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Abstract

We define the quantile set of order α ∈ [1/2, 1) associated to a
law P on Rd to be the collection of its directional quantiles seen from
an observer O ∈ Rd. Under minimal assumptions these star-shaped
sets are closed surfaces, continuous in (O,α) and the collection of em-
pirical quantile surfaces is uniformly consistent. Under mild assump-
tions – no density or symmetry is required for P – our uniform central
limit theorem reveals the correlations between quantile points and a
non asymptotic Gaussian approximation provides joint confident en-
larged quantile surfaces. Our main result is a dimension free rate
n−1/4(log n)1/2(log log n)1/4 of Bahadur-Kiefer embedding by the em-
pirical process indexed by half-spaces. These limit theorems sharply
generalize the univariate quantile convergences and fully characterize
the joint behavior of Tukey half-spaces.

1 Introduction

1.1 Short presentation
Let {Xn} be a sequence of independent random vectors in Rd defined
on a probability space (Ω, T ,P) and having the same law P = PX .
Many procedures in multivariate data analysis have been proposed
to picture out the structure of the data cloud X1, ..., Xn and dis-
tinguish between inner points, outer points and outliers. In partic-
ular it is worth mentioning generalized quantiles ([12],[19],[28],[30]),
data depth ([16],[24],[23],[34],[35]), level sets ([27]), Tukey contours
([10],[21],[26],[33]), modal set estimation ([3],[25],[27],[28]), k-means
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([7],[8]), trimming ([22],[26], [29]), quantile regression ([15]) among
many others. The underlying generic problem is to infer about the
mass localization of P in Rd – modal regions, support, main mass di-
rections. Since probabilities and locations come into play together, the
need of multivariate quantiles arises naturally. Now, the univariate
α-th quantile can be defined in many ways, hence as many multivari-
ate generalizations can be proposed in terms of points, vectors or sets
satisfying some equation involving α.

The inference paradigm we promote below uses what we call quan-
tile surfaces. They are defined in a purely nonparametric way, always
exist and satisfy sharp convergence properties without too restrictive
hypotheses. In this paper we focus on quantile surfaces built from
half-spaces probabilities, so that our results can be applied to sta-
tistical procedures based on the popular Tukey half-spaces. Flexible
extensions are studied in companion works, with applications to good-
ness of fit tests, depth vector fields and Lorens-Gini and Wasserstein
type distances.

The paper is organized as follows. In Section 1 we discuss motiva-
tion and compare our approach to the main existing ones. In Section 2
we recall the limit theorems for univariate quantiles we intend to gen-
eralize. Then we provide notation, definitions and basic properties of
the deterministic and empirical quantile surfaces, with a few illustra-
tions and comments. Our results are stated in Section 3. Section 4 is
devoted to proving continuity, uniform consistency, uniform weak con-
vergence, strong approximation and a dimension free Bahadur-Kiefer
representation of quantile surfaces.

1.2 Basic principles
It is important to point out that we depart from the following classical
ideas, which have been extensively exploited.

It seems commonly admitted that localizing mass requires first a
well defined mass centerM = M(P ). On R the median corresponds to
a robust central locationM from where nested inter-quantiles intervals
can grow up. In Rd it is then tempting to characterize some median
point M , typically through a global minimization of some centrality
expectation function. Seen from M the support of an unimodal P can
be divided into central, inner, outer and extreme regions in a nested
way. Such a contour description can be achieved by two main basic
principles.

The depth principle consists in associating a real value to each point
O ∈ Rd, with a maximum at some mass centerM . The latter typically
depends on a notion of central or angular symmetry and depth contours
stand as level sets of some depth function depending on P and M .

The quantile principle consists in associating a set of points to
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a value α ∈ (0, 1). Typical quantile sets are selected among a small
entropy collection of sets by means of argmax estimation, and centering
sets at M helps making them nested like contours.

Outer spatial quantile sets or less deep contours are used to char-
acterize outliers and build trimmed areas before processing, for sake
of robustness. Inner spatial quantile sets or deeper contours are used
to depict central regions of the support of P . In this spirit the depth
axioms are formalized in [34]. Other approaches provide a similar
center-outward ordering of points. Note that centered quantile sets
have a probability α whereas depth contours may or not rely on α-th
quantiles of some associated real valued random variable. Even when
α is not a probability, contours require a central median point to cross
directions. This is the case in [19] where the inverse of a multivalued
function is used to represent directional quantiles.

1.3 Motivation
The limitations of the framework of quantile sets and depth contours
motivate our notion of arbitrarily anchored quantile surfaces.

Firstly, focusing on a unique mass center M ∈ Rd could be mis-
leading and excludes interesting cases like mixtures or low dimensional
supports. We would like to depict mass localization beyond the center-
outward case, with no need of any objective center M = M(P ). We
thus suggest to learn about P by moving a subjective viewpoint O ∈ Rd
– like turning around a geometrical structure to see all faces rather than
observing it from a central point inside. If P is M -symmetric then all
expected properties hold at O = M and we recover radial quantiles.

Secondly, few limit theorems are available besides consistency com-
pared to the variety of proposed methods. We would like to generalize
the sharpest limit theorems on univariate quantiles. Using directional
projections seen from O ∈ Rd allows to go back to R and our main
contribution is to control them jointly.

Thirdly, known results hold under restrictive assumptions on P . In
particular, P often has density and contiguous support or is regular
with respect to the indexing sets or a depth function. We would like to
impose no stronger assumptions than for univariate quantiles. More-
over in higher dimension the statistical dependency of the coordinates
of X could make P very concentrated around low dimensional mani-
folds or geometrical structures, and such a sparsity means no density.
Thus a special effort is made to relax the density and support require-
ment.

Sometimes theoretical methods have unrealistic computational as-
pects. Consider for instance plug-in procedures such as computing
level sets after a d-dimensional density estimation. The quantile sur-
faces we introduce are quickly computed by orthogonal projections and
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confident bands follow from our Gaussian approximation by tractable
Monte-Carlo simulations.

Lastly, in our opinion a non reductive notion of α−th quantile set
in Rd should be (d− 1)-dimensional and informative depth should be
d-dimensional. This is what quantile surfaces and their depth vector
fields are.

1.4 A new principle
Imagine an observer located in O ∈ Rd looking at the sampleX1, ..., Xn

in all directions u ∈ Sd−1 where Sd−1 is the unit sphere of Rd. Let him
picture out the data cloud in Rd from O by drawing the collection
of u-directional α-th quantile point Qn(O, u, α) = O + Yn(O, u, α)u
where Yn(O, u, α) is the univariate α-th quantile of the projected sam-
ple 〈Xi −O, u〉 on the oriented line (O, u), and 〈., .〉 is the inner prod-
uct. We thus associate a star-shaped quantile set Qn(O,α) to every
(O,α) ∈ Rd × (1/2, 1). This is a multivariate quantile principle with
no mass center, no α-mass quantile set and no global contour.

Under minimal assumptions the sets Q(O,α) associated to P are
nested surfaces starting at O then extending toward modal areas. For
fixed O, increasing α indicates main mass directions and concentra-
tions. For fixed α, the deepest is O the "smaller" is Q(O,α). This
leads to new kinds of depth. For instance a depth vector can be as-
signed to each O by integrating along the surface Q(O,α). Vectors of
the resulting depth field point to the main mass – not always central
or even multi-modal – then rotate and grow longer as α increases. Ap-
propriate limit theorems are derived elsewhere from the forthcoming
results.

Informative quantile multivariate data analysis can be performed
by moving O and changing the projection rule ϕ. This new paradigm
is rich and can be stated as follows. Facing the fact that Rd is not
naturally ordered, one should simply admit subjectivity and collect
viewpoints. The statistical challenge is then to learn about P by com-
paring the surfaces Q(O,α) while changing (O,α) and ϕ.

Results don’t depend on the observer O only in the orthogonal
projection case, which is fully analyzed below. Our limit theorems are
uniform in (O,α) and as sharp as for d = 1, even when P has no density
or low dimensional support. Essentially, we jointly control the quantile
processes (

√
n (Yn(O, u, α)− Y (O, u, α))) associated to the projected

samples 〈Xi −O, u〉 in each direction u ∈ Sd−1. The main result is an
optimal and surprisingly dimension free Bahadur-Kiefer approximation
([2],[17],[31]). The most useful result is a non asymptotic Brownian
approximation.

The closest results we can compare with concern the Tukey contour
([10], [24],[33]). This central region is the intersection of half-spaces
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having probability α. The main difference is that we study the loca-
tion of Tukey half-spaces themselves rather than their possibly empty
intersection – if α < d/d + 1, see [10]–, in order to catch all the sta-
tistical information. In [26] a central limit theorem is stated for the
empirical Tukey contour under strong regularity assumption on P and
a mass center. We go further by proving results uniform in α together
with rates, approximations and weaker assumptions.

2 From quantiles to quantile surfaces

2.1 Univariate quantiles
It is useful to recall the limiting behavior of the univariate quantile pro-
cess since our goal is to obtain similar results jointly for a d-dimensional
collection of real random samples, each being strongly dependent of the
others, namely Yn = 〈Xn −O, u〉 where Xn ∈ Rd, O ∈ Rd, u ∈ Sd−1.
Consider on (Ω, T ,P) a sequence {Yn} of independent copies of a real
random variable Y . Write, for y ∈ R and α ∈ (0, 1), FY (y) = P(Y 6 y),
F−1
Y (α) = inf {y ∈ R : FY (y) ≥ α} and δy the Dirac mass at y. De-

fine the empirical measure Pn =
∑
i≤n δYi/n, the empirical distribu-

tion function Fn = Pn((−∞, y]) and the empirical quantile function
F−1
n (α) = inf {y ∈ R : Fn(y) ≥ α}, α ∈ (0, 1).
Two problems make the estimation of F−1

Y a not so easy task. First,
F−1
n (α0) is not consistent if F−1

Y is not continuous at α0 . Second, if
SY is unbounded then supα∈[0,1]

∣∣F−1
n (α)− F−1

Y (α)
∣∣ = +∞ so that tail

quantiles of F cannot be estimated by using extreme values without
extra hypotheses and appropriate truncation see [5, 6, 31]. We won’t
consider this situation here. Let ∆ = [α−, α+] where 0 < α− ≤ α+ <
1.

Proposition 2.1 (Uniform consistency). If FY is continuous on F−1
Y (∆)

then

(2.1) lim
n→∞

sup
α∈∆

∣∣F−1
n (α)− F−1

Y (α)
∣∣ = 0 a.s.

if, and only if, F−1
Y is continuous on ∆. This remains true for ∆ =

(0, 1) if F−1
Y ((0, 1)) is bounded.

Proof. If F−1
Y is continuous on ∆ see Section 4.1 where the proof is not

classical even for d = 1. Conversely, if F−1
Y is not continuous at α0 ∈

(0, 1) we almost surely have lim supn→∞
∣∣F−1
n (α0)− F−1

Y (α0)
∣∣ > 0. To

see this, observe that F−1
Y (α0) = y0 < y1 = limα↓α0

F−1
Y (α) implies

P(Y ∈ (y0, y1)) = 0 thus, with probability one, we have infn inf {Yi > y0 : i 6 n} >
y1 and also Fn(y0) < α0 infinitely often, since by the law of the iterated
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logarithm it holds

lim inf
n→∞

√
n(Fn(y0)− α0)√

2α0(1− α0) log log n
= −1 a.s.

therefore F−1
n (α0) > y1 happens infinitely often, and the above lim sup

is bounded from below by y1 − y0 > 0.

In order to establish the weak convergence of quantiles a well be-
haved density is needed. Assume that Y has density fY > 0 on
F−1
Y ((0, 1)) and define the so-called density quantile function to be

(2.2) hY = fY ◦ F−1
Y .

Note that hY is translation invariant since for all a, b ∈ R∗ it holds
haY+b = hY / |a|. Also, 1/hY is the quantile density function. Few
hypotheses on hY are required when considering quantiles of order ∆
instead of (0, 1), thus avoiding controlling tails.

Let D(∆) be the set of left continuous functions on ∆ endowed
either with the Skorokod topology and Borel sigma field or with the
sup-norm topology and the sigma field generated by open balls. A
sufficient condition for the Donsker type convergence is the following.

(H) There exists an open set ∆0 such that ∆ ⊂ ∆0 and fY is
differentiable on S0 = F−1

Y (∆0) with infS0
fY > 0 and supS0

|f ′Y | <∞.

Proposition 2.2 (Uniform Central Limit Theorem). Under (H) the
sequence of weighted quantile processes

√
n
(
F−1
n − F−1

Y

)
hY indexed by

∆ weakly converges on D(∆) to the Brownian Bridge B restricted to
∆.

Proof. This is Theorem 3.2 when d = 1. The differentiability as-
sumption (H) corresponds to (A4) in Section 3 and is weakened into
(A2).

The convergence of finite dimensional marginals immediately fol-
lows, and helps understanding the covariance structure of our multi-
variate quantiles.

Corollary 2.1. Fix 0 < α1 < ... < αk < 1. If fY is continuous and
away from zero on some neighborhood of {α1, ..., αk} then
(2.3)

√
n

 F−1
n (α1)− F−1

Y (α1)
...

F−1
n (αk)− F−1

Y (αk)

 Law−→
n→∞

N (0k,Σ) , Σi,j =
αi ∧ αj − αiαj
hY (αi)hY (αj)

.

Proof. The limiting process B is Gaussian, centered, with covariance
function cov(B(α1), B(α2)) = α1 ∧ α2 − α1α2, αi ∈ (0, 1). Thus (2.3)
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holds under (H) with α− < α1 < αk < α+. However the assump-
tion on f ′Y is useless when {α1, ..., αk} are fixed, it serves in the proof
of Theorem 3.2 for d = 1 only to ensure uniform tightness on ∆.
Likewize continuity of fY is only required locally.

A way to strengthen and prove Proposition 2.2 is to make use of
the Hungarian construction. Starting from [18, 5, 6] this strategy con-
sists in using the quantile transform to control

√
n
(
F−1
n − F−1

Y

)
hY by

the easier to handle uniform quantile process uniformly on ∆. Then by
KMT ([20]) and the representation of order statistics by partial sums of
exponential random variables, the latter can in turn be approximated
at rate (log n)/

√
n by a sequence of Brownian Bridges built jointly.

Proposition 2.3 (Gaussian Approximation). Assume that (H) holds.
Then one can construct on the same probability space (Ω, T ,P) an i.i.d.
sequence Yn with law FY together with a sequence {Bn} of standard
Brownian Bridges in such a way that

lim sup
n→∞

√
n

log n
sup
α∈∆

∣∣∣∣√n (F−1
n (α)− F−1

Y (α)
)
− Bn(α)

hY (α)

∣∣∣∣ <∞ a.s.

Proof. See [6]. Assumption (H) is weakened into (A3) at Theorem
3.3.

This approach can not be generalized to our quantile surfaces since
no quantile transform or partial sum representation hold in Rd. Fortu-
nately, a second strategy works on R. It is based on the Bahadur-Kiefer
approximation of the quantile process by the empirical process at rate

bn = n−1/4(log n)1/2(log log n)1/4.

Proposition 2.4 (Bahadur-Kiefer Approximation). Under (H) we
have

lim sup
n→∞

1

bn
sup
α∈∆

∣∣∣∣√n (F−1
n (α)− F−1

Y (α)
)

+
√
n

(
Fn(F−1

Y (α))− α
hY (α)

)∣∣∣∣ <∞ a.s.

Proof. See [6], [9], [11], [31]. This also follows from Theorem 3.4
where (H) is weakened into (A3).

This yields an approximation of
√
n
(
F−1
n − F−1

Y

)
hY at this sub-

optimal order bn by the KMT Brownian Bridges B′n built jointly with
the empirical process at sup-norm distance (log n)/

√
n. This further

means that the same processB′n is simultaneously close to the empirical
and quantile processes, which could help deriving joint limit laws in
statistical applications.

We make use of the second strategy to extend the above results to
Rd. Thus the key result is a Bahadur-Kiefer type approximation of the
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quantile surfaces by the empirical process, and surprisingly bn turns
out to be dimension free. The ensuing Gaussian approximation rates
are distribution free, but depends on the dimension through the strong
approximation of [4].

2.2 Directional quantiles
In Definition 2.2 below the directional quantile points are built from
projections {〈Xn, u〉 : u ∈ Sd−1} and are related to each other through
a common anchoring point O ∈ Rd. The resulting quantile points no
more depend on O if, and only if, d = 1. In this case the left and
right directions are associated to the unit vectors u = −1 and u = +1
and, for α ∈ [1/2, 1], the left and right directed α-th quantile points
are, respectively, Q(−1, α) = F−1

−Y (α) and Qα(+1) = F−1
Y (α). We call

Qα = {Q(−1, α), Q(+1, α)} the α-th quantile set.
The usual univariate quantiles use only the right direction +1 and
α ∈ [0, 1]. They can be deduced from Qα as follows. Since Q(−1, α) is
the right limit of F−1

Y at 1 − α it holds Q(−1, α) ≥ F−1
Y (1 − α) with

equality if and only if FY is strictly increasing just after F−1
Y (1 − α).

Let Q−(−1, 1−α) denote the left continuous version of the increasing
function α → Q(−1, 1 − α) on [0, 1/2]. In particular, Q−(−1, 1/2) =
inf {y : FY (y) ≥ 1/2} and Q−(−1, 1) = inf {y : FY (y) > 0}. Also write
Q+(+1, 1/2) = sup {y : FY (y) ≤ 1/2} the right limit of Q(+1, α) at
α = 1/2. Then we have

F−1
Y (α) = 1α<1/2Q

−(−1, 1−α) +1α>1/2Q(+1, α), α ∈ (0, 1)\ {1/2}

and Q1/2 = [Q−(−1, 1/2), Q+(+1, 1/2)] is the median interval of Y .
LetQn(−1, α) be the empirical α-th quantile of−Y1, ...,−Yn andQn(+1, α) =
F−1
n (α). Write h(−1, α) = h−Y (α) and h(+1, α) = hY (α).
In the univariate case all subjective viewpoints are the same since

O plays no role and Theorem 3.2 reduces exactly to the following.

Corollary 2.2. Assume that (H) holds. The sequence of real ran-
dom processes

√
n (Qn(u, α)−Q(u, α)) indexed by (u, α) ∈ {−1, 1}×∆

weakly converges to a centered Gaussian process GP indexed by (u, α) ∈
{−1, 1} ×∆ having covariance given by

(2.4) cov(GP (u1, α1), GP (u2, α2)) =
α1 ∧ α2 − α1α2

h(u1, α1)h(u2, α2)
.

Proof. Take d = 1 in Theorem 3.2. This is also a simple consequence
of Proposition 2 since by hypothesis F−1

Y is strictly increasing on ∆
and thus Q(−1, α) = F−1

Y (1−α). The limiting process is then defined
by GP (+1, α) = B(α) and GP (−1, α) = B(1− α) so that (2.3) yields
(2.4).
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Here is our flexible general definition of multivariate quantile sur-
faces.

Definition 2.1. (Generalized quantile sets). Let O ∈ Rd, u0 ∈ Sd−1,
0d be the origin and ϕ be a u0-symmetric continuous function from Rd
to R satisfying

ϕ−1((−∞, y1]) = Ay1
⊂ Ay2

, y1 ≤ y2,

λd(ϕ
−1({y})) = 0, y ∈ R.

For any u ∈ Sd−1 write ru any rotation of Rd having center 0d and
angle u0 ↪→ u and tO the translation directed by O. For α ∈ [1/2, 1)
define

Y (O, u, α) = inf {y : P(tO ◦ ru(Ay)) ≥ α}
Q(O,α) = {O + Yα(O, u)u : u ∈ Sd−1}

to be the u-directional (ϕ, u0)-shaped α-th quantile range and set seen
from O.

Hence each α-th quantile point O + Yα(O, u)u corresponds to a set
having probability α, symmetric with respect to the line (O, u). Put
together this points form a surface Q(O,α) under appropriate condi-
tions. It is easily seen that Definition 2.1 reduces to Definition 2.2
in the special case ϕ(x) = 〈x, u0〉, Ay = ϕ−1((−∞, y]) = H(0d, u0, y).
This orthogonal projection case is our main focus.

2.3 Multivariate quantile surfaces
Let H denote the family of all half-spaces and Hα the sub-family of
half-spaces H having probability P (H) = α > 0. Let

(2.5) H(O, u, y) =
{
x ∈ Rd : 〈x−O, u〉 ≤ y

}
∈ H

be the half-space standing at distance y ∈ R from O in direction u ∈
Sd−1. Given α ∈ [1/2, 1) and u ∈ Sd−1 let

Y (O, u, α) = inf {y : P (H(O, u, y)) ≥ α}
be the u-directional α-th quantile range from O and

H(u, α) = H(O, u, Y (O, u, α))

be the u-directional α-th quantile half-space, that does not depend on
O. Conversely, for y ∈ R, P (H(O, u, y)) is the u-directional p-value at
y. It is noteworthy that P (H(O, u, y)) = F〈X−O,u〉(y) and thus

(2.6) Y (O, u, α) = F−1
〈X−O,u〉(α) = F−1

〈X,u〉(α)− 〈O, u〉

is the α-th quantile of the real random variable 〈X −O, u〉.
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Definition 2.2 (Multivariate quantile set). For α ∈ [1/2, 1), O ∈ Rd
and u ∈ Sd−1 define the u-directional α-th quantile point seen from O
to be

(2.7) Q(O, u, α) = O + Y (O, u, α)u

and the α-th quantile set seen from O to be the star-shaped collection
of points

(2.8) Q(O,α) = {Q(O, u, α) : u ∈ Sd−1} .

Since

(2.9) Q(O′, u, α) = Q(O, u, α) +O′ −O − 〈O′ −O, u〉u

it is easy to get all quantile sets Q(O,α) from any of them. However,
from a statistical point of view, looking at several Q(O,α) simultane-
ously by moving O, is a good way to learn about P .

H(u, α)

u
O Y (O, u, α)

Q(O, u, α)

uu
O O′

1− α

−〈O′ −O,u〉u
O+Y(O,u, α).u

O′ +Y(O′,u, α).u

We restrict ourselves to laws P for which the α-th quantile sets
Q(O,α) are surfaces, but we do not require that P is absolutely con-
tinuous.

Remark 2.1. The boundary of the intersection Tα of all H(u, α) is
the so-called “Tukey contour”. If Tα is not empty then it is a compact
convex set and u → Y (O, u, α) is its support function. Hence it is
continuous, subadditive and, in general, not differentiable. However,
Tα is likely to be empty if P is multimodal and α is small enough.

A median surface simply corresponds to α = 1/2 and has no special
feature except maybe at central points where it is more self intersecting
than for α > 1/2 or at outliers.
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Basic assumptions. Let 0d be the origin of Rd and ∆ = [α−, α+] ⊂
[1/2, 1). Assume that the hyperplanes

∂H(u, α) =
{
x ∈ Rd : 〈x, u〉 = Y (0d, u, α)

}
satisfy

(A−0 ) P (∂H(u, α)) = 0, u ∈ Sd−1, α ∈ ∆.

Under (A−0 ), for α ∈ ∆ we have P (H(u, α)) = α andHα = {H(u, α) : u ∈ Sd−1}.
This excludes laws P partly supported by one or more hyperplanes, for
instance laws P with discrete component. Assume moreover that hy-
perbands

(2.10) H(O, u, y, z) = H(O, u, z) \H(O, u, y) y < z

satisfy for all u ∈ Sd−1

(A+
0 ) P (H(O, u, y, z)) > 0, Y (O, u, α−) ≤ y < z ≤ Y (O, u, α+).

Remark 2.2. Let A M B = (A\B) ∪ (B\A). Under (A−0 ) and (A+
0 )

it holds

lim
β→α

P (H(u, α) M H(u, β)) = 0, u ∈ Sd−1, α ∈ [1/2, 1) .

These two assumptions are sufficient to make the natural non-parametric
estimator of Q(O, u, α) consistent uniformly in (O, u, α). Define the set
of admissible distances by

(2.11) Y∆(O, u) = {y : P (H(O, u, y)) ∈ ∆} = F−1
〈X−O,u〉(∆).

Since the probability measure P is tight, there exists r+ > 0 such that
P (B(O, r+)) > α+ and thus H(u, α) ∩B(O, r+) 6= ∅ for α ∈ ∆, hence

(2.12) sup
u∈Sd−1

sup
α∈∆
|Y (O, u, α)| = sup

u∈Sd−1

sup
y∈Y∆(O,u)

|y| < +∞.

Theorem 2.1. Under (A−0 ), assumption (A+
0 ) is equivalent to the

fact that (u, α) 7→ Q(O, u, α) is continuous on Sd−1×∆ for any O ∈ Rd.
By Theorem 2.1, the set Q(O,α) from (2.8) is the image of the

compact set Sd−1 through a continuous application, it is a surface we
call the α-th quantile surface seen from O.

Corollary 2.3. Under (A−0 ) and (A+
0 ), the set Q(O,α) is a closed

surface, for all O ∈ Rd and α ∈ ∆.
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Let define the set of admissible bands of width ε > 0 allowed by ∆
to be
(2.13)
Bε =

{
H(O, u, y, y + ε) : O ∈ Rd, u ∈ Sd−1, y, y + ε ∈ Y∆(O, u)

}
.

Note that Bε depends on ∆ through Y∆(O, u). It is useful to rewrite
(A−0 ) and (A+

0 ), in terms of the function

(2.14) Ψ(ε) = inf
B∈Bε

P (B), ε > 0

Proposition 2.5. Under (A−0 ) and (A+
0 ) the following two conditions

hold true

(A−0,Ψ) limε→0 Ψ(ε) = 0

(A+
0,Ψ) Ψ(ε) > 0, 0 < ε < ε+ = sup{ε > 0,Bε 6= ∅}.

Proposition 2.6. The function Ψ is right-continuous on (0, ε+). More-
over, under (A−0 ) and (A+

0 ) the function Ψ is continuous on [0, ε+).

By Proposition 2.6 under (A−0 ) and (A
+
0 ) Ψ is càdlàg and strictly

increasing with

(2.15) Ψ ◦Ψ−1(α) = α and Ψ−1 ◦Ψ(α) ≥ α, α ∈ ∆.

2.4 Empirical quantile surfaces
We intend to estimate Q(O,α) jointly in α ∈ ∆ ⊂ [1/2, 1) and O ∈ Rd
by applying the definition of quantile surfaces from section 2.3 to the
empirical measure Pn = 1

n

∑
i≤n δXi , where δx is the Dirac mass at

x ∈ Rd. For u ∈ Sd−1 let

Yn(O, u, α) = inf {y : Pn(H(O, u, y)) ≥ α} .

Define the u-directional α-th empirical quantile point seen from O to
be

Qn(O, u, α) = O + Yn(O, u, α)u

and associate to this point the α-th empirical quantile half-space

Hn(u, α) = H(O, u, Yn(O, u, α)).

Let the α-th empirical quantile set seen from O be

Qn(O,α) = {Qn(O, u, α) : u ∈ Sd−1} .

The quantile half-spaces indexed by points Qn(O, u, α) are collected
into

Hn,α = {Hn(u, α) : u ∈ Sd−1}

12



For O,O′ in Rd we have Yn(O′, u, α) = Yn(O, u, α) − 〈O′ − O, u〉 and
combining this with (2.9) we can highlight the following important
property of the directional quantiles process

(2.16) Yn(O′, u, α)− Y (O′, u, α) = Yn(O, u, α)− Y (O, u, α)

which means that Yn − Y is independent of O.

Proposition 2.7. Under (A−0 ), for all n > d,

Hn,α ⊂
{
H : H half-space, Pn(H) ∈

[
α, α+

d

n

]}
.

2.5 Illustrations and comments
We picture out several examples in dimension 2. On Fig 1 we show
shapes of quantile surfaces obtained for symmetric laws, here the sym-
metry point is O = (0, 0) and thus Q(O,α) is a circle. The function
α → Y (O, (1, 0), α) corresponds to the univariate quantile function of
the radial law. Moving O at O2 = (−3, 0), O3 = (−5, 0), O4 = (−7, 0)
gives examples of typical shapes when the observer is away from the
central point. This typical shape has one inner and one outer loops
intersecting at O, each corresponding to connex subsets of directions
in Sd−1.

Fig 2 shows that the previous typical shape is preserved even if P
has no density but obeys (A−0 ) and (A+

0 ), here a spiral support with
uniform law. The empirical surface for α = 0.7 is shown to be less
smooth with n = 1000 points than the almost true one with n = 10000
points.

Next we consider a mixture of two Gaussian distributionsN ((−2, 0), I)
and N ((2, 0), 3I) with weights 1/4 and 3/4 respectively, where I is the
identity matrix. In Fig 3 the surfaces are contours since the observer
is inside the central area, here we take α = 0.6, 0.7, 0.8 and 0.9. In
Fig 4 α is fixed and O is moving outside the data. Note that any of
the surfaces can be deduced from the other by (2.9) so drawing several
O is very fast and facilitates a visual human interpretation.

In Fig 5 and 6, P is a similar gaussian mixture but the two modes
are more separated compared to the standard deviation. The Tukey
contours are sometimes empty, however the quantile surfaces always
exist and are shown from an observer standing between the two modes.
In Fig 5 increasing α results in resorbing the left part of the initial
contours to create an inside loop at the right hand side, associated to
the left oriented directions for which the mass has to be catched behind
the observer – here α = 0.6, 0.7, 0.8 and 0.9. In Fig 6, moving O for
a fixed α = 0.7 is a simple computation and drawing all surfaces helps
understanding where the modal areas are located – for alpha large

13



enough the main modal area is easily revealed in between the surfaces.
In cases where the data cloud is so big that no study can be performed
visually such a data summary can be useful.

On Fig 8 we show in red color, the median surface seen from O =
(0, 0) which is almost a point since the spiral uniform law is "almost"
symmetric. By zooming toward the median surface we can see on Fig
9 that it is indeed a very oscillating surface around O with a very small
volume. Obviously if P is symmetric about M then the median surface
seen from O = M is reduced to the point O itself and the median
surface seen from another point is a sphere (a circle here) passing
through the symmetry pointM . Such a central median point can then
be localized by intersecting median surfaces. If P is not symmetric
the median surface has not necessarily a small volume somewhere. For
instance at Fig 11 the point where the median surface is almost of
minimum volume for the second gaussian mixture is at O = (4.1, 0).
The associated median surface shows three loops – one cutting mass
from the right and two from the upper left or lower left respectively.
Moreover the median surfaces seen from O1 = (−15, 6), O2 = (−5, 6),
O3 = (−5,−6) and O4 = (15, 6), intersects around the median surface
of Fig 10 but they are not circles.

It is noteworthy that under (A−0 ) and (A+
0 ), every median surface

is a "double" surface, in the sense that every point of Q(O, 1/2) corre-
sponds at the same time to Q(O, u, 1/2) and the point Q(O,−u, 1/2).

In Fig 13 we show a case where at the special point O = (0, 0) even
for α large more than two loops appear inside the quantile surface. Here
P is a mixture of several laws having disjoint supports separated by
lines containing O. Moving slightly O at Fig 14 provides again the
typical shapes and the transition merging the two inner loops into one
is smooth as O moves. Then sending O far away confirms the usual
shape seen from outer points, see Fig 15.

As a conclusion we promote the technique of moving alpha and
O to analyze data from the mass localization viewpoint. Since all is
under the control of sharp limit theorems we can also think about
using deterministic and random projections on low dimensional spaces
minimizing quantile surfaces, as for linear data analysis. It is possible
to build many kind of tests based on quantile surfaces, and also depth
vector fields summarizing for each O the distance and average direction
to move in order to recover α mass.

3 Results

3.1 Uniform Strong Consistency
The following result reduces exactly to Proposition 2.1, when d = 1.

14



Figure 1: Central symmetric law,
α = 0.8, moving O.

Figure 2: Law with Lebesgue zero
support.

Figure 3: O inward, moving α. Figure 4: α fixed, α = 0.7, moving
O around.

Figure 5: O fixed between two
modes, moving α.

Figure 6: α fixed, α = 0.7, moving
O around.

Figure 7: Examples of quantiles surfaces in dimension 2
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Figure 8: Median surface for a
Lebsgue zero supported measure

Figure 9: Zoom on the median of
Fig 8

Figure 10: Median surfaces for an
asymmetric law while moving O

Figure 11: Median surface for an
asymmetric law for O = (4.1, 0)

Figure 12: Examples of median surfaces.
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Figure 13: Two inner loops at O = (0, 0), α = 0, 7.

Figure 14: O moved outward, α =
0, 7.

Figure 15: One inner loop at O =
(0, 0), α = 0, 8.

Figure 16: An example of law with multi loops for some O.
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Theorem 3.1 (Uniform Strong Consistency). Under the assumption
(A−0 ), (A+

0 ) is equivalent to

lim
n→∞

‖Yn(O, u, α)− Y (O, u, α)‖Rd×Sd−1×∆ = 0 a.s.

Hence, we have

lim
n→∞

sup
O∈Rd

sup
α∈∆

dH(Qn,α(O), Qα(O)) = 0 a.s.

where dH denotes the Hausdorff distance.

To go beyond this consistency result, we require the existence of a
directional density quantile as in (2.2). For (u, α) ∈ Sd−1 ×∆ define

h(u, α) = hu(α) = f〈X,u〉 ◦ F−1
〈X,u〉(α).

(A1) For all u ∈ Sd−1, the random variable 〈X,u〉 has a continuous
density f〈X,u〉 > 0 on F−1

〈X,u〉 (∆) , moreover, for some m and M

0 < m ≤ inf
α∈∆

inf
u∈Sd−1

hu(α) ≤ sup
α∈∆

sup
u∈Sd−1

hu(α) ≤M < +∞

Remark that (A1) does not imply that P has a density on Rd.
However (A1) implies (A−0 ) and (A+

0 ) with

m(z−y) ≤ P (H(O, u, y, z)) ≤M(z−y), y < z, u ∈ Sd−1, y, z ∈ Y∆(O, u)

In particular, under (A1) P has no discrete component in its
Lebesgue–Nikodym decomposition, and likewise none of the marginal
laws of P, has a discrete component since none of their linear combi-
nations has.

3.2 Uniform Weak Convergence
In order to state the central limit theorem, we first define the lim-
iting Gaussian process GP . Let BP be the P -Brownian bridge in-
dexed by half-spaces, that is the zero mean Gaussian process on H
having covariance cov(BP (H),BP (H ′)) = P (H ∩ H ′) − P (H)P (H ′),
for (H,H ′) ∈ H ×H. Under (A1) the random function

(3.1) GP (u, α) :=
BP (H(u, α))

h(u, α)
, for (u, α) ∈ Sd−1 ×∆

is a bounded centered Gaussian process indexed by the compact pa-
rameter set Sd−1 ×∆ with covariance function given by
(3.2)

cov(GP (u1, α1),GP (u2, α2)) =
P (H(u1, α1) ∩H(u2, α2))− α1α2

h(u1, α1)h(u2, α2)
.
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We also set
−→
GP (u, α) := GP (u, α) · u, for (u, α) ∈ Sd−1 ×∆. To state

the regularity condition (A2) ensuring the weak convergence, we need
to introduce for all 0 < γ < γ0, the quantity
(3.3)

ρ(γ) = sup
|ε′|<γ

sup
u∈Sd−1

sup
α∈∆

∣∣F〈X,u〉(Y (O, u, α) + ε′)− α− h(u, α)ε′
∣∣

that controls the expansion of F〈X,u〉 in the γ-neighborhood of Y (O, u, α).
(A2) We assume that

lim
γ→0

√
log log(1/γ)

γ
ρ(γ) = 0.

Theorem 3.2 (Uniform Central Limit Theorem). Under (A1) and
(A2) the process

√
n(Yn − Y ) weakly converges to GP on the set of

bounded real functions on Sd−1×∆, endowed with the supremum norm.
Likewise, the process

√
n(Qn−Q) indexed by Sd−1×∆ weakly converges

to
−→
GP on the set of bounded Rd valued functions on Sd−1×∆, endowed

with the supremum norm.

Theorem 3.2 is a weak convergence statement involving jointly all
quantile surfaces for α ∈ ∆. In particular, we have the following CLT
for finite set of points on any of these surfaces.

Corollary 3.1. Let (O1, u1, α1) , ..., (Ok, uk, αk) dans Rd × Sd−1 ×∆.
Under (A1) and (A2), we have

√
n

 Yn (O1, u1, α1)− Y (O1, u1, α1)
...

Yn (Ok, uk, αk)− Y (Ok, uk, αk)

 Law−→
n→∞

N (0k,Σ)

with Σ the covariance matrix defined by

Σi,j =
P (H(Oi, ui, Y (Oi, ui, αi)) ∩H(Oj , uj , Y (Oj , uj , αj)))− αiαj
f〈X−Oi,ui〉 ◦ F−1

〈X−Oi,ui〉(αi).f〈X−Oj ,uj〉 ◦ F
−1
〈X−Oj ,uj〉(αj)

=
P (H(ui, αi) ∩H(uj , αj))− αiαj

h(ui, αi)h(uj , αj)
.

Note that Theorem 3.2 and Corollary 3.1 are exact generalizations
of Proposition 2.2 and Corollary 2.1, respectively.

3.3 The main result
To ensure the Bahadur-Kiefer type representation, we need the follow-
ing stronger condition.
(A3) We suppose that

lim
γ→0

ρ(γ)
√

log log(1/γ)

γ3/2
√

log(1/γ)
= 0.
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This condition can be replaced by one of the following conditions, which
are more restrictive but easier to check.
(A′3) There exists r > 1/2 and C∗ > 0 such that for all 0 < γ < γ0

ρ(γ) ≤ C∗γ1+r.

(A4) The function h is differentiable on Sd−1 × ∆ with uniformly
bounded derivatives.

Under (A4), the assumption (A′3) holds true with r = 1. Moreover
we have (A4) ⇒ (A′3) ⇒ (A3) ⇒ (A2). Let Λn =

√
n(Pn − P ) be

the empirical process indexed by H and define

En(u, α) = Λn(H(u, α)) =
√
n(Pn(H(u, α))− α)

Theorem 3.3 (Bahadur-Kiefer type representation). Under (A1) and
(A2) we have

(3.4) lim
n→∞

∥∥∥∥√n(Yn − Y ) +
En
h

∥∥∥∥
Sd−1×∆

= 0 a.s.

and for any θ > 0 there exists cθ(m,M, d) > 0 and nθ(m,M, d) > 0
such that we have, for all n > nθ,

(3.5) P

(∥∥∥∥√n(Yn − Y ) +
En
h

∥∥∥∥
Rd×Sd−1×∆

≥ cθan
)
≤ 1

nθ
,

where

an =
√
nρ
(√

log log n/n
)
∨ (log n)1/2(log log n)1/4

n1/4
.

If moreover (A3) holds then
(3.6)∥∥∥∥√n(Yn − Y ) +

En
h

∥∥∥∥
Sd−1×∆

= Oa.s.

(
(log n)1/2(log log n)1/4

n1/4

)
.

Note that Theorem 3.3 contains Proposition 2.4 for d = 1. It
is a good surprise that the order of the rate of convergence in (3.6) is
dimension free. Note that cθ can be computed explicitly and depends
on the dimension d and P . By Theorem 3.3 the multivariate empirical
quantile surfaces inherit the properties of the empirical process.

3.4 Non asymptotic strong approximation
The following Gaussian approximation is useful to construct explicit
confident bands around empirical quantile surfaces by using Monte-
Carlo methods. As a matter of fact, using (3.7) and (3.8) it remains to
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plug-in any estimator of h in the covariance (3.2) in order to compute
joint confident intervals along a very large set of points from Qn(O,α).
Even for fixed n the probability of such confident band has an explicit
upper bound.

Theorem 3.4 (Uniform Strong Approximation with rate). Under
(A1) and (A2) one can construct on the same probability space (Ω, T ,P)
an i.i.d. sequence Xn with distribution P and a sequence Gn of ver-
sions of GP in such a way that for O ∈ Rd, u ∈ Sd−1, α ∈ ∆

(3.7) Yn(O, u, α) = Y (O, u, α) +
Gn(u, α)√

n
+
Zn(u, α)√

n

where Zn =
√
n(Yn − Y )−Gn is such that

(3.8) lim
n→∞

‖Zn‖Sd−1×∆ = 0 a.s.

If P moreover satisfies (A3) then Gn can be constructed such that
for vd = 1/(2 + 10d) and wd = (4 + 10d)/(4 + 20d), there exists
nθ(m,M, d) > 0 such that we have, for all n > nθ,

(3.9) P
(
‖Zn‖Sd−1×∆ ≥ cθ

(log n)wd

nvd

)
≤ 1

nθ
.

3.5 Law of the iterated logarithm
Recall that Ψ is given in (2.14).

Theorem 3.5 (Law of the Iterated Logarithm). Under (A−0 ) and
(A+

0 )

lim sup
n→∞

‖Yn − Y ‖Sd−1×∆

Ψ−1
(√

(log log n)/n
) <∞ a.s.

Remark 3.1. If instead of (A−0 ) and (A+
0 ) we assume the stronger

(A1), then the law of iterated logarithm can be rewritten in the follow-
ing more classical form

lim sup
n→∞

‖Yn − Y ‖Sd−1×∆√
(log log n)/n

<∞ a.s.

In the particular case of a central symmetric distribution, we obtain
exactly same result as for the quantile process on R.
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4 Proofs

4.1 Proof of Theorem 2.1
The proof of Theorem 2.1 relies on the technical Lemma 5.1. Its
proof is postponed to the appendix.
Necessary Condition. First, under (A−0 ) and (A+

0 ) Q(O,α) is a
bounded set since (2.12) holds, then for all O ∈ Rd there exists r > 0
such that for all u ∈ Sd, α ∈ ∆ we have O+Y (O, u, α)u = Q(O, u, α) ∈
B(O, r). Now, we show that (u, α) 7→ Q(O, u, α) is continuous. If
(u, α) 7→ Q(O, u, α) is not continuous, then there exists a sequence
(un)n≥1 in Sd−1 and (αn)n≥1 in ∆ with un → u and αn → α such that

lim
n→∞

Q(O, un, αn) 6= Q(O, u, α).

Since Q(O, un, αn) is bounded there exists a subsequence (unj )j≥1 such
that unj → u and (αnj )j≥1 such that αnj → α with moreover

lim
j→∞

Q(O, unj , αnj ) = Q∞ = O + y∞u ∈ Rd

where y∞ = limj→∞ Y (O, unj , αnj ) < +∞ and

y∞ 6= y = Y (O, u, α)

so thatQ∞ 6= Q(O, u, α). Suppose that y < y∞ and choose y′ such that
y < y′ < y∞. By Lemma 5.1, there exists an increasing subsequence
(nj(k))k≥1 with nj(k) → +∞ and a decreasing sequence of sets Hk such
that⋂

k≥1

Hk = ∅, H(O, u, y′) \H(unj(k)
, αnj(k)

) ⊂ Hk ⊂ H(O, u, y′)

and it follows that (H(O, u, y′) \Hk)k≥1 is increasing with

lim
k→∞

↑ (H(O, u, y′) \Hk) =
⋃
k≥1

(H(O, u, y′) \Hk) = H(O, u, y′)\
⋂
k≥1

Hk

hence ⋃
k≥1

(H(O, u, y′) \Hk) = H(O, u, y′).

By the lower continuity property of P and (A−0 ), we get

α ≤ P (H(O, u, y′)) = lim
k→∞

↑ P (H(O, u, y′) \Hk))

≤ lim
k→∞

P (H(O, u, y′) ∩H(unj(k)
, αnj(k)

))

≤ lim
k→∞

P (H(unj(k)
, αnj(k)

)) = α
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and consequently,

P (H(O, u, y, y′)) = P ((H(O, u, y′) \H(u, α)) = 0

then P (H(O, u, y, y′)) = 0 which contradicts (A+
0 ). The case y∞ <

Y (O, u, α) is analogous.
Sufficient Condition. We prove that if (u, α) → Y (O, u, α) is
bounded and continuous on Sd−1×∆ then (A+

0 ) holds true. To do so,
we show that

¬(A+
0 )⇒ Y (O, ·, ·) is not continuous on Sd−1 ×∆

where ¬(A+
0 ) is the converse property of (A+

0 ). Suppose that ¬(A+
0 )

holds true and (u, α) 7→ Q(O, u, α) is bounded and continuous on
Sd−1 × ∆. By ¬(A+

0 ), there exists ε0 > 0 such that B0 ∈ Bε0
with P (B0) = 0. Pick u ∈ Sd−1 such that B0 = H(O, u, y, y + ε0)
and α0 = P (H(O, u, y + ε0)). We have α0 = P (H(O, u, y + ε0)) =
P (H(O, u, y)∪B0) = P (H(O, u, y)) then Y (O, u, α0) ≤ y. Let (α+

k )k∈N
be a strictly decreasing sequence with α+

k ↓ α0. Under (A−0 ) we have
H(O, u, y+ ε0) ( H(u, α+

k ) hence Y (O, u, α+
k ) ≥ y+ ε0. By continuity

of Y (O, ·, ·) we get

lim
k→∞

Y (O, u, α+
k ) = Y (O, u, α0) ≥ y + ε0

and consequently y + ε0 ≤ Y (O, u, α0) ≤ y which contradicts ε0 > 0.

4.2 Proof of Proposition 2.5
The assumption (A−0 ) implies (A−0,Ψ), since for y = Y (O, u, α) with
u ∈ Sd−1 and α ∈ ∆ we have by the continuity property of P

lim
ε→0

Ψ(ε) ≤ lim
ε→0

P (H(O, u, y, y + ε)) = P (∂H(u, α)) = 0.

It remains to show that under (A−0 ) the assumption (A+
0 ) implies

(A+
0,Ψ). Suppose that Ψ(ε0) = 0 for some ε0 > 0. There exists uk in

Sd−1 and yk, yk + ε0 ∈ Y∆(O, uk) such that

(4.1) lim
k→∞

P (H(O, uk, yk, yk + ε0)) = 0.

Since Y∆(O) =
⋃
u∈Sd−1

Y∆(O, u) is compact, we can extract a subse-
quence (u′k, y

′
k) ∈ Sd−1 × Y∆(O, u′k) having limit (u0, y0). We have

Y∆(O, u′k) = [Y (O, u′k, α
−), Y (O, u′k, α

+)]

so by continuity of u → Y (O, u, α) we get that (u0, y0) ∈ Sd−1 ×
Y∆(O, u0), i.e. for (u0, y0 + ε0). Set

B′k = H(O, u′k, y
′
k, y
′
k + ε0).
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By (4.1) we have limk→∞ P (B′k) = 0. We now show that

1B0 > lim
k→∞

1B′k > 1B0�∂B0
= 1B0 − 1∂B0

where B0 = H(O, u0, y0, y0 + ε0). First, if x /∈ B0 then there exists a
δ−neighborhood Vδ of (u0, y0) in Sd−1×R such that x /∈ ⋃(u,y)∈VδH(O, u, y, y+

ε0) thus for every k big enough, x /∈ B′k. If x ∈ ∂B0 we always
have 1B′k(x) > 1B0�∂B0

(x) = 0. Finally, if x ∈ B0�∂B0 there
exists a δ−neighborhood Vδ of (u0, y0) in Sd−1 × R such that x ∈⋂

(u,y)∈VδH(O, u, y, y + ε0) so for all k big enough, x ∈ B′k. Conse-
quently,

P (B0) > lim
k→∞

P (B′k) > P (B0)− P (∂B0)

but by (A−0 ) and (A+
0 ) we know that P (B0) > 0 and P (∂B0) = 0.

This implies that limk→∞ P (B′k) = P (B0) > 0, which is contradictory.

4.3 Proof of Proposition 2.6
The monotonous function Ψ has a right limit at any ε0 > 0 and a left
limit at any ε0 > 0. Let εk ↓ ε0 > 0. For every θ > 0 there exists
Bθ,0 ∈ Bε0 such that Bθ,0 = H(O, uθ, yθ, yθ + ε0) satisfies

(1 + θ)Ψ(ε0) > P (Bθ,0) > Ψ(ε0).

Consider a decreasing sequence of sets Bθ,k = H(O, uθ, yθ, yθ+εk) with
limit

⋂
k Bθ,k = Bθ,0 so that P (Bθ,k) ↓ P (Bθ,0). There exists kθ > 0

such that for every k > kθ

(1 + θ)Ψ(ε0) > P (Bθ,k) > P (Bθ,0) > Ψ(ε0).

Since Ψ is increasing we have P (Bθ,k) > Ψ(εk) > Ψ(ε0). As Ψ(εk)
converges to a right limit Ψ(ε+

0 ) at ε0, we have for every θ > 0,

(1 + θ)Ψ(ε0) > lim
k→∞

Ψ(εk) = Ψ(ε+
0 ) > Ψ(ε0).

In other words limk→∞Ψ(εk) = Ψ(ε+
0 ) = Ψ(ε0). Likewise, if εk ↑ ε0 >

0 then to every θ > 0 we associate a sequence Bθ,k ∈ Bεk such that

(1 + θ)Ψ(εk) > P (Bθ,k) > Ψ(εk)

and by compacity in u and y we can extract a stabilized sequence,

Bθ,kn = H(O, ukn , ykn , ykn + εkn)

with ukn → uθ, ykn → yθ. We set Bθ,0 = H(O, uθ, yθ, yθ + ε0). Under
(A−0 ) and (A+

0 ) by Proposition 2.1 we have P (Bθ,kn) → P (Bθ,0)
hence for all k > kθ it follows that

lim
n→∞

P (Bθ,kn)→ Ψ(ε−0 ) > (1− θ)P (Bθ,0) > (1− θ)Ψ(ε0)

Ψ(ε0) > Ψ(ε−0 ) > (1− θ)Ψ(ε0)

for every θ > 0. Therefore, Ψ(ε−0 ) = Ψ(ε0).
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4.4 Proof of Proposition 2.7
Under (A−0 ) we want to show that we almost surely have for all O, u, α
and n > d that

α 6 Pn(H(O, u, Yn(O, u, α))) = Pn(Hn(u, α))) 6 α+
d

n
.

By definition of Yn(O, u, α) we have Pn(H(O, u, Yn(O, u, α))) > α.
Fix n > d. Under (A−0 ) the probability that X1, ..., Xd+1 stand on the
same hype-plan is null. As a matter of fact, by denoting ∂H(x1, ..., xd)
the unique hyper-plan containing d distinct points x1, ..., xd we have

P (Xd+1 ∈ ∂H(X1, ..., Xd))

=

∫
x1∈Rd

...

∫
xd∈Rd

P (Xd+1 ∈ ∂H(x1, ..., xd) | X1 = x1, ..., Xd = xd) dP (x1)...dP (xd)

=

∫
x1∈Rd

...

∫
xd∈Rd

P (Xd+1 ∈ ∂H(x1, ..., xd)) dP (x1)...dP (xd) = 0

since P (Xd+1 ∈ ∂H) = 0 for all hyper-plan ∂H, by (A−0 ). It follows
that

P
({
Xid+1

∈ ∂H(Xi1 , ..., Xid), for distinct i1, ..., id+1

})
6

∑
06i1,...,id+16n

P
(
Xid+1

∈ ∂H(Xi1 , ..., Xid)
)

= 0

Therefore, almost surely, no hyper-plan contains more than d sample
points,

P
(

sup
H∈H

Pn(∂H) >
d+ 1

n

)
= 0.

By denoting int (H(O, u, y)) =
{
x ∈ Rd : 〈x−O, u〉 < y

}
we have,

with probability one, for all u, α

Pn(Hn(u, α)) = Pn(int (Hn(u, α))) + Pn(∂Hn(u, α))

6 Pn(int (Hn(u, α))) +
d

n
.

We also have Pn(int (Hn(u, α))) 6 α because if Pn(int (Hn(u, α))) > α
then there is at least dnαe points Xi ∈ int (Hn(u, α)) hence we have
〈Xi, u〉 < Yn(O, u, α) and by denoting

◦
Y n(O, u, α) = max

Xi∈int(Hn(u,α))
(〈Xi, u〉) < Yn(O, u, α)

it follows that

Pn(H(O, u,
◦
Y n(O, u, α))) >

dnαe
n

> α

which contradicts the definition

Yn(O, u, α) = inf {y ∈ R : Pn(H(O, u, y)) > α} 6
◦
Y n(O, u, α).
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4.5 Proof of uniform consistency with rate
Proof of Theorem 3.1. Under (A−0 ) and (A+

0,Ψ) suppose that
there exists δ > 0 and an increasing random sequence nk → ∞ such
that

|Ynk(O, unk , αnk)− Y (O, unk , αnk)| > δ.

Let (un′k , αn′k) be a subsequence on Sd−1 × [α−, α+] ⊂ Sd−1 × (1/2, 1)
with un′k 6= u0 and αn′k 6= α0 and un′k → u0 and αn′k → α0. It is possible
to extract from (n′k) an increasing sequence (mk) with mk →∞ such
that either

(4.2) Y (O, umk , αmk)− Ymk(O, umk , αmk) ≥ δ

or Ymk(O, umk , αmk) − Y (O, umk , αmk) ≥ δ. We assume (4.2) and we
set

Ak = Hmk(O, umk , αmk), Ck = H(O, umk , αmk), Bk = Ck \Ak.

Since H is a VC-class we have

lim
n→∞

sup
H∈H
|Pn(H)− P (H)| = 0, a.s.

Under (A−0 ), Proposition 2.7 implies

sup
H∈H
|Pmk(H)− P (H)| ≥ Pmk(Ak)− P (Ak)

≥ αmk −
d

mk
− (αmk − P (Bk))

≥ − d

mk
+ Ψ(δ)

so that we have,

(4.3) Ψ(δ) ≤ sup
H∈H
|Pmk(H)− P (H)|+ d

mk
.

Therefore there exists δ > 0 such that Ψ(δ) = 0 which contradict
(A+

0,Ψ). In the alternative case of (4.2), a similar arguments holds.

Proof of Theorem 3.5 Under (A−0 ) and (A+
0,Ψ) suppose that

there exists a random increasing sequence nk →∞ such that

|Ynk(O, unk , αnk)− Y (O, unk , αnk)| > δnk = Ψ−1

(√
log log nk

nk

)
.

Let (un′k , αn′k) be a sequence of Sd−1 × [α−, α+] ⊂ Sd−1 × (0, 1) with
un′k 6= u0 and αn′k 6= α0 and un′k → u0 and αn′k → α0. There exists an
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increasing sequence (mk)k≥1 such thatmk →∞ and Y (O, umk , αmk)−
Ymk(O, umk , αmk) ≥ δmk . We set

Ak = Hmk(O, umk , αmk), Ck = H(O, umk , αmk), Bk = Ck \Ak.

SinceH is a VC-class, by the law of the iterated logarithm of Alexander
[1] we know that

lim sup
n→∞

‖Pn − P‖H√
(log log n)/n

≤
√

2

2
a.s.

since 4/5 >
√

2/2, there exists k(ω) > 0 such that for all k ≥ k(ω)

4

5

√
log logmk

mk
≥ sup
H∈H
|Pmk(H)− P (H)|.

Under (A−0 ) by Propositions 2.6 and 2.7 we have

sup
H∈H
|Pmk(H)− P (H)| ≥ Pmk(Ak)− P (Ak)

≥ αmk −
d

mk
− (αmk − P (Bk))

≥ − d

mk
+ Ψ(δn)

≥
√

log logmk

mk
− d

mk

hence

(4.4)
4

5

√
log logmk

mk
≥ sup
H∈H
|Pmk(H)− P (H)| ≥

√
log logmk

mk
− d

mk
.

This implies that 1 ≥ 1
5d

√
mk log logmk which is absurd, so we have

lim sup
n→∞

‖Yn − Y ‖Sd−1×∆

Ψ−1
(√

(log log n)/n
) <∞ a.s.

the case when Ymk(O, umk , αmk)− Y (O, umk , αmk) ≥ δmk is identical.

4.6 Preliminary to the proofs of the main theorem
Let us write the empirical process indexed in different ways, as follows.
For O ∈ Rd, u ∈ Sd−1, y ∈ R, α ∈ ∆ and H ∈ H,

αn(O, u, y) =
√
n (Pn(H(O, u, y))− P (H(O, u, y))) ,
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En(u, α) =
√
n (Pn(H(u, α))− P (H(u, α))) ,

Λn(H) =
√
n(Pn(H)− P (H)),

and the quantile process

Dn(u, α) =
√
n (Yn(O, u, α)− Y (O, u, α)) .

Thus, for O ∈ Rd, u ∈ Sd−1 and α ∈ ∆, we have

(4.5) αn(O, u, Y (O, u, α)) = En(u, α) = Λn(H(u, α))

and the increments

Λn(H(O, u, y, y + ε)) =
√
n (Pn(H(O, u, y, y + ε))− P (H(O, u, y, y + ε)))

= Λn(H(O, u, y + ε))− Λn(H(O, u, y)).

For n ≥ 3, C > 1, denote εn = C

√
log log n

n
and

Bn =
⋃

0<ε<εn

Bε, Fn = {1B : B ∈ Bn}.

The next proposition is crucial for the upcoming proofs. It’s about the
sharp control of the modulus of continuity of the empirical process Λn
for the bands of width smaller than εn.

Proposition 4.1. Under (A1), for all ζ > 1 there exists C0, C1 > 0,
then for all n ≥ 3 we have

P
{
‖Λn‖Bn ≥ C0

(log n)1/2(log log n)1/4

n1/4

}
≤ C1

nζ
.

Proof. Let n ≥ 3. By Remark 5.1 from the appendix, the class Fn
satisfies (F.i) and (F.ii), thus by applying the Talagrand inequality
[32] there exists A0, A1 > 0 such that

P

{
‖Λn‖Bn ≥ A0

(
E

(
sup
B∈Bn

∣∣∣∣∣ 1√
n

n∑
i=1

τi1Xi∈B

∣∣∣∣∣
)

+ tn

)}

≤ 2 exp

(
−A1t

2
n

σ2
n

)
+ 2 exp

(
−A1tn

√
n
)

with

(4.6) σ2
n = sup

B∈Bn
V ar(1X∈B), tn =

√
CMζ

A1

(log n)1/2(log log n)1/4

n1/4
.

By (A1) we have

V ar(1X∈B) = P (B) (1− P (B)) ≤Mεn(1−mεn) ≤Mεn.
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Thus,

exp

(
−A1t

2
n

σ2
n

)
≤ exp

(
−A1t

2
n

Mεn

)
=

1

nζ
.

Moreover, for n ≥ 3 we have

exp
(
−A1tn

√
n
)

= exp
(
−
√
MCA1ζ(log n)1/2(n log log n)1/4

)
≤ C ′1
nζ

By Remark 5.2 the class Fn obeys the conditions of Theorem 5.2
thus there exists A2 > 0 such that for all n ≥ n0 we have

E

(
sup
B∈Bn

∣∣∣∣∣ 1√
n

n∑
i=1

τi1Xi∈B

∣∣∣∣∣
)
≤ A2

√
vMεn log

(
1 ∨ 1/

√
Mεn

)
≤ C ′0

(log n)1/2(log log n)1/4

n1/4

hence the result is proved.

4.7 Proof of the main theorem
Preliminary step For O ∈ Rd, u ∈ Sd−1 and α ∈ ∆, γ > 0

yα = Y (O, u, α) and vγ(yα) = {y ∈ R, |y − yα| < γ} .

We know that limn→∞ ‖Yn(O, u, α)− yα‖Sd−1×∆ = 0 a.s. then there
exists γ0 > 0 such that for all 0 < γ < γ0 we have for n ≥ n(ω, γ)

Yn(O, u, α)

= inf
y∈vγ(yα)

{Pn (H(O, u, y)) ≥ α}

= inf
y∈vγ(yα)

{Pn (H(O, u, y))− P (H(O, u, y)) ≥ α− P (H(O, u, y))}

= inf
y∈vγ(yα)

{
Pn (H(O, u, y))− P (H(O, u, y)) ≥ F〈X−O,u〉(yα)− F〈X−O,u〉(y)

}
= inf
y∈vγ(yα)

{
αn(O, u, y) ≥ √n

(
F〈X−O,u〉(yα)− F〈X−O,u〉(y)

)}
with αn(O, u, y) =

√
n (Pn (H(O, u, y))− P (H(O, u, y))) . Under (A1)

and (A2), y 7→ F〈X−O,u〉(y) is continuous and differentiable on R thus
by Taylor expansion to the first order in the neighborhood of yα, we
have for all y ∈ vγ(yα)

F〈X−O,u〉(yα)−F〈X−O,u〉(y) = f〈X−O,u〉(yα)(yα− y) + εγ(u, α, yα− y)

with
lim
γ→0

sup
u∈Sd−1

sup
α∈∆
|εγ(u, α, yα − y)| = 0.
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From now on, we study the following,

Yn(O, u, α)

= inf
y∈vγ(yα)

{
αn(O, u, y) ≥ √n

(
f〈X−O,u〉(yα)(yα − y) + εγ(u, α, yα − y)

)}
.

(O, u)

αn(O, u, yα)

Yn(O, u, α)

(log log n)1/4(log n)1/2

n1/4

−√nf (yα)(y − yα)

−√n (f (yα)(y − yα) + ε)

yα

−√n (f (yα)(y − yα)− ε)

Step I Under (A1) and (A2), we show that

(4.7) lim
n→∞

∥∥∥∥√n(Yn − Y ) +
En
h

∥∥∥∥
Sd−1×∆

= 0 a.s.

By Lemma 5.2 there exists C∆ > 0 and n(ω) > 0 such that for all
n ≥ n(ω), we have for all O ∈ Rd, u ∈ Sd−1 and α ∈ ∆, Yn(O, u, α) ∈
vγn(yα) where

vγn(yα) = [yα − γn, yα + γn] , γn = C∆

√
log log n

n
.

For all y ∈ vγn(yα), denote

zn(O, u, y, yα) = αn(O, u, yα)− αn(O, u, y) = Λn(H(O, u, yα, y))

the increments of the empirical process Λn on the bands of width less
than γn. By Proposition 4.1,
(4.8)

sup
u∈Sd

sup
α∈∆

sup
y∈vγn (yα)

|zn(O, u, y, yα)| = Oa.s.

(
(log n)1/2(log log n)1/4

n1/4

)
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hence

(4.9) lim
n→∞

sup
u∈Sd

sup
α∈∆

sup
y∈vγn (yα)

|zn(O, u, y, yα)| = 0 a.s.

and for all n ≥ n(ω), we get

Yn(O, u, α)

= inf
y∈vγn (yα)

{
αn(O, u, y) ≥ √n

(
f〈X−O,u〉(yα)(yα − y) + εγn(u, α, yα − y)

)}
= inf
y∈vγn (yα)

{
y ≥ yα −

αn(O, u, y)

n1/2f〈X−O,u〉(yα)
+
εγn(u, α, yα − y)

f〈X−O,u〉(yα)

}
= inf
y∈vγn (yα)

{
y ≥ yα −

αn(O, u, yα)

n1/2f〈X−O,u〉(yα)
− zn(O, u, y, yα)

n1/2f〈X−O,u〉(yα)
+
εγn(u, α, yα − y)

f〈X−O,u〉(yα)

}
.

Since |Yn(O, u, α)| <∞, we have on the one hand,

Yn(O, u, α) ≥ yα −
αn(O, u, yα)

n1/2f〈X−O,u〉(yα)

+ inf
u∈Sd

inf
α∈∆

inf
y∈vγn (yα)

(
− zn(O, u, y, yα)

n1/2f〈X−O,u〉(yα)
+
εγ(u, α, yα − y)

f〈X−O,u〉(yα)

)
≥ yα −

αn(O, u, yα)

n1/2f〈X−O,u〉(yα)
− Θ1,n

n1/2
−Θ2,n

where

Θ1,n = sup
u∈Sd

sup
α∈∆

sup
y∈vγn (yα)

∣∣∣∣zn(O, u, y, yα)

f〈X−O,u〉(yα)

∣∣∣∣(4.10)

Θ2,n = sup
u∈Sd

sup
α∈∆

sup
y∈vγn (yα)

∣∣∣∣εγn(u, α, yα − y)

f〈X−O,u〉(yα)

∣∣∣∣ .(4.11)

Likewise, we have

Yn(O, u, α) ≤ yα −
αn(O, u, yα)

n1/2f〈X−O,u〉(yα)
+

Θ1,n

n1/2
+ Θ2,n

thus

(4.12)
∣∣∣∣n1/2(Yn(O, u, α)− yα) +

αn(O, u, yα)

f〈X−O,u〉(yα)

∣∣∣∣ ≤ Θ1,n + n1/2Θ2,n.

By (A1), we have

Θ1,n ≤
1

m
sup
u∈Sd

sup
α∈∆

sup
y∈vγn (yα)

|zn(O, u, y, yα)| .
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Hence by (4.9), we have limn→∞Θ1,n = 0 a.s. Observe that ρ of (3.3)
can be written as

ρ(γ) = sup
u∈Sd

sup
α∈∆

sup
y∈vγ(yα)

|εγ(u, α, yα − y)| .

Since f〈X−O,u〉(yα) = h(u, α), under (A1) we obtain

(4.13) n1/2Θ2,n ≤
n1/2ρ(γn)

m
.

By (A2), we have

lim
n→∞

√
log log(1/γn)

γn
ρ(γn) = lim

n→∞
n1/2ρ(γn) = 0

hence limn→∞ n1/2Θ2,n = 0 thus,

lim
n→∞

∣∣∣∣n1/2(Yn(O, u, α)− yα) +
αn(O, u, yα)

f〈X−O,u〉(yα)

∣∣∣∣ = 0 a.s.

and with previous notation

αn(O, u, yα)

f〈X−O,u〉
=
En(u, α)

h(u, α)

then (4.7) holds.

Step II Under (A1) and (A2) we show that we can construct on
the same probability space (Ω, T ,P) and i.i.d. sequence (Xn) of law P
and a sequence (Gn) of versions of GP such that

(4.14) lim
n→∞

‖En −Gn‖Sd−1×∆ = 0 a.s.

The set H is a class of Vapnik-Chervonenkis, thus it is a Donsker class,

(Λn(H))H∈H
Law−→
n→∞

(GP (H))H∈H

with GP a Brownian bridge indexed by H of covariance

cov(GP (H),GP (H ′)) = P (H ∩H ′)− P (H)P (H ′), H,H ′ ∈ H.

Then, by applying Theorem 5.3 to Λn, we can construct on the same
probability space (Ω, T ,P) and i.i.d. sequence (Xn) of law P and a
sequence (Gn) of versions of GP such that

(4.15) Λn(H(O, u, y)) = Gn(H(O, u, y)) + ξn(H(O, u, y))
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with

(4.16) lim
n→∞

‖ξn(H)‖H = 0 a.s.

and for all θ > 1 there exists K1 > 0

(4.17) P

(
sup

u∈Sd−1

sup
α∈∆
|ξn(u, α)| ≥ K1

(log n)wd

nvd

)
≤ 1

nθ

with the notation ξn(u, α) = ξn(H(u, α)) and vd = 1/(2 + 10d), wd =
(4 + 10d)/(4 + 20d). Consequently (4.14) holds.

Step III Under (A1) and (A2), we show that

lim
n→∞

∥∥∥∥Dn +
Gn
h

∥∥∥∥
Sd−1×∆

= 0 a.s.

By Step I we have

lim
n→∞

∥∥∥∥√n(Yn − Y ) +
En
h

∥∥∥∥
Sd−1×∆

= 0 a.s.

and by Step II

lim
n→∞

‖En −Gn‖Sd−1×∆ = 0 a.s.

By (A1) the function h is bounded thus under (A1) and (A2), we
have

lim
n→∞

∥∥∥∥Dn +
Gn
h

∥∥∥∥
Sd−1×∆

= 0 a.s.

which readily implies

lim
n→∞

dPL(
√
n(Yn − Y ),−Gn

h
) = lim

n→∞
dPL(

√
n(Yn − Y ),−GP

h
)

= lim
n→∞

dPL(
√
n(Yn − Y ),

GP
h

) = 0

where dPL is Prokhorov-Levy distance. Therefore

Dn =
√
n(Yn − Y )

Law−→
n→∞

G̃ :=
GP
h

in the sense of the weak convergence on the space of bounded function
on Sd−1 ×∆ endowed with the supremum norm. Note that

cov(G̃(u, α), G̃(u′, α′)) =
P (H(u, α) ∩H(u′, α′))− αα′

h(u, α)h(u′, α′)
.
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Step IV (Rate in Bahadur-Kiefer representation). We show that
under (A1), (A2), (A3), it holds

(4.18)
∥∥∥∥Dn +

En
h

∥∥∥∥
Sd−1×∆

= Oa.s.

(
(log log n)1/4(log n)1/2

n1/4

)
.

The class H is a Vapnik-Cervonenkis class of dimension d + 1, so by
the law of the iterated logarithm (Alexander 1984 [1]) we have

lim sup
n→∞

‖Λn‖H√
2 log log n

≤ 1

2
a.s.

then with probability 1, there exists n(ω) > 0 such that for all n ≥
n(ω), we have for all u ∈ Sd−1

αn(O, u, y) := Λn(H(O, u, y)) ∈
[
−
√

log log n,
√

log log n
]
.

For all n ≥ n(ω), recall (4.12)

(4.19)
∣∣∣∣n1/2(Yn(O, u, α)− yα) +

αn(O, u, yα)

f〈X−O,u〉(yα)

∣∣∣∣ ≤ Θ1,n + n1/2Θ2,n

and by (4.8) and (A1) and (A2) there exists C ′ > 0, such that for all
n ≥ n(ω)

Θ1,n ≤
C ′

m

(
(log n)1/2(log log n)1/4

n1/4

)
and by (4.13)

n1/2Θ2,n ≤
n1/2ρ(γn)

m
.

thus for n ≥ n(ω),∣∣∣∣Dn(u, α) +
En(u, α)

h(u, α)

∣∣∣∣ ≤ Θ1,n + n1/2Θ2,n

≤ C ′

m

(
(log log n)1/4(log n)1/2

n1/4

)
+
n1/2ρ(γn)

m

≤ (log log n)1/4(log n)1/2

n1/4m

(
ρ(γn)(log log n)1/2

(γn)3/2(log n)1/2
+ C ′

)
≤ t′n

m

(
ρ(γn)(log log(1/γn))1/2

γ
3/2
n (log(1/γn))1/2

(
log(1/γn)(log log n)

log log(1/γn)(log n)

)1/2

+ C ′

)

with t′n = n−1/4(log n)1/2(log log n)1/4. We have

lim
n→∞

(
log(1/γn)(log log n)

log log(1/γn)(log n)

)1/2

=
1

2
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and by (A3)

lim
n→∞

ρ(γn)(log log(1/γn))1/2

γ
3/2
n (log(1/γn))1/2

= lim
n→∞

ρ(γn)

γ
3/2
n

√
log(1/γn)

= 0.

Consequently, under (A1), (A2) and (A3) we have proved (4.18).

Remark 4.1. Under (A1) and (A2) we have

lim
n→∞

n1/2ρ(γn) = 0

without the additional assumptions (A3) or (A′3), we can only state
that there exists n(ω) > 0 such that for all n ≥ n(ω)∥∥∥∥Dn +

En
h

∥∥∥∥
Sd−1×∆

= Oa.s.

((
n1/2ρ(γn)

)
∨ (log log n)1/4(log n)1/2

n1/4

)
.

Step V (Rate of the Gaussian approximation). We have shown that
under (A1) and (A2), we can construct on the same probability space
(Ω, T ,P) an i.i.d. sequence (Xn) of law P and (Gn) of versions of G
such that for all u ∈ Sd−1 and α ∈ ∆, we have

Dn(u, α) = −Gn(u, α)

h(u, α)
+ Zn(u, α)

limn→∞ ‖Zn‖Sd−1×∆ = 0 a.s. We have∥∥∥∥Dn +
Gn
h

∥∥∥∥
Sd−1×∆

≤
∥∥∥∥Dn +

En
h

∥∥∥∥
Sd−1×∆

+
1

m
‖En −Gn‖Sd−1×∆ .

Under (A3), by (4.18), there exists n(ω) > 0 and C ′′∆ > 0 such that
for all n ≥ n(ω), we have∥∥∥∥Dn +

En
h

∥∥∥∥
Sd−1×∆

≤ C ′′∆
(log log n)1/4(log n)1/2

n1/4

and by (4.17) and the Borel-Cantelli lemma, we have

‖En −Gn‖Sd−1×∆ = Oa.s.

(
(log n)wd

nvd

)
.

Conclusion Under (A1) and (A2) one can construct on the same
probability space (Ω, T ,P) an i.i.d. sequence Xn with distribution P
and a sequence Gn of versions of GP in such a way that for O ∈ Rd,
u ∈ Sd−1, α ∈ ∆

Yn(O, u, α) = Y (O, u, α) +
Gn(u, α)√

n
+
Zn(u, α)√

n
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where limn→∞ ‖Zn‖Sd−1×∆ = 0 a.s. If P moreover satisfies (A3)
then Gn can be constructed such that for vd = 1/(2 + 10d) and wd =
(4 + 10d)/(4 + 20d), there exists nθ(m,M, d) > 0 such that we have,
for all n > nθ,

P
(
‖Zn‖Sd−1×∆ ≥ cθ

(log n)wd

nvd

)
≤ 1

nθ
.

5 Appendix

5.1 Technical Lemmas
Lemma 5.1. Let O ∈ Rd, u ∈ Sd−1, y ∈ R and y∞ ∈ R with y 6= y∞.
For every sequence (un)n∈N of Sd−1 with un 6= u and un → u and for
every sequence (yn)n∈N of reals with yn 6= y∞ and yn → y∞, there
exists an increasing sequence of integers (nk)k∈N with nk → ∞ and a
sequence of sets (Hk)k≥1 such that

Hk+1 ⊂ Hk,
⋂
k>1Hk = ∅, H(O, unk , ynk)\H(O, u, y) ⊂ Hk ⊂ H(O, u, y).

Proof. Let u ∈ Sd−1, y ∈ R and y∞ ∈ R with y < y∞, and let pH(O,u,y)

denote the orthogonal projection on ∂H(O, u, y). We denote Q =
pH(O,u,y)(O) = O+yu. For (un) in Sd−1 with un 6= u and limn→∞ un =
u and (yn) sequence of reals with yn 6= y∞ and limn→∞ yn = y∞, one
can extract ((umk , ymk))k≥1 in Sd−1 × R such that (〈umk , u〉)k≥1 is
increasing with limk→∞〈umk , u〉 = 1.

O Q

Qk

umk

u

rmk

ymk

y

We set Dmk = ∂H(O, u, y) ∩ ∂H(O, umk , ymk), which is not empty
since umk 6= u and it is an hyper-plan of dimension d− 2. Denote the
distance between Q and Dmk by rmk = infQk∈Dmk ‖Qk −Q‖ .
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Step I We show that

lim
k→∞

rmk = +∞.

Fix Q′ = O + y′u with y < y′ < y∞ an element from the line (O, u)
and A′k = H(O, umk , y

′
mk

) the half-space of normal umk intersecting
(O, u) exactly in Q′, i.e.

A′k ∩ (O, u) = Q′.

we can easily see that y′mk = y′〈umk , u〉, hence (ymk)k≥1 is increas-
ing with y′mk → y′. For k big enough, y′mk < ymk , thus A′k (
H(O, umk , ymk). From now on, denote

D′mk = ∂H(O, u, y) ∩ ∂A′k, r′mk = inf
Q′k∈D′mk

‖Q′k −Q‖ .

By observing that A′k ( H(O, umk , ymk), we have r′mk < rmk . Conse-

quently, r′mk =
y′ − y

tan(arccos(〈umk , u〉))
and r′mk →∞, hence rmk →∞.

Now, we can extract an increasing subsequence (rnk)k≥1 with

lim
k→∞

rnk = +∞.

Step I figure

O
Q Q′

umk

u

r′mk

y′mk

y

Q′k

y′

θ

y′ − y

θ = arccos(〈umk
, u〉)

Step II We construct (Hk)k≥1 of Lemma 5.1.
Let k ≥ 1, define the set of directions Vk = {v ∈ Sd−1 : 〈v, u〉 = 〈unk , u〉}
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and the set of half-spaces Uk = {H(O, v, ynk) : v ∈ Vk} obtained by
revolution of H(O, unk , ynk) around (O, u). Finally, define

Tk =
⋂
v∈Vk

H(O, v, ynk) =
⋂

Ĥ∈Uk

Ĥ

and

Hk =
⋃
v∈Vk

H(O, u, y) \H(O, v, ynk) = H(O, u, y) \ Tk.

As rnk ↑ +∞ we have Hk+1 ⊂ Hk. And since unk 6= u then for
all Ĥ ∈ Uk we have H(O, u, y) ∩ Ĥ 6= ∅ in particular, Hk 6= ∅. We
have Hk ⊂ H(O, u, y) and unk ∈ Vk we get by definition of Hk, that
H(O, u, y) \H(O, unk , ynk) ⊂ Hk.

O
Q

v1,mk

ymk

Q∞ = O + y∞uu

v2,mk

ymk

In Grey Hk = H(O, u, y) \ Tk

rmk

rmk

We have limk→∞〈unk , u〉 = 1 then V∞ = {u} and limk→∞ ynk = y.
Moreover

⋂
k≥1Hk = ∅. The case where y∞ < y′ < y is analogous.

Lemma 5.2. Under (A1), almost surely there exists C∆ > 0 and
n(ω) > 3 such that for all n ≥ n(ω) we have

‖Yn − Y ‖Sd−1×∆ ≤ C∆

√
log log n

n
.
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Proof. Under (A1), we have

mε ≤ Ψ(ε) ≤Mε, ε ≥ 0.

By taking ε = Ψ−1
(√

log log n/n
)
, we obtain by Proposition 2.6

that for all n > 3

(5.1) Ψ−1

(√
log log n

n

)
≤ 1

m

√
log logn

n
.

and by Theorem 3.5, we know that almost surely there exists c∆ > 0
and n(ω) > 3 such that for all n ≥ n(ω) we have

‖Yn − Y ‖Sd−1×∆ ≤ c∆Ψ−1

(√
log log n

n

)

and by (5.1) for C∆ = c∆/m, we get

‖Yn − Y ‖Sd−1×∆ ≤ C∆

√
log log n

n
.

5.2 Tools needed in the proof of main theorem
Let F be a class of measurable real valued functions of X , suppose
that

(F.i) for S∗ > 0 , for all f ∈ F , supx∈X |f(x)| ≤ S∗/2.
(F.ii) The class F is point-wide measurable, i.e. there exists a countable

subclass F∞ of F such that for every f there exists (fm)m∈N ⊂
FN∞ for which limm→∞ fm(x) = f(x) for all x ∈ X .

the (F.ii) is set to avoid measurability problems and the use of outer
integrals.

Theorem 5.1 (Talagrand Inequality [32]). If G satisfies (F.i) and
(F.ii) then for all n ≥ 1 and t > 0 we have for finite constants A0 > 0
and A1 > 0

P

{
‖αn‖G ≥ A0

(
E

(∥∥∥∥∥ 1√
n

n∑
i=1

τig(Xi)

∥∥∥∥∥
G

)
+ t

)}

≤ 2 exp

(
−A1t

2

σ2
G

)
+ 2 exp

(
−A1t

√
n

S∗

)
where σ2

G = supg∈G V ar(g(X)), and S∗ from (F.i).
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The constants A0, A1 are universals and do not depend in G and
S∗.

Remark 5.1. Let n ≥ 3, C > 1, for εn = C

√
log log n

n
, we set

Bn =
⋃

0<ε<εn

Bε, Fn = {1B : B ∈ Bn}.

Fn satisfies (F.i) and (F.ii), as a matter of fact

- for all g ∈ Fn we have supx∈X |g(x)| ≤ 1 = 2/2, thus, with
notations of (F.i) we have S∗ = 2.

- for all ε > 0, O ∈ Rd, u ∈ Sd−1 and y ∈ Y∆(O, u) such that
H(O, u, y, y+ε) ∈ Bn there exists a sequence of rational numbers
δk → ε, and a sequence of uk → u of Qd−1 = {v ∈ Q2 : ‖v‖2 = 1}
and a sequence of rational numbers yk → y such that for all
x ∈ Rd we have

lim
k→∞

gk(x) = lim
k→∞

1H(O,uk,yk,yk+δk)(x) = g(x) = 1H(O,u,y,y+δ)(x)

Theorem 5.2 (Moments inequality [13], [14]). Let G satisfy (F.i) and
(F.ii) with envelope G and be such that for some positive constants
β, v, c > 1 and σ ≤ 1/(8c) the following conditions holds

E(G2(X)) ≤ β2; NG(ε,G) ≤ cε−v, 0 < ε < 1; sup
g∈G

E(g2(X)) ≤ σ2;

and

sup
g∈G

sup
x∈X
|g(x)| ≤

√
nσ2/ ln(β ∨ 1/σ)

2
√
v + 1

.

Then we have for a universal constant A2 not depending on β,

E

(∥∥∥∥∥ 1√
n

n∑
i=1

τig(Xi)

∥∥∥∥∥
G

)
≤ A2

√
vσ2 ln(β ∨ 1/σ).

Remark 5.2. Let n ≥ 3, g ∈ Fn and G = 1 the envelope function of
Fn, we have

E(G(X)2) = 1 ≤ β = 2

Under (A1) for all B ∈ Bn

E(12
X∈B) = P (B) ≤Mεn =: θ2

n

since Bn is a VC class of dimension 2d+ 1 there exists c > 1

N(ε,Fn) ≤ cε−v, 0 < ε < 1
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with v = 2((2d + 1) − 1) = 4d. Finally, there exists n0 > 0 such that
for all n > n0 we have

1

θn
=

1√
Mεn

=

(
1

MC

√
n

log log n

)1/2

=
1√
MC

· n1/4

(log log n)1/4
> 2.

consequently, ln(β ∨ 1/θn) = log(2 ∨ 1/θn) = log(1/θn) and

nθ2
n = CM

√
n log log n

so
nθ2

n

log(β ∨ 1
θn

)
=

CM
√
n log log n

log
(

1√
MC
· n1/4

(log logn)1/4

)
thus

lim
n→∞

nθ2
n

log(β ∨ 1
θn

)
= +∞.

Since supg∈Fn supx∈X |g(x)| = 1 there exists n1 > n0 > 0 such that for
n ≥ n1 we have

sup
g∈Fn

sup
x∈X
|g(x)| ≤

√
nθ2

n/ log(β ∨ 1/θn)

2
√
v + 1

.

Theorem 5.3 (Berthet and Mason 2006 [4]). Let G be a VC class
of dimension V C(G) satisfying (F.i) and (F.ii) with envelope G :=
S∗/2. For all λ > 1 there exists ρ(λ) > 1 such that for all n ≥ 1 we can
construct on the same probability space, the vectors X1, · · · , Xn and a
sequence (Gn) of versions of G such that

P{‖αn −Gn‖G > ρ(λ)n−v1(log n)v2} ≤ n−λ

with v1 = 1/(2+5v0) and v2 = (4+5v0)/(4+10v0) and v0 = 2(V C(G)−
1) and where G is P-Brownian Bridge indexed by G.
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