E. Barillot, L. Calzone, P. Hupe, J. P. Vert, and A. Zinovyev, Computational Systems Biology of Cancer, 2012.

B. W. Stewart and C. P. Wild, International 385 Agency for Research on Cancer, 2014.

M. M. Hadjiandreou and G. D. Mitsis, Mathematical modeling of tumor growth, drug-resistance, toxicity, and optimal therapy design, IEEE Transactions on Biomedical Engineering, vol.61, issue.2, pp.415-425, 2014.

P. Dua, V. Dua, and E. N. Pistikopoulos, Optimal delivery of chemotherapeutic agents in cancer, Computers & Chemical Engineering, vol.32, issue.1, pp.99-107, 2008.

D. Barbolosi and A. Iliadis, Optimizing drug regimens in cancer chemotherapy: a simulation study using a pk-pd model, Computers in Biology 395 and Medicine, vol.31, issue.3, pp.32-41, 2001.

R. C. Rockne and P. Frankel, Advances in Radiation Oncology, 2017.

C. Babbs, Predicting success or failure of immunotherapy for cancer: insights from a clinically applicable mathematical model, American Journal of Cancer Research, vol.2, issue.2, pp.204-213, 2012.

R. Serre, S. Benzekry, L. Padovani, C. Meille, N. André et al., Mathematical modeling of can405 cer immunotherapy and its synergy with radiotherapy, Cancer Research, vol.76, issue.17, pp.4931-4940, 2016.

S. Benzekry, A. Tracz, M. Mastri, R. Corbelli, S. Barbolosi et al., Modeling spontaneous metastasis following surgery: An in vivo-in silico approach, Cancer Research, vol.76, issue.3, pp.535-547, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01222046

F. Michor and K. Beal, Improving cancer treatment via mathematical modeling: Surmounting the challenges is worth the effort, vol.163, pp.1059-1063, 2015.

R. P. Araujo and D. L. Mcelwain, A history of the study of solid tumour 415 growth: The contribution of mathematical modelling, Bulletin of Mathematical Biology, vol.66, issue.5, pp.1039-1091, 2004.

H. Enderling and M. Chaplain, Mathematical modeling of tumor growth and treatment, Current Pharmaceutical Design, vol.20, issue.30, 2014.

H. Byrne, T. Alarcon, M. Owen, S. Webb, and P. Maini, Modelling aspects of cancer dynamics: a review, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.364, pp.1563-1578, 1843.

P. Gerlee, The model muddle: In search of tumor growth laws, Cancer Research, vol.73, issue.8, pp.2407-2411, 2013.

S. Benzekry, C. Lamont, A. Beheshti, A. Tracz, J. M. Ebos et al., Classical mathematical models for description and prediction of experimental tumor growth, PLOS Computational Biology, vol.10, issue.8

B. Gompertz, On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, Philosophical Transactions of the Royal Society of London, vol.115, pp.513-583, 1825.

C. P. Winsor, The gompertz curve as a growth curve, Proceedings of the National Academy of Sciences of the United States of America, vol.18, issue.1, pp.1-8, 1932.

A. K. Laird, Dynamics of tumour growth, British Journal of Cancer, vol.18, issue.3, pp.490-502, 1965.

N. Hartung, S. Mollard, D. Barbolosi, A. Benabdallah, G. Chapuisat et al., Mathematical modeling of tumor growth and metastatic spreading: Validation in tumor-bearing mice, Cancer Research, vol.74, issue.22, pp.6397-6407, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01107681

E. A. Sarapata and L. G. De-pillis, A comparison and catalog of intrinsic tumor growth models, Bulletin of Mathematical Biology, vol.76, issue.8, pp.2010-2024, 2014.

A. Achilleos, C. Loizides, M. Hadjiandreou, T. Stylianopoulos, and G. D. Mitsis, Multiprocess dynamic modeling of tumor evolution with bayesian tumor450 specific predictions, Annals of Biomedical Engineering, vol.42, issue.5, pp.1095-1111, 2014.

C. Loizides, D. Iacovides, M. M. Hadjiandreou, G. Rizki, A. Achilleos et al., Model-based tumor growth dynamics and therapy response in a mouse model of de novo carcinogenesis, PLOS ONE, vol.10, issue.12, pp.1-18, 2015.

R. Chignola and R. I. Foroni, Estimating the growth kinetics of experimental tumors from as few as two determinations of tumor size: implications for clinical oncology, IEEE Transactions on Biomedical Engineering, vol.52, issue.5, pp.808-815, 2005.

A. Talkington and R. Durrett, Estimating tumor growth rates in vivo, Bulletin of Mathematical Biology, vol.77, issue.10, 2015.

G. F. Brunton and T. E. Wheldon, Prediction of the complete growth pattern of human multiple myeloma from restricted initial measurements, Cell, vol.465, issue.6, pp.591-594, 1977.

G. F. Brunton and T. E. Wheldon, Characteristic species dependent growth patterns of mammalian neoplasms, Cell Proliferation, vol.11, issue.2, pp.161-175, 1978.

G. F. Brunton and T. E. Wheldon, The gompertz equation and the construction of tumour growth curves, Cell Proliferation, vol.13, issue.4, 1980.

S. Kay, Fundamentals Of Statistical Signal Processing, 1993.

L. Ljung, System Identification: Theory for the User, 1986.

T. B. Schön, A. Wills, and B. Ninness, System identification of nonlinear statespace models, Automatica, vol.47, issue.1, pp.39-49, 2011.

M. L. Garg, B. R. Rao, and C. K. Redmond, Maximum-likelihood estimation of the parameters of the gompertz survival function, Journal of the Royal Statistical Society. Series C (Applied Statistics), vol.19, issue.2, pp.152-159, 1970.

P. Lambert, Modeling of nonlinear growth curve on series of correlated count data measured at unequally spaced times: A full likelihood based 485 approach, Biometrics, vol.52, issue.1, pp.50-55, 1996.

R. Gutiérrez, R. Gutiérrez-sanchez, A. Nafidi, P. Román, and F. Torres, Inference in gompertz-type nonhomogeneous stochastic systems by means of discrete sampling, Cybernetics and Systems, vol.36, issue.2, pp.203-216, 2005.

S. Patmanidis, A. C. Charalampidis, I. Kordonis, G. D. Mitsis, and G. P. Papavassilopoulos, Comparing methods for parameter estimation of the gompertz tumor growth model, IFAC-PapersOnLine, vol.50, issue.1, pp.12203-12209, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01707693

A. C. Charalampidis and G. P. Papavassilopoulos, Development and numerical 495 investigation of new non-linear kalman filter variants, IET Control Theory Applications, vol.5, issue.10, pp.1155-1166, 2011.

A. C. Charalampidis and G. P. Papavassilopoulos, Computationally efficient kalman filtering for a class of nonlinear systems, IEEE Transactions on Automatic Control, vol.56, issue.3, pp.483-491, 2011.

P. Maybeck, Stochastic Models, Estimation, and Control, Mathematics in science and engineering, 1982.

B. Dennis and J. M. Ponciano, Density-dependent state-space model for population-abundance data with unequal time intervals, Ecology, vol.95, issue.8, pp.2069-2076, 2014.

, Matlab Optimization Toolbox User's Guide, The MathWorks Inc, 2017.

D. P. Bertsekas, Nonlinear Programming, 1999.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, vol.144, issue.5, pp.646-674, 2011.

T. Wheldon, Mathematical models in cancer research, Medical science series, A. Hilger, 1988.

L. Norton, R. Simon, H. D. Brereton, and A. E. Bogden, Predicting the course of gompertzian growth, Nature, vol.264, pp.542-545, 1976.

M. Volm and T. Efferth, Prediction of cancer drug resistance and implications for personalized medicine, Frontiers in Oncology, vol.5, p.282, 2015.