standard or uncommon 

abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself. 
Readers should not have to read the full text to understand the abstract. The abstract can be an updated version of the 

one submitted at the call-for-abstracts, but its contents must not differ substantially. 

Keywords: (maximum 6 keywords) 

 

1. Introduction 

On the road to a manned exploration of Mars, several 

mission scenarios beyond Low Earth Orbit have been 

identified as significant landmarks. Two of them, 

“Asteroid Next” and “Moon Next”, have been 

integrated into a single reference framework [1]. 

In this context, one option being considered includes an 

outpost at one of the libration points of the Earth-Moon 

system which would be used as a logistic hub for human 

missions in cis-lunar space − including lunar surface − 

and beyond. Moreover, innovative technologies could 

be tested onboard before being employed in deep space 

missions [2]. At this time, such an option is likely to 

involve the NASA/ESA Orion Multi-Purpose Crew 

Vehicle combined with the Space Launch System 

(SLS), designed to facilitate human exploration beyond 

Low Earth Orbit (LEO). 

The capacity to rendezvous in cis-lunar space is by 

nature necessary both for the deployment and the 

overall operability of the Space Station. Hence, a 

rendezvous analysis in such an environment becomes 

fundamental. 

Concerning the fully characterization of a deep-space 

rendezvous, it is at first necessary to choose within the 

cis-lunar orbits selected by NASA as possible locations 

for a future international space station (ISS). In order to 

privilege a particular orbit for the future ISS, it is 

necessary to define the characteristics and the impact on 

system design and mission operations of the different 

options at hand. After an accurate analysis, one can 

affirm that the Near Rectilinear Orbits (NROs) represent 

the most favorable option and are therefore selected for 

the rest of the study. 

NASA and ESA have flown manned rendezvous and 

docking missions since Gemini 6 (1966) and many of 

the techniques pioneered in the mid-60’s and used in 

Apollo and Shuttle programs are still applicable today to 

ATV and HTV’s rendezvous with ISS. They are all 

based upon the assumption of two vehicles operating in 

a near circular orbit in a strong central gravity field. 

However, neither of these conditions are present in a 

cis-lunar environment. 

Thus, the constraints and the safety procedures derived 

by operating in the neighbourhood of a strong central 

body are no longer in effect. Moreover, since the gravity 

field is shallow in cis-lunar orbits, the relative dynamics 

of proximity motion are almost straight [3]; therefore, 

the “carving” characteristics of LEO trajectories, which 

govern the ISS safety standards, cannot be used. In 

addition, the GPS navigation system cannot be directly 

applied, which is often used as a primary navigation 

method for far rendezvous operations in LEOs. Another 

navigation system, such as a ground-based tracking 

system like NASA’s deep space network (DSN), must 

be utilized. 

A noticeable work by Mand et al. [4] achieved to define 

the rendezvous strategy for a station in a EML2 Halo 

orbit. Mand’s work has been taken by the author as a 

reference to compare and validate the results obtained in 

this article. Finally, a significant contribution to the 

study of relative motion in cis-lunar orbits derived from 

the spacecraft formation flying (SFF) analyses. 

However, the SFF dynamical model resulting from the 

CRTBP is very different from the one implemented for 

the near-Earth missions. Hence, only a few missions of 

a single spacecraft (including ISEE-3, WIND, SOHO, 

ACE, Genesis) have been actually operative [5]. 

The author of this article did not find any literature 

specifically focused on NRO’s rendezvous. 

 



68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.  

       Page 2 of 9 

2. Problem Overview 

2.1. Circular Restricted Three-Body Problem 

(CRTBP) 

Consider the motion of a particle m of negligible 

mass moving under the gravitational influence of two 

masses m1 and m2, referred as the primary masses, or 

simply the primaries. In the general Three-Body 

Problem, all bodies are free to move in the space, while 

the Restricted Problem constraints the motion of the two 

primaries which are considered to be revolving around 

their center of mass under their mutual gravitational 

attraction. The third body is attracted by the previous 

two, but it does not influence their motion. This last 

assumption implies that the mass of the third body is 

much smaller than either m1 or m2. A further 

assumption is then introduced in the Circular Restricted 

Problem, constraining the two primaries to move on a 

circular orbit around their center of mass. This model 

fits the case in which the spacecraft is considered to be 

under the attractions of two big celestial bodies, such as 

Earth and Sun or Earth and Moon and it is in general 

valid for all gravitational systems generated by the Sun 

and the planets in the Solar System which have nearly 

circular orbits around the Sun [6]. 

The following well-known form of the equation will be 

particularly useful to derive equilibrium solution in the 

CRTBP [4]: 

 

 

 

 

 

(1) 

 

 

Although the equations of the CR3BP have no 

closed form of analytical solution, it is possible to 

determine the location of the equilibrium points, the so-

called Lagrangian Points. There are five Lagrangian 

points: three on the x-axis of the Earth-Moon synodical 

reference frame, called collinear points, and two 

forming an equilateral triangle with the Earth and the 

Moon, called triangular or equilateral points. 

Starting from these points, it is possible to define 

several families of orbits around them, and in particular 

the Halo orbits which are periodic orbits around the 

point L1 and L2. The Near Rectilinear Orbits (NROs) 

are defined within the Earth-Moon Three-Body 

framework and they can be seen as a certain class of 

Halo orbits if the point of the trajectory closest to the 

mean linear surface intersects the lunar sphere when 

projected on the xy plane of the Earth-Moon synodical 

frame. 

Nowadays studies tend to target NROs as possible 

destinations for the next ISS because the Lagrangian 

points (in particular the point L2) can be seen as logistic 

hubs for low fuel consumption in interplanetary human 

spaceflight. 

 

2.2. Reference Frames 

In order to describe the absolute motion of an object 

in the Earth-Moon system, the Earth-Moon synodical 

reference frame, that is a relative reference frame, is 

taken into consideration. In the case of a rendezvous 

problem, the relative dynamics of the approaching 

spacecraft is defined in a reference frame relative to the 

target, called the Local Horizontal Local Vertical 

reference frame (LVLH). To construct the LVLH, it is 

necessary to define an inertial reference frame, that 

could be the Moon-Centered or the Earth-Centered 

Inertial frame (MCI or ECI). 

The Earth-Moon synodical frame is a rotating frame 

centered at the Earth-Moon center of mass so that the 

Earth and the Moon are fixed points on the x-axis, with 

z-axis orthogonal to the plane of motion of these planets 

and y-axis completing the right-handed rule. The x and 

y axes are time-dependent. 

The MCI (or ECI) is defined such that the origin is 

the center of the Moon (or the Earth respectively), the z-

axis is oriented as the z-axis of the Earth-Moon 

synodical frame and the x and y axes are supposed to be 

overlapped when t=0. 

The LVLH is centered on the target and it is a time-

dependent frame utilized for the description of the 

rendezvous phase described below. The z-axis, also 

called the Altitude axis, is oriented in the opposite 

direction of the target position vector, defined with 

respect to one of the two previously defined inertial 

frames; the x-axis, called the Downrange axis, points in 

the direction of the target velocity and the y-axis is 

normal to the others two axes. 

After a further analysis, the MCI has been selected in 

order to define the z-axis of the LVLH frame; this 

choice is dictated by the fact that a more suitable 

representation of the orbit is obtained with this inertial 

frame. 
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Figure 1. The main reference frames for the description of 

the motion in cislunar space. In blue: the Earth-Moon synodical 
reference frame Rem. In black: the Moon-Centered Inertial 

frame Rm. In red: the nro Local Vertical, Local Horizontal 

(LVLH) reference frame. In green: the nro of the target, as seen 
in Rem. 

 

3. Rendezvous on a NRO 

3.1. Relative Motion 

In this section, the different models to describe 

the CRTBP relative motion are presented and 

discussed. 

 

3.1.1. Non-Linear Relative Equations 

     The non-dimensional non-linear relative 

equations of motion written in the synodic frame 

can be easily obtained by difference of the absolute 

equations of motion for the chaser and the target, 

respectively:   

 

 

 

 

 

 

(2) 

 

 

where  

 

 
(3) 

 

is the R6 relative state,  

 

                       (4) 

     is the relative position,  

     

 
(5) 

 

is the target absolute state,  

    

 

 

(6) 

 

 

    are the absolute non-dimensional distances of the           

    target from the Earth and the Moon, respectively. 

 

3.1.2. Linearized Relative Equations 

Concerning the linearized relative equations 

(LRE), the contribution comes exclusively from the 

formation flying studies of Peng et al. [6] and 

Luquette [7]. 

Many previous approaches were based on the 

linearization with respect to a libration point, leading 

to a linear time-varying periodic (LTVP) system. 

However, applying this form of the linearized 

dynamics to the problem of spacecraft relative 

motion limits the validity and utility of the model to 

regions within close proximity to a libration point. 

Linearizing the dynamics about a reference 

spacecraft instead provides a generalized solution, 

applicable to any trajectory within the context of the 

CRTBP. Specifically, the approach followed by 

Luquette takes into account a canonical CRTBP 

synodic frame. The linearized equations are: 

 

 

 (7) 

 

where 

 

       

                              

            

 

         (8) 
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3.1.3. Clohessy-Wiltshire Equations 

The well-known Clohessy-Wiltshire equations 

(C-W) represent the classic tool to describe the 

relative motion in a 2-Body environment. They are 

based on three main hypotheses: 

• Single primary mass; 

• Circular target’s orbit; 

• Small relative distance with respect to 

the target-attractor distance. 

These hypotheses are, in general, no more valid in 

the CRTBP. The C-W equations written in the 

LVLH frame are in the form [8]: 

 

 

 

(9) 

 

 

and can be written in a state-space representation as: 

 

 

 

 

   (10) 

 

where  

 

 

(11) 

is the mean angular motion of a fictitious Lunar-

centered keplerian circular orbit whose radius is 

equal to the target distance from the Moon center. In 

order to improve the precision of this linear 

algorithm, r2T is evaluated at the beginning of each 

transfer, so that n is continuously updated. 

 

3.1.4. Straight Line Equations  

The Straight-Line (SL) approach is the simplest 

and most intuitive one. The desired ∆v aims the 

velocity vector towards the targeted point at all 

times, disregarding any gravitational effect. This 

results in: 

 

 

                (12) 

 

so that the state-space representation of the system is 

simply: 

 

 

 

 

(13) 

 

In 1965, the Gemini 4 vehicle attempted the first 

rendezvous in history, utilizing the Straight-Line 

approach due to the limited knowledge of the orbital 

mechanics involved. It failed to rendezvous with its 

spent Titan II launch vehicle’s upper stage, as both 

target and chaser were still in LEO. 

 

3.2. Linear Targeting Evaluation  

At time t = 0
-
, the position δr0 and the velocity 

δv0
-
 of the chaser vehicle B relative to the target A 

are known. At t = 0 an impulsive maneuver 

instantaneously changes the relative velocity to δv0
+ 

at t = 0
+. The solution of the targeting problem lies 

in the evaluation of δv0
+

= {δu0
+ 

δv0
+ 

δw0
+

}, at the 

beginning of the rendezvous trajectory, so that B 

will arrive at the target in a specified time. The 

variation of velocity required to place B on the 

rendezvous trajectory is:  

 
       

    (14) 

 

 

(14) 

 
Figure 2. Example of rendezvous trajectory [8] 

 

It is possible to use the notion of linear targeting 

algorithm (defined in the next subsection) to 

estimate the error introduced by relative linear 

models with respect to non-linear models and, 

consequently, assess their ability to accurately model 

the dynamics during a NRO rendezvous. 

Specifically, linear and non-linear models are 



68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.  

       Page 5 of 9 

compared on a single case - namely, a two-impulse 

transfer arc between two NROs. In this situation, 

both the target and the chaser spacecraft are 

supposed to orbit on given NROs with their own 

station-keeping strategy. 

For the three linear models previously, namely the 

Linearized Relative equations, the Clohessy- 

Wiltshire equations and the Straight Line equations, 

the solution of the linear targeting problem ∆v0 has 

been evaluated in different scenarios. The computed 

relative velocity at t = 0
+

, along with the selected 

initial relative position, has been then used as the 

initial condition for the integration of the non-linear 

equations 2, for a specified Time of Flight (TOF). 

For t = TOF, the final integrated position has been 

compared to the desired final position and the linear 

error has been defined as the norm of the vectorial 

difference of the two. In other words: 

 

                  (15) 

where E represents the linear error, j represents the  

j-th model, rf,d is the final desired position and rf,i is 

the final integrated position using relative state 

coming from the j-th model as the initial condition. 

 

3.2.1. Algorithm  

If the equations of motion can be linearized to 

the state space representation form of: 

 

 
                     (16) 

where A is the constant system matrix and x is the 

relative state, the state transition matrix (STM) can 

be solved using the equation [9]: 

 
                   

                      (17) 

where ∆t is the transfer time. Then, the state 

transition matrix and relative state vector can be 

decomposed into: 

 

 

 

 

 

                  (18) 

 

 

 

The change in velocity required at the point of the 

burn, ∆v0
+

, can be determined to achieve any three 

of the six states of the final relative state, xf, 

beginning with the initial relative state, xi, as: 

 

 

                       (19) 

To target a desired position, rf, after a transition 

time, ∆t, substitute the required initial velocity, vi,req, 

for the current initial velocity: 

 

 

 

           (20) 

 

Then, vi,req can be determined with respect to rf as : 

 

 
              (21) 

 

The desired ∆v0 can be determined by taking the 

difference between the vehicle’s required velocity 

and its current velocity: 

 

 

                     (22) 

 

3.2.2. Results 

Due to the very different nature of the baseline 

linear discussed, it has been considered necessary to 

evaluate their performances in three different orbital 

regions. Specifically, three dynamically diverse 

regions such as the periselene, the aposelene and a 

intermediate point between the two have been 

selected. A direct two-impulse transfer, bringing the 

chaser to dock with the target in a given TOF, has 

been selected as the tool to compare the linear and 

non-linear models. In order to provide a more 

general characterization of the problem, the linear 

error has been evaluated varying both the position of 

the chaser in a limited region around the target and 

the TOF of the transfer. It has been furthermore 

ensured that the results of the three orbital regions 

can be compared. According to the particular region 

considered, both the chaser’s orbit and its angular 

position span have been slightly varied in order to 

obtain a relative distance span of [0.5 390] km, 

which have been considered the extrema for the 

close approach maneuvering. The discretization in 

position has been set to 0.01° while the time 

discretization has been set to 5 minutes, with a 

minimum and maximum TOF of 10 minutes and 10 

hours, respectively. The position of the target has 

been considered fixed. 

The relative position has been defined as the 

difference between the angular position of the chaser 

and the target. However, it is important to remember 

that these two position angles are defined in 

different planes, but since the orbits are very close, 

we can ignore this drawback. 
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Figure 3. Mean Dimensional Error 

 

Observing the LRE’s dimensional error it becomes 

evident that the LRE’s periselene error is the highest 

allowed for any linear model in any orbital location. 

This result can be explained by a combination of the 

complexity of the model and the particular orbital 

region considered. As a matter of fact, the LRE 

represent the only model, among the ones employed, 

designed for a Three-Body environment. Thus, its 

validity is limited in regions where the influence of 

one primary is not utterly predominant over the 

other, case in which the orbits degenerate in the 

classic Keplerian conics. This characteristic allows 

the use of LRE both for large Halo orbits or for the 

relative motion close to NRO’s aposelene regions, 

where the high distance from the Moon or the Earth 

does not allow a strong influence predominance. 

However, for the NRO’s periselenic regions, the 

Moon’s influence is highly predominant, so that the 

LRE lose their fundamental hypothesis. It is 

therefore the simplicity and the assumptions of the 

C-W equations or the SL equations that allow these 

models to represent better baseline solutions for the 

shooting method in the periselene vicinity. 

 

3.3. Non-Linear Targeting Evaluation  

Considering non-linear models, where an analytic 

solution is not available, it is necessary to implement 

a recursive algorithm to evaluate ∆v0. The 

rendezvous problem defined in chapter 3.2. can be 

transposed in the following manner: given an initial 

relative state, a final relative state and a TOF, it is 

necessary to evaluate the variation of initial velocity 

so that the chaser docks with the target in the 

specified time. This formulation of the problem 

represents the well-known Lambert’s problem that, 

in the frame considered, must be transposed to a 

three-body environment. 

A Lambert’s three-body problem is stated as the 

search of a path between two given points               

r1 = {x1, y1, z1} and r2 = {x2, y2, z2} with a given 

Time of Flight. It represents a typical two-points 

boundary value problem (2PBVP) that requires 

seven conditions (r1, r2, TOF) to be solved because, 

if for instance the TOF is not given, there are infinite 

trajectories linking r1 and r2 [10]. 

 

3.3.1. Shooting Method 

When a generalized multi-variable Newton 

method [11] is employed to solve the Lambert’s 

problem as a means of computing orbits in multi-

body dynamical regimes subject to a set of user-

defined constraints, it is called shooting method. 

Fundamentally, in this approach, a trajectory is 

propagated for a specified length of time and, based 

on a set of defined constraints, an error is computed. 

The error is then utilized in conjunction with 

dynamical gradient information to iteratively adjust 

the trajectory, i.e., one or more states along the path, 

until it satisfies all constraints. The differential 

equations of motion are solved using explicit 

integration techniques to propagate trajectories in 

the RTBP. The state transition matrix supplies 

significant gradient information that is necessary for 

differential corrections in the context of the shooting 

problems. The simplest application of the shooting 

method is termed “single shooting” because it 

utilizes a single integrated trajectory segment to 

solve the two-point boundary value problem. 

Suppose a spacecraft is initially located at point in 

space associated with the six-dimensional state 

vector, x0, and, given its initial velocity, arrives at 

point xt at time t = t0 + T. For any number of 

reasons, it may be necessary to alter the velocity at 

x0, i.e., perform ∆v maneuver, such that the 

spacecraft arrives at an alternate location to be 

denoted as the desired point, rd. The first step in any 

multi-body trajectory design problem in this 

investigation is the definition of the free variables, 

X, that can be modified or adjusted. In this example, 

the spacecraft initial position is fixed and only the 

velocity is allowed to vary, thus, 

 

 

                          (23) 

The constraint vector, F(X), is constructed to require 

that the final integrated spacecraft position be equal 

to the desired final position, rd. Mathematically, 

these constraints are expressed as 

 

 

(24) 
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The 3 × 3 Jacobian matrix, DF(X) represents the 

partial derivatives of the constraints with respect to 

the free variables, 

 

 

(25) 

and consists of a 3 × 3 submatrix of STM elements. 

While the stated goal is to drive the vector constraint 

equation to zero, in practice, the procedure is 

numerical in nature and the problem is simply 

iterated until is reduced below a 

specified convergence tolerance, ε, 

 

 (26) 

 

 
Figure 4. Single Shooting Example 

 

 

 

3.4. Numerical Implementation  

In general, the algorithm is conceived so that the user 

can employ all the linear methods to provide a first 

guess for the shooting method. 

The initial linear error is evaluated and the baseline 

model which presents the lower initial error is further 

selected to develop the shooting method. This procedure 

is justified by two considerations. First, it is assumed 

that the solution space is such that the velocity of 

convergence of the shooting method is directly 

dependent from the initial error, i.e. if the initial error is 

lower, the method will converge faster. Second, 

selecting the model with a lower initial error, it is more 

likely to obtain the “good” Lambert’s solution. Indeed, 

two solutions exist for a given transfer time: one in the 

clockwise direction and one in the counter clockwise 

direction [12]. Thus, being the natural motion of the 

chaser clockwise the classical solution “follows” the 

natural motion of the chaser while the symmetric 

solution requires a breaking maneuver which 

completely reverses the natural motion of the chaser. 

Hence, in order to save fuel, the solution which follows 

the natural motion of the chaser has to be selected. 

If the selected baseline model does not allow the 

convergence of the shooting method or the Lambert’s 

solution is not in the same direction of the orbital 

natural motion, a continuation algorithm is employed to 

solve the Lambert’s problem. 

 
Figure 5. General Structure of the Algorithm 

 

 
Figure 6. Lambert’s solution using C-W or SL equations  

as baseline models 

 

In the following it will be shown two examples of 

trajectory design: Line of Sight Corridor and Line of 

Sight Glide [4]. 

With Line of Sight Corridor, the trajectory is obtained 

by defining an approach cone, in which the chaser has 

to be located; moreover it has to maneuver every time 

(n) that it will reach one side of the corridor. Four 

angles have to be selected: θ is the approach angle, α 

and β are the trigger angles and Φ is an offset angle that 

has to respect the conditions Φ < α and Φ < β. If α and β 

are equal, a symmetric cone is obtained. 

Assuming rectilinear motion, these maneuvers create a 

series of similar triangles. Utilizing the formula deduced 

from geometric considerations, it is possible to obtain 

the following trajectory example: 
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Figure 7. Rendezvous Trajectory: Line of Sight Corridor 

 with random angles.  

 

Where the Approach Sphere (AS) and the Keep Out 

Sphere (KOS) are safety regions defined around the 

target. The AS is centered on the target and has a radius 

of 2 km and the KOS is also centered on the target and 

has a radius of 200 m. 

 

 Line of Sight Glide allows a relatively safe approach, 

with the chaser always within sight but between only 

one trigger angle and an offset angle. Moreover, the 

offset angle is not set across the line of sight between 

the chaser and the target, but on the same side as the 

trigger angle. This choice will increase the number of 

maneuvers but it will drastically decrease the fuel 

consumption and consequently the mission cost. 

Three angles have to be selected: θ is the approach 

angle, α is the trigger angle and Φ is an offset angle that 

has to respect the condition Φ < α. 

The maneuvers obtained with the Glide approach create 

a set of similar triangles, whose rotation depends on the 

step number n. Utilizing the formula deduced from 

geometric considerations, it is possible to obtain the 

following trajectory example: 

 

 
Figure 8. Rendezvous Trajectory: Line of Sight Glide with 

random angles. 

 

 

 

4. Conclusions and Future Work 

This work represents an attempt to define the Near 

Rectilinear Orbits, in the Circular Restricted Three-

Body domain, under a rendezvous point of view, as no 

previous works on the matter were found in literature. 

At first, NRO relative dynamics were investigated. In 

comparison with other cislunar orbits, different relative 

frames and relative models were analysed. A Near 

Rectilinear Orbit Local Vertical Local Horizontal 

reference frame was defined and used to describe NRO 

relative motion. After having introduced the rendezvous 

targeting problem, linear models were employed to 

generate relative trajectories. However, linear models 

and linear targeting algorithms did not provide 

sufficiently accurate results for a NRO rendezvous. 

Thus, a non-linear targeting algorithm, based on the 

shooting method, was implemented. 

Finally, an example of a safety trajectory was computed. 

As no previous works on the matter were found in 

literature, future work possibilities are vast. For 

example, the far rendezvous phase can be analysed in 

detail and reconnected to the close approach phase 

defined in this work. The size of the initial target and 

chaser orbits, before the far rendezvous phase, has to be 

properly fixed. 

Furthermore, an optimization and a dispersion analysis 

can be realized in order to well define a rendezvous 

strategy design. 
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