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ABSTRACT
The issue of demand calibration and estimation undheertainty is known to be an exceptionally
difficult problem in water distribution system mdouhg. In the context of real-time event modelling,
the stochastic behaviour of the water demands amdgeographical distribution of the demand
patterns makes it even more complicated.
This paper considers a predictor — corrector appoaimplemented by a particle filter model, for
solving the problem of demand multiplier factonmasttion. A demand forecasting model is used to
predict the water demand multiplier factors. TheARET hydraulic solver is applied to simulate
the hydraulic behaviour of a water network. Readdiobservations are integrated via a formulation
of the particle filter model to correct the demaprddictions.
A water distribution network of realistic size witlvo configurations of demand patterns
(geographically distributed demand patterns and-geographically distributed demand patterns)
are used to evaluate the particle filter model. issshow that the model is able to provide good
estimation of the demand multiplier factors in aneesal-time context if the measurement errors
are small. Large measurement errors may resulbactcurate estimates of the demand values.

Keywords:. Particle filtering, real time demand estimatiomter distribution systems, calibration.

1 INTRODUCTION

Water distribution systems (WDSs) are constructedupply water for domestic, industrial and
commercial consumers. The design, operation andagement of these distribution systems is
usually supported by the application of hydrauliod®ls, which are built to replicate the behavior
of real systems. Conventional demand driven modetailate flows and pressures of a WDS
requiring assumptions of known demands. Sensomtdoby that has recently been applied in
WDSs can assist in providing localised flow ratesd gpressures, which also enables new
approaches to estimate the water consumptionsniti@ networks in real-time or near real-time,
for example [1], [2] and [3]. These water demantinegtes can be used for developing a better
understanding of the full range of operationalestge.g. [4]) as well as detecting abnormal events

(e.g. [3]).

Water demand estimation is the process of fitting outputs from a computer model (i.e. the
pressures and flow rates at particular locatiorth@énetwork) with the field measurements. Given a
large number of water consumers (a.k.a. nodal ddsg)and a limited number of measurements in
a real network, it would be infeasible for any miadeestimate all of the unknown nodal demands.
Instead, the demand patterns, which represent grofigsimilar water consumers, are usually
considered to be estimated. Different criteria banused to categorize the water consumers into
groups. For better management of leakage, demaadg@uped into pressure zones or into district
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metered areas (DMAs), which usually results in gaphically distributed demand patterns. In
order to capture the changing habits of differeatew users, demands are grouped based on types
of customers, e.g. domestic, residential, restasydrospitals, parklands or industrial, etc., which
result in non-geographically distributed demandtgras. These categorization techniques may
introduce errors to the demand estimation resulither sources of uncertainties such as
measurement inaccuracy, parameter uncertainty acomunted hydraulic events (e.g. leakage,
transient...) also may contribute to the errors efelstimated demand values. These issues need to
be examined to assess whether or not integrategehsor data to estimate water demand in near
real-time can improve the accuracy of the hydramadels.

The research work presented here evaluates thaitsutom the estimation model developed by
[2]. New developments focus on the estimation & temand multipliers of a geographically
distributed demand pattern network as well as a-gemgraphically distributed demand pattern
network, given different scenarios of measuremenre

2 DEMAND ESTIMATION MODEL

Figure 1 shows the process for the estimation éémademand multipliers (DMFs) proposed by [2].
The model applies a predictor — corrector approadtich is implemented by a sequential Monte
Carlo sampling technique, also known as the parfitter. The DMFs are estimated through three
main steps: prediction, simulation and correctiotiniv a particle filter setting.
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Figure 1: Particle filter model for near real-timstate estimation in WDS
2.1 Predictor step

The model starts with a creation of an ensembléhefparticles Nlp), at which each particle is
assigned an initial weight equal1é\,. The particles are the demand residuals, whiclt@mgputed
from the demand residuals of previous steps [6]:

m
In x,i = Z d)ij In x,’c'_i + In v,{ (2)
i=1
Wherex,{ is the water demand residual at time dteyd thej'" DMF, i is the lag countem is the
number of autocorrelation lagg. is the auto-regression coefficient for lagnd v (0,0n) is white
noise with mean zero and standard deviatinn
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Predictions of the demand multipliers based onetliesnand residuals, therefore, can be calculated
via the following equation:

DMF! = ¢l x] )
where C,{ is the demand multiplier value of at time k ofyaical diurnal demand pattern (or a

default demand pattern) of tfeDMF. TheC value can be identified based on meter information
different water users (e.g. in [7]).

2.2 Simulation

The EPANET hydraulic solver [8] is used to simuldke hydraulic behaviour of the water
distribution network at each time step. The inf@resthe predicted DMF from the prediction phase
and real-time hydraulic data from sensor devices (iodal heads and flow rates), which may also
include: tank levels and pump and valve statushs. Water network characteristics such as pipe
lengths, diameters, roughness coefficients, nodeagbns, pump curves, etc. are assumed to be
known and constant. The outputs from the EPANEVesols the model equivalent of the field
observations, i.e. the simulated nodal heads grelffow rates at measurement locations.

2.3 Corrector step

The weights of the particles are corrected/updatgéssociating the simulated heads and flows
with the actual observations via Equation (3) whéee conditional probability of the observations
is assumed to be Gaussian:

I S G Y R R )
p(zk|xi.) ol ( ) (3)

wherez(x}) is the simulation model equivalent of the obséovatz (nodal heads and flow rates),
and R is the error covariance of the observatidhg. importance weight of each particle is then
computed by:
l
wf = 2. @
223 p(zZklxy)
New ensembles of particles for subsequent timesséep created through a resampling process,
which replaces samples with low importance weidytthe samples with high importance weights.
In this work, the systematic resampling algoritrenapplied. The algorithm generates a random
numberus from the uniform density U[O, ], and consequently creatds ordered numbers [9]:

. l
ut = +u, (i=1,..,Np) (5)
Np
New particles that satisfy Equation (6) are thdacted:

xrilew = x(F_l(ui)) (6)
where F1 denotes the generalized inverse of the cumulagis@bability distribution of the
normalized particle weights.

By recursively implementing the predictor — corcgcapproach, the demand multiplier of each
group of demands can be estimated. Note that 4t #ae step, the estimates of the demand
multipliers are obtained by taking the mean ofggh#icle filter sample set:
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R ~— > xL* (7)

wherex.* is the state of the particle updated based opdBterior analysis of the model weights.

3 CASE STUDY

The case study used to evaluate the model is sirowigure 2, which is the modification from an
example of the EPANET software, namely the Net3voet. The network has 2 reservoirs, 3 tanks,
92 nodes, 117 pipes and 2 pumps. The demands inetfark are classified into four different
demand patterns. Two configurations of the demaaitems are considered in this study. In Figure
2.a, the demands are divided based on the topagrapformation, which results in a
geographically distributed demand network. In Fegg@rb, the demands are categorized, as an
example, based on the magnitudes of the base dem@MF1 for nodes with base demands less
than 10 L/s, DMF2 for nodes with base demands ftGn./s to 20 L/s, DMF3 for nodes with base
demands from 20 L/s to 30 L/s and DMF4 for nodeth Wwase demands larger than 30 L/s. In this
case, the network has non-geographically distribdamand patterns.

It is assumed that there are 12 pressure measureites randomly located within the network.
The inputs for the near real-time demand estimatrmdel are, therefore, the pressures at these
locations, the tank levels of the three tanks &edoump statuses at each hour time step.
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. DMF3 '
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O Measured locations @' \ \ /
*—9

Figure 2. Case study network - (a) Geographicaltributed demand patterns, (b) Non-
geographically distributed demand patterns

It is also assumed that the default patterns, warehcalibrated based on historical water used data
of four demand groups are known. In order to eualube estimation results of the PF model,
measurement data sets are synthetically generatedderiod of 48 hours as follows: (1) a random
deviationN(0, 0.15)sampled from a normal distribution is added to edefault demand pattern to
create an “actual” demand pattern; (2) EPANET i3 t generate two sets of nodal pressures at
measured locations, corresponding with two con&gans of the demand patterns; (3) a random
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error is added to each nodal pressure. Three sosr@rrandom errors are considerdd*?s= 0
(perfect measurement)"®@= £0.5 m and\™**= £1.0 m.

Table 1 shows the parameters applied in the PF inblde estimation results for the geographically
distributed demand pattern network as well as tregeographically distributed demand pattern
network associated with different level of measwpmmerrors are summarised in the following
sections.

Table 1. Particle filter model parameters

PF model parameters Values
Auto regression coefficient 0.7
Variance of noise 0.16
Number of particles 100,000

3.1 Perfect measurements

The left hand side plots of Figure 3 give the def@MFs, the actual DMFs and the estimated
DMFs for the geographically distributed and nongyaphically distributed patterns over 48 hours.
The right hand side plots of Figure 3 display thattergrams of the default DMFs as well as the
estimated DMFs versus their actual values.
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Figure 3. Outputs from the PF model when the mesamsants are considered error free
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Without considering measurement errors, the PF hmodeides good estimates of the DMFs for
these networks. By assimilating real-time presdofermation into the estimation process, the
default demand patterns are adjusted, approachiagattual patterns. This adjustment can be
observed in Table 2, via the values of the coeffits of determination @Rand mean absolute error
(MAE) of each demand pattern. The default DMFs shovaverage correlation to the actual DMFs
with (R? ranging from 0.709 to 0.814, while the estima@MFs for both geographically
distributed and non-geographically distributed dedhpatterns are strongly correlated to the actual
ones with all R values being close to unity. It is also seen thatPF model gives better estimates
for the network with geographically distributed demd patterns than the network with non-
geographically distributed demand patterns, afthealues are closer to unity and the MAE values
are smaller.

Table 2. Comparison of the estimation derived ftbenPF model when the measurements are
considered error free )R- Coefficient of determination, MAE — Mean abseletror)

DMFEs Default DMFs Geo. distributed DMFs Non-Geo. disitdd DMFs
R? MAE R? MAE R? MAE
DMF1 0.709 0.097 0.956 0.041 0.895 0.049
DMF2 0.703 0.101 0.975 0.023 0.868 0.053
DMF3 0.840 0.175 0.949 0.102 0.909 0.144
DMF4 0.814 0.259 0.983 0.081 0.940 0.159

3.2 Measurement errors
Two levels of measurement errors includixitf?>= +0.5 m and\™®**= £1.0 m for all measurements
are considered for the second test of the PF mdtel.accuracy of the estimates, presented by the
same assessment criterig Rd MAE), as shown in Table 3 and Table 4.

Table 3. Comparison of the estimation from the Rielehwhemnd™¢?= +0.5 m

Geographically distributed DMFs Non-Geo. distriltl@MFs
DMFs
R? MAE R? MAE
DMF1 0.864 0.071 0.812 0.062
DMF2 0.954 0.032 0.818 0.064
DMF3 0.934 0.120 0.905 0.141
DMF4 0.977 0.089 0.946 0.153

It is observed that with relative small measuremamors @m¢?*= #0.5 m), the model can still
provide reasonable estimates of the DMFs in bottverks. The MEA values are smaller and R
values are larger for both networks (compared ¢éod#fault DMFs in Table 2), which means that
the PF model has shifted the default DMFs closeéh¢oactual DMFs. Similar to the previous test,
the estimation results of the PF model for the gmplgcally distributed demand pattern network
are more accurate than for the non-geographicadlyilobuted demand pattern network, especially
for DMF2 and DMF4.

The values in Table 4, on the other hand, showwfithtlarge measurement errod"f2= 1.0 m)

the PF model cannot provide good estimates of tMF® For the geographically distributed
demand pattern network, the estimated DMF1 haswepgk correlation with the actual DMF1. The
estimates of DMF2 and DMF3 show an accuracy simdahe default patterns. Better estimation
results can only be achieved in DMF4, where the ateingroup is connected to the others by a
single pipe and the pressure in this region is maiependent on the pressure in Tank 2.
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For the non-geographically distributed demand patteetwork, the estimated DMF1, DMF2 and
DMF3 are even more inaccurate. The estimated DMIFGh is associated with nodes with largest
base demands in the network, is slightly improvedalise this demand group dominates the other
demand groups. Due to large base demands, smaljedan this pattern can cause a large change
in the demand at these nodes, which subsequerdijtsein a large change in the pressure at
measured locations.

Table 4. Comparison of the estimation from the Rielehwhend™*®= +1.0 m

Geographically distributed DMFs Non-Geo. distriml@MFs
DMFs
R? MAE R? MAE
DMF1 0.527 0.113 0.458 0.136
DMF2 0.778 0.092 0.577 0.140
DMEF3 0.847 0.220 0.809 0.202
DMF4 0.941 0.145 0.869 0.235

The estimated DMFs derived from the PF model thasiers a measurement erro3f3= +1.0

m for 48 hours are shown in Figure 4. Large errors loa seen at almost all the time steps during
this extended period. In this case, the default atempatterns would be a better input for a
hydraulic model and would provide a more accurapgesentation of the real network behaviour.
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Figure 4. Outputs from the PF model when the measants errod™®= +1.0 m



CCWI 2017 — Computing and Control for the Waterustdy Sheffield % - 7" September 2017

4  CONCLUSIONS

The work in this paper has evaluated the performarfiche PF model proposed by [2] for the near
real-time estimation of water demand multipliersvoTtypes of networks have been studied: a
geographically distributed demand pattern netwart a non-geographically distributed demand
pattern network. Different level of measuremenberhave also been examined. Results show that
the PF model can be used for relatively large netsvavith multiple demand patterns. Well
estimated DMFs can be obtained if the measurememiseare relatively small. The model cannot
provide good estimates if large errors are conthinghe measurement data. In addition, the results
also show that the model performs better with teeggaphically distributed demand pattern
network than with the non-geographically distrilsitiemand pattern network for all scenarios.
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