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The first significant (leftmost nonzero) digit of seemingly random numbers often appears to con-
form to a logarithmic distribution, with more 1s than 2s, more 2s than 3s, and so forth, a phe-
nomenon known as Benford’s law. When humans try to produce random numbers, they often fail 
to conform to this distribution. This feature grounds the so-called Benford analysis, aiming at de-
tecting fabricated data. A generalized Benford’s law (GBL), extending the classical Benford’s law, 
has been defined recently. In two studies, we provide some empirical support for the generalized 
Benford analysis, broadening the classical Benford analysis. We also conclude that familiarity with 
the numerical domain involved as well as cognitive effort only have a mild effect on the method’s 
accuracy and can hardly explain the positive results provided here.
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Introduction

During the late 19th century, an intriguing phenomenon was discov-

ered by Newcomb (1881): The first significant digit (leftmost nonzero 

digit) of seemingly random numbers often fails to follow a flat distribu-

tion with an equal proportion of 1s, 2s, … , 9s, as one would expect, but 

instead follows a decreasing distribution, with more 1s than 2s, more 

2s than 3s, and so forth. The same phenomenon was later rediscovered 

and detailed by Benford (1938). According to what is now referred to 

as Benford’s law or Newcomb-Benford law (NBL), the distribution of 

the first significant digit X of a “random” number follows a logarithmic 

law given by P(X = d) = Log(1+1/d), where Log stands for the base 10 

logarithm and d stands for a digit (in the range of 1–9; see Table 1).

Many real-world datasets approximately conform to NBL (Hill, 

1998; Nigrini, 2012). For instance, the distance between earth and 

known stars (Alexopoulos & Leontsinis, 2014) or exoplanets (Aron, 

2013), crime statistics (Hickman & Rice, 2010), the number of daily-re-

corded religious activities (Mir, 2014), earthquake depths (Sambridge, 

Tkalcic, & Arroucau, 2011), interventional radiology Dose-Area 

Product data (Cournane, Sheehy, & Cooke, 2014), financial variables 

(Clippe & Ausloos, 2012), and internet traffic data (Arshadi & Jahangir, 

2014), were found to conform to NBL. In psychology, NBL was found 

relevant in the study of gambling behaviors (Chou, Kong, Teo, Wang, & 

Zheng, 2009), brain activity recordings (Kreuzer et al., 2014), language 

(Dehaene & Mehler, 1992; Delahaye & Gauvrit, 2013), or perception 

(Beeli, Esslen, & Jäncke, 2007).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Table 1.  
Proportion of 1s, 2s,…, 9s as First Significant Digit in a Series 
Conforming to NBL

Note. NBL = Newcomb-Benford law.

Digit 1 2 3 4 5 6 7 8 9

Prop (%) 30.1 17.6 12.5 9.69 7.92 6.69 5.80 5.12 4.58
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Although NBL is ubiquitous, not all random variables or datasets 

conform to it. Scott and Fasli (2001) studied 230 sets of data and 

found that among them, less than 13% conformed precisely to NBL. 

Diekmann and Jann (2010), Bonache, Maurice, and Moris (2010), or 

Lolbert (2008) have also warned against overconfidence in NBL. NBL 

is not, they argue, a universal law but a property that appears in certain 

specific (albeit numerous) contexts.

The Sensitivity and Specificity of 
Benford Analysis

Human pseudorandom productions are in many ways different from 

true randomness (Nickerson, 2002). For instance, participants’ pro-

ductions show an excess of alternations (Vandierendonck, 2000) or are 

overly uniform (Falk & Konold, 1997). As a consequence, fabricated 

data might fit NBL to a lesser extent than genuine data (Banks & Hill, 

1974). Haferkorn (2013) compared algorithm-based and human-based 

trade orders and concluded that algorithm-based orders approxi-

mated NBL better than human-based orders. Hales, Chakravorty, and 

Sridharan (2009) showed that NBL is efficient in detecting fraudulent 

data in an industrial supply-chain context.

These results support the so-called Benford analysis, which uses a 

measure of discrepancy from NBL to detect fraudulent or erroneous 

data (Bolton & Hand, 2002; Kumar, 2013; Nigrini, 2012). It has been 

used to audit industrial and financial data (Rauch, Göttsche, Brähler, & 

Kronfeld, 2014; Rauch, Göttsche, & El Mouaaouy, 2013), to gauge the 

scientific publication process (de Vries & Murk, 2013), to separate nat-

ural from computer-generated images (Tong, Yang, & Xie, 2013), or to 

detect hidden messages in images’ .jpeg files (Andriotis, Oikonomou, 

& Tryfonas, 2013).

As a rule, the Benford analysis focuses on the distribution of the 

first digit and compares it to the normative logarithmic distribution. 

However, a more conservative version of Benford’s law states that nu-

merical values or a variable X should conform to the following prop-

erty: Frac(Log(X)) should follow a uniform distribution in the range 

of [0,1[. Here, Frac(x) stands for x—Floor(x), Floor(x) being the largest 

integer inferior or equal to x. The logarithmic distribution of the first 

digit is a mathematical consequence of this version (Raimi, 1976).

Hsü (1948), Kubovy (1977), and Hill (1988) provided direct experi-

mental evidence that human-produced data conform poorly to NBL. 

However, in their experiments, participants were instructed to produce 

numbers with a given number (four or six) of digits. Specifying such 

a constraint could well induce participants to attempt to generate uni-

formly chosen numbers or to use a digit-by-digit strategy (repeatedly 

picking a random digit). Researchers who study the situations in which 

NBL appears often conclude that one important empirical condition 

is that the numerical data cover several orders of magnitude (e.g., 

Fewster, 2009; for a more detailed mathematical account, see Valadier, 

2012). Consequently, any set of numbers that are bound to lie in the 

thousands scale (four digits) or in the hundreds of thousands scale (six 

digits) will probably not conform to NBL, whether produced by hu-

mans or not. Participants’ failure to produce data conforming to NBL 

could just be a consequence of the instructions they were given.

Furthermore, these studies were decontextualized. Participants 

were asked to give either the “first number that came to mind” or a 

number chosen “at random”, without being told what the numbers 

were supposed to represent. A “random number with four digits” usu-

ally implicitly refers to the uniform distribution (Gauvrit & Morsanyi, 

2014)—and the uniform distribution does not conform to NBL. 

Therefore, the lack of context could prime a non-Benford response, 

even if participants are, in fact, able to produce series conforming to 

NBL.

For these reasons, the idea that fabricated numerical data will usu-

ally not follow NBL has been questioned. Using a more contextual-

ized design, Diekmann (2007) asked social science students to create 

plausible regression coefficients, with four-digit precision. Note that, 

contrary to the case of a four-digit integer, which is bound to fall be-

tween 1,000 and 9,999, covering only one order of magnitude, here, 

the coefficients could run between .0001 and 1, covering four orders 

of magnitude. Diekmann found that, in this case, the first digit does 

approximately conform to NBL and concluded that researchers should 

not only consider the first digit as relevant to detecting fraud but 

should also look beyond the first digit, toward the conservative version 

of NBL. Using correlation coefficients makes the task meaningful, and 

this may explain why Diekmann’s participants are not bad at producing 

plausible rs, whereas other samples suggested that human participants 

would be unable to mimic NBL.

Another study went even further in formulating meaningful tasks 

by using the type of data known to exhibit a Benford distribution. 

Burns (2009) asked participants to guess real-world values, such as the 

US gross national debt or the peak summer electricity consumption in 

Melbourne. He found that although participants’ first digit responses 

did not perfectly follow a logarithmic law, they conformed to the 

logarithmic distribution better than to the uniform distribution. Burns 

concluded that participants are not too bad at producing a distribution 

that conforms to NBL as soon as the task involves the type of real-

world data that do follow NBL.

One limitation of Burns’ (2009) study is that it only works at a pop-

ulation level. We cannot know from his data if a particular individual 

would succeed in producing a pseudorandom series conforming to 

NBL, since each participant produced a single value. Nevertheless, 

his and Diekmann’s studies certainly suggest that using Benford’s law 

to detect fraud is questionable in general since humans may be able 

to produce data confirming to NBL, in which case a Benford test will 

yield many undetected frauds, lacking sensitivity. As mentioned above, 

not all random variables or real-world datasets conform to NBL (and 

when they do, it is generally only in an approximate manner). Because 

many real-world datasets do not conform to NBL, a Benford test used 

to detect fraud not only may have low sensitivity but may also have 

low specificity.
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Generalized Benford’s law

Several researchers (e.g., Leemis, Schmeiser, & Evans, 2000) have 

studied conditions under which a distribution seems more likely to 

satisfy NBL. Fewster (2009) provided an intuitive explanation of why 

and when the law applies and concluded that any dataset that smoothly 

spans several orders of magnitude tends to conform to NBL. Data lim-

ited to one or two orders of magnitude would generally not conform 

to the law.

To pursue the question of why many data conform to NBL further, 

the conservative version of the NBL may be a better starting point than 

the mere first-digit analysis. Recall that in the conservative version, a 

random variable X conforms to NBL if Frac(Log(X)) ~ U([0,1[). In an 

attempt to show that the roots of NBL ubiquity should not be looked 

for in the specific properties of the logarithm, Gauvrit and Delahaye 

(2008, 2009) defined a generalized Benford’s law (GBL) associated with 

any function f as follows: A random variable X conforms to a GBL as-

sociated with function f if Frac(f(X)) ~ U([0,1[). The classical NBL thus 

appears as a special case of GBL, associated with function Log.

Testing several mathematical and real-world datasets, Gauvrit and 

Delahaye (2011) found that several of them fit GBL better than NBL. 

Of 12 datasets they studied, six conformed to the classical NBL, while 

10 conformed to a GBL with function f(x) = π × x2, and nine with 

square-root function. On the other hand, none conformed to GBL with 

function Log o Log. These findings suggest that a GBL associated with 

the relevant function—depending on the context—might yield more 

specific or sensitive tests for detecting fraudulent or erroneous data. 

We addressed this question in two studies. In both studies, each 

participant produced a whole series of values, allowing analyzing the 

resulting distribution at an individual level. In Study 1, we examined 

three versions of GBL in four different situations in order to compare 

the sensitivity and specificity of different types of GBL analyses. Study 2 

explored the potential effects of variations of familiarity with the mate-

rial and of cognitive effort on the productions.

Study 1

In Study 1, we examined human pseudorandom productions in four 

different realistic settings, such as those where a classical Benford’s law 

has been initially observed, and compared these responses with true 

sample values.

Participants
A sample of 169 adults (63 women) took part in this experiment. 

Participants were recruited via social networks and e-mails. Ages 

ranged from 13 to 73 years (MAge = 40.9, SD = 11.6).

Method
Participants were randomly assigned to one of four groups: cities (n = 

41), numbers (n = 44), stars (n = 36), or tuberculosis (n = 48). In each 

group, participants were informed that a series of 30 numbers had been 

selected at random from a dataset, and were instructed to produce 

what they thought would be a credible outcome—that is, to supply 30 

plausible numbers. In the cities group, the list was the set of popula-

tions of the 5,000 most populated US cities. Numbers corresponded 

to the dataset of numerical constants published by Simon Plouffe and 

described in the experiment as an extensive encyclopedia of math-

ematical constants. Participants assigned to the stars group were told 

that the dataset was the list of distances from earth to all known visible 

stars expressed in light-years. Last, the tuberculosis group dealt with 

the set of known country-wise incidences of tuberculosis as measured 

in 2012. 

Real samplings of 30 numbers from the corresponding databases 

were also performed. The set of populations of the biggest US cities 

came from an online dataset (http://factfinder2.census.gov/). Numbers 

were randomly selected from the Simon Plouffe database of numeri-

cal values (http://www.plouffe.fr). The distances to the stars were read 

from the HYG2.0 dataset (http://www.astronexus.com/hyg) and 

multiplied by 3.262 to render them in light-years instead of parsecs. 

Lastly, the tuberculosis dataset was downloaded from the World Health 

Organization’s (WHO) website (http://www.who.int/tb/country/data/

download/en/).

Measures
For each set, X of 30 values’ (either fabricated or real samples) observed 

distributions of the fractional parts of f(X), with f(X) = Log(X), f(X) = 

π × X2 and f(X) = √(X), were computed. The two last functions were 

selected on the basis of previous studies indicating that they led to sat-

isfying fits with several numerical datasets (Gauvrit & Delahaye, 2009). 

The deviation from GBL was measured by the Kolmogorov-Smirnov 

statistic D—that is, the maximum difference between the cumulative 

distribution function of Frac(f(X)) and the cumulative distribution 

function of U([0,1[). D thus serves as a proximal measure of conform-

ity to GBL. This statistic is a classical measure of distance between 

distributions that grounds the classical Kolmogorov-Smirnov test.

Results
As expected, fabricated data were usually less consistent with GBL than 

real data (see Figure 1, Table 2). There is only one exception to this 

feature: GBL associated with square function in the case of numbers. 

Depending on the context, different computational variants of GBL 

seemed more appropriate for segregating true values from fabricated 

ones. In the case of the largest US cities, for instance, human and real 

data did not significantly differ in terms of conformity to NBL or GBL 

with the square function, but they differed when calculated with a 

square-root function.

To analyze the specificity and sensitivity of a fraud detection tool 

based on GBL, we drew receiver operating characteristic (ROC) curves 

(see Figure 2) and computed the areas under the curves (AUCs). As 

shown in Table 3, different sets of data resulted in different patterns. 

For the cities condition, classical NBL was barely efficient, whereas 

square root yielded better results. With the Plouffe database, all GBLs 

were relevant, although the one associated with function π × X2 ap-

peared to be the best one.
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Figure 1.

Mean discrepancy ± SEM from GBL as measured by D, for three functions: Log (corresponding to NBL), f(x) = π × x2 (“Square”) 
and Square root. GBL = generalized Benford’s law. °p <.05. *p < .01. **p < .001. ***p < .0001.

Table 2.  
Results of Two-Sample T-Tests (t) Comparing the Conformity 
of Fabricated and Real Data to GBL, With Log, Square and 
Square Root Function

Log Square Square Root

Cities 2.07 ° 1.55 4.01 **

Numbers 4.80 *** – 4.77 *** 3.41 *

Stars 4.20 ** 3.90 ** 1.59 

Tuberculosis 4.02 ** 1.85 2.52

Note. GBL = generalized Benford’s law. °p < .05.  *p < .01. **p < .001. ***p <. 0001.
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Figure 2.

Smoothed receiver operating characteristic (ROC) curves.

Table 3.  
AUCs With 95% Confidence Intervals (DeLong). In Each Row, 
the Largest AUC is Bolded

Log Square Square Root

Cities .55 (.42–.68) .48 (.36–.61) .78 (.68–.88)

Numbers .78 (.69–.88) .81 (.71–.91) .70 (.59–.81)

Stars .81 (.71–.91) .75 (.64–.86) .59 (.46–.73)

Tuberculosis .75 (.65–.85) .58 (.47–.70) .62 (.51–.73)

Note. AUC = Area under the curve.
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Discussion
Overall, NBL appeared to be a better means than the other tested 

variants of GBL for distinguishing between fabricated and real data. 

However, NBL is not always the best measure, as the cities condition 

showed. Even when NBL was an efficient measure, such as in the 

number condition, some other GBL may have been even better or at 

least as good as NBL, for example, GBL associated with square, for 

which the AUC was greater than the NBL AUC. Depending on the 

type of data one tests, different types of GBL could thus be adviced, 

either replacing or complementing classical Benford analysis.

A further argument in favor of the GBL analysis is that, with the 

growing popularity of the Benford analysis, potential swindlers might 

become aware of the necessity of conforming to the NBL. Alternative 

methods complementing the classical analysis (for another such 

method, see Nigrini & Miller, 2009) could thus prove useful, especially 

in view of the fact that it would be particularly difficult to fabricate data 

conforming to a whole set of variants of GBL.

Study 2

One possible reason why Diekmann (2007) found that humans were 

able to produce accurate values (r) is that the notion was familiar to the 

participants (students in the social sciences), a feature that may have 

had an impact on the outcome. If this is true, our positive results in 

Study 1 might have been the result of too low a familiarity with the 

material at hand. In Study 2, we investigated the possible effects of 

familiarity, as well as that of cognitive effort, on the accuracy of the 

Benford analysis.

Participants
A sample of 124 first-year psychology students (103 women) from a 

distant learning program volunteered in the experiment. Ages ranged 

from 22 to 55 years (MAge = 38.27; SD = 9.08). Participants were re-

cruited by e-mail and voluntarily accepted to participate. We chose 

distant learning students as participants because, contrary to ordinary 

students, they have various backgrounds and previous working ex-

periences in a diversity of fields, warranting greater variation in the 

familiarity with the material.

Method
The experiment was performed online using a Google Form (https://

www.google.com/forms/about/). We used country population data, as 

this was believed to grant a somewhat larger variation in familiarity. 

Participants were asked to produce series of only 20 data points to 

lower the risk of tiredness.

Participants were randomly assigned to one of two groups (no 

time pressure or time pressure condition). Each group included 62 

participants. They were informed that they would have to supply a list 

of 20 values that could be the numbers of inhabitants of 20 randomly 

selected countries in the world. They were asked to try to guess what 

these populations could be. They were told that a true sampling would 

be performed for comparison with their answers. In the no time pres-

sure condition, the instruction was to be “as accurate as possible, taking 

as much time as needed.” In the time pressure condition, the instruc-

tion was to be “as fast and accurate as possible.” The former condition 

is known to conduce to superior cognitive effort than the latter (e.g., 

Maule & Edland, 1997). 

Self-reported data on level of expertise in the field of country 

populations were also collected using a 6-point Likert scale, from 0 

= absolutely naïve about country populations to 5 = expert in country 

populations. This measure serves as an indication of the participants’ 

familiarity with the material.

Sixty-two true samples of 20 country populations were se-

lected from real-world data (found at http://data.okfn.org/data/core/

population#data) to be compared with participants’ productions.

Measures
For each set X of 20 values (either fabricated or real samples), observed 

distributions of Frac(Log(X)) were computed. The discrepancy from 

uniformity was assessed in each case using the Kolmogorov-Smirnov 

statistic D.

Results
Reported expertise was rather low (M = 1.3; SD = .97; range of 0–4). 

To assess the effect of expertise, we performed an analysis of variance 

(ANOVA), with the dependent variable D and the independent vari-

able Level of Expertise (6). No significant effect was found, F(4, 119) = 

0.64, p = .63. The same procedure yielded nonsignificant statistics for 

GBL associated with the square-root function, F(4, 119) = 1.29, p = .28, 

and with GBL associated with function π × X2, F(4, 119) = 0.20, p = 

.94. Correlation analysis showed nonsignificant links between level of 

expertise and D, for classical NBL, r(122) = –.11, p = .20 , GBL associ-

ated with a square-root function, r(122) = –.14, p = .10, and also with 

function πX2, r(122) = –.06, p = .53.

To assess the effect of cognitive effort, we performed an ANOVA 

with a dependent variable D and an independent variable Group (2). 

There was a significant influence, F(2, 183) = 7.33, p < .001, but a Tukey 

HSD test showed that the two groups did not differ significantly from 

one another (p = .46), although they both differed from real data val-

ues.The same procedure was used to assess the effect of cognitive effort 

related to other variants of GBL. No effect was found for GBL associ-

ated with the square-root function, F(2, 183) = 1.53, p = .22, or with 

function πX2, F(2, 183) = 0.01, p = .99.

Discussion
Familiarity does not appear to influence the quality of participants’ 

responses in terms of GBL. The experimental procedure used to as-

sess the possible effect of time pressure or cognitive effort yielded no 

significant results either. These results thus suggested that producing 

fraudulent data that would remain undetected under the Benford 

analysis is not necessarily a matter of familiarity or cognitive effort.

It is, however, fair to note two limitations. First, time pressure, 

although widely used to increase cognitive effort, probably does not 

result in large differences, especially if a task requires little effort in gen-

eral. Concerning familiarity with the material, no participants declared 
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10.1016/j.ecoenv.2013.09.002 

Diekmann, A. (2007). Not the first digit! Using Benford’s law to 

detect fraudulent scientific data. Journal of Applied Statistics, 
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Diekmann, A., & Jann, B. (2010). Benford’s law and fraud detec-
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themselves experts (score of 5 on the scale) about country populations, 

most of the sample lying in the range of 0–3, so that we would not have 

detected a specific effect only appearing with true experts.

Concluding Discussion

We performed the first investigation of the generalized Benford analy-

sis, an equivalent of the classical Benford analysis, but based on the 

broader GBL. Results from Study 1 rendered mild support for the 

generalized Benford analysis, including the classical Benford analysis. 

They also draw attention to the fact that different types of data yielded 

different outcomes, suggesting that the best way of detecting fraud us-

ing GBL associated with some function f would be obtained either by 

finding the function f that best matches the particular data at hand or by 

combining different analyses. Although the classical Benford analysis 

was validated in our studies, it occasionally failed at detecting human-

produced data as efficiently as other generalized Benford analysis.

The present positive results could have been the result of our sam-

ple characteristic, in which participants, contrary to real swindlers, 

might have put little effort into the task since the stakes were low. Plus, 

the participants were not highly familiar with the material at hand. To 

rule out the possibility that our results resulted from such features and 

GBL would be inapplicable in real situations, Study 2 aimed at dem-

onstrating that cognitive effort and familiarity with the material have 

little effect on the participants’ responses. The data supported this view, 

although further studies (including higher levels of cognitive pressure 

and true experts) would be recommended.

With Benford analysis having become more common in fraud 

detection, new complementary analyses are needed (Nigrini & Miller, 

2009). The GBL analysis potentially provides a whole set of such fraud 

detection methods, which means making it more difficult, even for 

informed swindlers intentionally conforming to NBL, to remain un-

detected.
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Footnotes
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