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ABSTRACT  
The issue of demand calibration and estimation under uncertainty is known to be an exceptionally 
difficult problem in water distribution system modelling. In the context of real-time event modelling, 
the stochastic behaviour of the water demands and non-geographical distribution of the demand 
patterns makes it even more complicated. 
This paper considers a predictor – corrector approach, implemented by a particle filter model, for 
solving the problem of demand multiplier factor estimation. A demand forecasting model is used to 
predict the water demand multiplier factors. The EPANET hydraulic solver is applied to simulate 
the hydraulic behaviour of a water network. Real time observations are integrated via a formulation 
of the particle filter model to correct the demand predictions. 
A water distribution network of realistic size with two configurations of demand patterns 
(geographically distributed demand patterns and non-geographically distributed demand patterns) 
are used to evaluate the particle filter model. Results show that the model is able to provide good 
estimation of the demand multiplier factors in a near real-time context if the measurement errors 
are small. Large measurement errors may result in inaccurate estimates of the demand values. 
 
Keywords: Particle filtering, real time demand estimation, water distribution systems, calibration.  

1 INTRODUCTION 

Water distribution systems (WDSs) are constructed to supply water for domestic, industrial and 
commercial consumers. The design, operation and management of these distribution systems is 
usually supported by the application of hydraulic models, which are built to replicate the behavior 
of real systems. Conventional demand driven models simulate flows and pressures of a WDS 
requiring assumptions of known demands. Sensor technology that has recently been applied in 
WDSs can assist in providing localised flow rates and pressures, which also enables new 
approaches to estimate the water consumptions within the networks in real-time or near real-time, 
for example [1], [2] and [3]. These water demand estimates can be used for developing a better 
understanding of the full range of operational states (e.g. [4]) as well as detecting abnormal events 
(e.g. [5]).  

Water demand estimation is the process of fitting the outputs from a computer model (i.e. the 
pressures and flow rates at particular locations in the network) with the field measurements. Given a 
large number of water consumers (a.k.a. nodal demands) and a limited number of measurements in 
a real network, it would be infeasible for any model to estimate all of the unknown nodal demands. 
Instead, the demand patterns, which represent groups of similar water consumers, are usually 
considered to be estimated. Different criteria can be used to categorize the water consumers into 
groups. For better management of leakage, demands are grouped into pressure zones or into district 
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metered areas (DMAs), which usually results in geographically distributed demand patterns. In 
order to capture the changing habits of different water users, demands are grouped based on types 
of customers, e.g. domestic, residential, restaurants, hospitals, parklands or industrial, etc., which 
result in non-geographically distributed demand patterns. These categorization techniques may 
introduce errors to the demand estimation results. Other sources of uncertainties such as 
measurement inaccuracy, parameter uncertainty or unaccounted hydraulic events (e.g. leakage, 
transient…) also may contribute to the errors of the estimated demand values. These issues need to 
be examined to assess whether or not integrating the sensor data to estimate water demand in near 
real-time can improve the accuracy of the hydraulic models. 

The research work presented here evaluates the outputs from the estimation model developed by 
[2]. New developments focus on the estimation of the demand multipliers of a geographically 
distributed demand pattern network as well as a non-geographically distributed demand pattern 
network, given different scenarios of measurement errors. 

2 DEMAND ESTIMATION MODEL 

Figure 1 shows the process for the estimation of water demand multipliers (DMFs) proposed by [2]. 
The model applies a predictor – corrector approach, which is implemented by a sequential Monte 
Carlo sampling technique, also known as the particle filter. The DMFs are estimated through three 
main steps: prediction, simulation and correction within a particle filter setting. 

 
Figure 1: Particle filter model for near real-time state estimation in WDS 

2.1 Predictor step 
The model starts with a creation of an ensemble of the particles (Np), at which each particle is 
assigned an initial weight equal to 1/Np. The particles are the demand residuals, which are computed 
from the demand residuals of previous steps [6]:  
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where ��� is the water demand residual at time step k of the j th DMF, i is the lag counter, m is the 

number of autocorrelation lags. φi is the auto-regression coefficient for lag i and υk (0,σh) is white 
noise with mean zero and standard deviation σh.  
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Predictions of the demand multipliers based on these demand residuals, therefore, can be calculated 
via the following equation: 

����� � ������  (2) 

where ��� is the demand multiplier value of  at time k of a typical diurnal demand pattern (or a 
default demand pattern) of the j th DMF. The C value can be identified based on meter information of 
different water users (e.g. in [7]).  

2.2 Simulation 
The EPANET hydraulic solver [8] is used to simulate the hydraulic behaviour of the water 
distribution network at each time step. The inputs are the predicted DMF from the prediction phase 
and real-time hydraulic data from sensor devices (i.e. nodal heads and flow rates), which may also 
include: tank levels and pump and valve statuses. The water network characteristics such as pipe 
lengths, diameters, roughness coefficients, node elevations, pump curves, etc. are assumed to be 
known and constant. The outputs from the EPANET solver is the model equivalent of the field 
observations, i.e. the simulated nodal heads and pipe flow rates at measurement locations. 

2.3 Corrector step 
The weights of the particles are corrected/updated by associating the simulated heads and flows 
with the actual observations via Equation (3) where the conditional probability of the observations 
is assumed to be Gaussian: 
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where �(��
 ) is the simulation model equivalent of the observations zk (nodal heads and flow rates), 
and R is the error covariance of the observations. The importance weight of each particle is then 
computed by:  
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New ensembles of particles for subsequent time steps are created through a resampling process, 
which replaces samples with low importance weights by the samples with high importance weights. 
In this work, the systematic resampling algorithm is applied. The algorithm generates a random 
number us from the uniform density U[0, 1/Np], and consequently creates Np ordered numbers [9]:  
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New particles that satisfy Equation (6) are then selected: 
�>?@
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where F-1 denotes the generalized inverse of the cumulative probability distribution of the 
normalized particle weights. 

By recursively implementing the predictor – corrector approach, the demand multiplier of each 
group of demands can be estimated. Note that at each time step, the estimates of the demand 
multipliers are obtained by taking the mean of the particle filter sample set: 
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where ��
	∗ is the state of the particle updated based on the posterior analysis of the model weights. 

3 CASE STUDY 
The case study used to evaluate the model is shown in Figure 2, which is the modification from an 
example of the EPANET software, namely the Net3 network. The network has 2 reservoirs, 3 tanks, 
92 nodes, 117 pipes and 2 pumps. The demands in the network are classified into four different 
demand patterns. Two configurations of the demand patterns are considered in this study. In Figure 
2.a, the demands are divided based on the topographic information, which results in a 
geographically distributed demand network. In Figure 2.b, the demands are categorized, as an 
example, based on the magnitudes of the base demands: DMF1 for nodes with base demands less 
than 10 L/s, DMF2 for nodes with base demands from 10 L/s to 20 L/s, DMF3 for nodes with base 
demands from 20 L/s to 30 L/s and DMF4 for nodes with base demands larger than 30 L/s. In this 
case, the network has non-geographically distributed demand patterns. 

It is assumed that there are 12 pressure measurement sites randomly located within the network. 
The inputs for the near real-time demand estimation model are, therefore, the pressures at these 
locations, the tank levels of the three tanks and the pump statuses at each hour time step. 

 
Figure 2. Case study network - (a) Geographically distributed demand patterns, (b) Non- 

geographically distributed demand patterns 

It is also assumed that the default patterns, which are calibrated based on historical water used data, 
of four demand groups are known. In order to evaluate the estimation results of the PF model, 
measurement data sets are synthetically generated for a period of 48 hours as follows: (1) a random 
deviation N(0, 0.15) sampled from a normal distribution is added to each default demand pattern to 
create an “actual” demand pattern; (2) EPANET is run to generate two sets of nodal pressures at 
measured locations, corresponding with two configurations of the demand patterns; (3) a random 
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error is added to each nodal pressure. Three scenarios of random errors are considered: ∆meas = 0 
(perfect measurement), ∆meas = ±0.5 m and ∆meas = ±1.0 m. 

Table 1 shows the parameters applied in the PF model. The estimation results for the geographically 
distributed demand pattern network as well as the non-geographically distributed demand pattern 
network associated with different level of measurement errors are summarised in the following 
sections. 

Table 1. Particle filter model parameters 

PF model parameters Values 

Auto regression coefficient  0.7 

Variance of noise 0.16 

Number of particles 100,000 

3.1 Perfect measurements 
The left hand side plots of Figure 3 give the default DMFs, the actual DMFs and the estimated 
DMFs for the geographically distributed and non-geographically distributed patterns over 48 hours. 
The right hand side plots of Figure 3 display the scattergrams of the default DMFs as well as the 
estimated DMFs versus their actual values. 

 
Figure 3. Outputs from the PF model when the measurements are considered error free 
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Without considering measurement errors, the PF model provides good estimates of the DMFs for 
these networks. By assimilating real-time pressure information into the estimation process, the 
default demand patterns are adjusted, approaching the actual patterns. This adjustment can be 
observed in Table 2, via the values of the coefficients of determination (R2) and mean absolute error 
(MAE) of each demand pattern. The default DMFs show an average correlation to the actual DMFs 
with (R2) ranging from 0.709 to 0.814, while the estimated DMFs for both geographically 
distributed and non-geographically distributed demand patterns are strongly correlated to the actual 
ones with all R2 values being close to unity. It is also seen that the PF model gives better estimates 
for the network with geographically distributed demand patterns than the network with non-
geographically distributed demand patterns, as the R2 values are closer to unity and the MAE values 
are smaller. 

Table 2. Comparison of the estimation derived from the PF model when the measurements are 
considered error free (R2 – Coefficient of determination, MAE – Mean absolute error) 

DMFs 
Default DMFs Geo. distributed DMFs Non-Geo. distributed DMFs 

R2 MAE R2 MAE R2 MAE 

DMF1 0.709 0.097 0.956 0.041 0.895 0.049 
DMF2 0.703 0.101 0.975 0.023 0.868 0.053 
DMF3 0.840 0.175 0.949 0.102 0.909 0.144 
DMF4 0.814 0.259 0.983 0.081 0.940 0.159 

3.2 Measurement errors 
Two levels of measurement errors including ∆meas = ±0.5 m and ∆meas = ±1.0 m for all measurements 
are considered for the second test of the PF model. The accuracy of the estimates, presented by the 
same assessment criteria (R2 and MAE), as shown in Table 3 and Table 4. 

Table 3. Comparison of the estimation from the PF model when ∆meas = ±0.5 m 

DMFs 
Geographically distributed DMFs Non-Geo. distributed DMFs 

R2 MAE R2 MAE 

DMF1 0.864 0.071 0.812 0.062 
DMF2 0.954 0.032 0.818 0.064 
DMF3 0.934 0.120 0.905 0.141 
DMF4 0.977 0.089 0.946 0.153 

It is observed that with relative small measurement errors (∆meas = ±0.5 m), the model can still 
provide reasonable estimates of the DMFs in both networks. The MEA values are smaller and R2 
values are larger for both networks (compared to the default DMFs in Table 2), which means that 
the PF model has shifted the default DMFs closer to the actual DMFs. Similar to the previous test, 
the estimation results of the PF model for the geographically distributed demand pattern network 
are more accurate than for the non-geographically distributed demand pattern network, especially 
for DMF2 and DMF4.  
The values in Table 4, on the other hand, show that with large measurement errors (∆meas = ±1.0 m) 
the PF model cannot provide good estimates of the DMFs. For the geographically distributed 
demand pattern network, the estimated DMF1 has very weak correlation with the actual DMF1. The 
estimates of DMF2 and DMF3 show an accuracy similar to the default patterns. Better estimation 
results can only be achieved in DMF4, where the demand group is connected to the others by a 
single pipe and the pressure in this region is mainly dependent on the pressure in Tank 2. 
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For the non-geographically distributed demand pattern network, the estimated DMF1, DMF2 and 
DMF3 are even more inaccurate. The estimated DMF4, which is associated with nodes with largest 
base demands in the network, is slightly improved because this demand group dominates the other 
demand groups. Due to large base demands, small changes in this pattern can cause a large change 
in the demand at these nodes, which subsequently results in a large change in the pressure at 
measured locations.  

Table 4. Comparison of the estimation from the PF model when ∆meas = ±1.0 m 

DMFs 
Geographically distributed DMFs Non-Geo. distributed DMFs 

R2 MAE R2 MAE 

DMF1 0.527 0.113 0.458 0.136 
DMF2 0.778 0.092 0.577 0.140 
DMF3 0.847 0.220 0.809 0.202 
DMF4 0.941 0.145 0.869 0.235 

The estimated DMFs derived from the PF model that considers a measurement error of ∆meas = ±1.0 
m for 48 hours are shown in Figure 4. Large errors can be seen at almost all the time steps during 
this extended period. In this case, the default demand patterns would be a better input for a 
hydraulic model and would provide a more accurate representation of the real network behaviour. 

 
Figure 4. Outputs from the PF model when the measurements error ∆meas = ±1.0 m 
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4 CONCLUSIONS 
The work in this paper has evaluated the performance of the PF model proposed by [2] for the near 
real-time estimation of water demand multipliers. Two types of networks have been studied: a 
geographically distributed demand pattern network and a non-geographically distributed demand 
pattern network. Different level of measurement errors have also been examined. Results show that 
the PF model can be used for relatively large networks with multiple demand patterns. Well 
estimated DMFs can be obtained if the measurement errors are relatively small. The model cannot 
provide good estimates if large errors are contained in the measurement data. In addition, the results 
also show that the model performs better with the geographically distributed demand pattern 
network than with the non-geographically distributed demand pattern network for all scenarios.  
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