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Abstract

Expectiles define a least squares analogue of quantiles. They are determined by tail
expectations rather than tail probabilities. For this reason and many other theoretical
and practical merits, expectiles have recently received a lot of attention, especially in
actuarial and financial risk management. Their estimation, however, typically requires
to consider non-explicit asymmetric least squares estimates rather than the traditional
order statistics used for quantile estimation. This makes the study of the tail ex-
pectile process a lot harder than that of the standard tail quantile process. Under
the challenging model of heavy-tailed distributions, we derive joint weighted Gaus-
sian approximations of the tail empirical expectile and quantile processes. We then
use this powerful result to introduce and study new estimators of extreme expectiles
and the standard quantile-based expected shortfall, as well as a novel expectile-based
form of expected shortfall. Our estimators are built on general weighted combinations
of both top order statistics and asymmetric least squares estimates. Some numerical
simulations and applications to actuarial and financial data are provided.

Keywords: Asymmetric least squares; Coherent risk measures; Expected shortfall; Ex-
pectile; Extrapolation; Extremes; Heavy tails; Tail index.

1 Introduction

Least asymmetrically weighted squares estimation, borrowed from the econometrics litera-

ture, is one of the basic tools in statistical applications. This method often involves Newey

and Powell’s [33] concept of expectiles, a least squares analogue of traditional quantiles.

Given an order τ P p0, 1q, Koenker and Bassett [28] elaborated an absolute error loss mini-

mization to define the τth quantile of the distribution of a random variable Y as the minimizer

qτ P arg min
θPR

E tρτ pY ´ θq ´ ρτ pY qu ,

with equality if the distribution function of Y is increasing, where ρτ pyq “ |τ ´ 1Ipy ď 0q| |y|

and 1Ip¨q is the indicator function. This successfully extends the conventional definition

of quantiles as left continuous inverse functions. Newey and Powell [33] substituted the

absolute deviations in the asymmetric loss function ρτ by squared deviations to obtain the

τth expectile of a random variable Y with finite first moment as

ξτ “ arg min
θPR

E tητ pY ´ θq ´ ητ pY qu , (1)
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with ητ pyq “ |τ ´ 1Ipy ď 0q| y2. Both quantiles and expectiles are M-quantiles as the mini-

mizers of asymmetric convex loss functions (Breckling and Chambers [8]), but expectiles are

determined by tail expectations rather than tail probabilities.

Accordingly, expectiles have been receiving a lot of attention in statistical finance and

actuarial science since the pioneering paper of Kuan et al. [30]. They are excellent alterna-

tives to quantiles in different aspects relevant to this kind of applications. First, expectiles

depend on both the tail realizations and their probability, while quantiles only depend on the

frequency of tail realizations and not on their values (Kuan et al. [30]). Expectiles, contrary

to quantiles, thus allow to measure extreme risk based on the frequency of tail losses and

their values. Second, more generally, altering the shape of the upper or lower tail of Y does

not change the quantiles of the other tail, but it does impact all the expectiles (Taylor [39]).

This high sensitivity of expectiles to tail behavior allows for more prudent and reactive risk

management. Third, expectiles make more efficient use of the available data since they rely

on the distance to observations, whereas quantiles only use the information on whether an

observation is below or above the predictor (Sobotka and Kneib [38]). Fourth, inference on

expectiles is much easier than inference on quantiles (Abdous and Remillard [1]). Using ex-

pectiles has the appeal of avoiding distributional assumptions (Taylor [39]) without recourse

to regularity assumptions as can be seen by comparing, e.g., Holzmann and Klar [26] with

Zwingmann and Holzmann [45]. Most importantly, expectiles are the only M-quantiles that

define a coherent risk measure in the sense of Artzner et al. [4] (see Bellini et al. [6]), and the

only coherent risk measure that is elicitable (Ziegel [44]). Many other theoretical and numer-

ical results motivate the adoption of expectiles in actuarial and financial risk management,

including those of Ehm et al. [19] and Bellini and Di Bernardino [7].

Yet, tail expectile theory is, in comparison to tail quantile theory, relatively unexplored

and still in full development. At the population level, only Bellini et al. [6], Mao et al. [31],

Mao and Yang [32] and Bellini and Di Bernardino [7] have initiated the study of the con-

nection between ξτ and qτ , as τ Ñ 1, when Y belongs to the domain of attraction of a

Generalized Extreme Value distribution. Also, for heavy-tailed distributions, Daouia et

al. [12] have obtained an asymptotic expansion of ξτ{qτ with a precise quantification of the

bias term. At the sample level, attention has been mainly restricted to ordinary expectiles

of fixed asymmetry level τ staying away from the distribution tails; see, e.g., Holzmann and

Klar [26] and Krätschmer and Zähle [29] for recent advanced theoretical developments. The

extreme value analysis of asymmetric least squares estimators is a lot harder than for order

statistics, mainly due to the absence of a closed form expression for expectiles. In an earlier

paper, we partially solved this difficulty by proving the pointwise asymptotic normality of

sample expectiles for ‘intermediate’ levels τ “ τn Ñ 1 such that np1 ´ τnq Ñ 8 as the

sample size n Ñ 8; see Theorem 2 of Daouia et al. [12]. Such a result does not, however,
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allow for simultaneous consideration of several intermediate sample expectiles. By contrast,

Gaussian approximations of the tail empirical quantile process have been known for at least

two decades; see among others, Drees [16] and Theorem 2.4.8 in de Haan and Ferreira [13].

These powerful asymptotic results, and their later generalizations, have been successfully

used in the analysis of a number of complex statistical functionals, such as test statistics

aimed at checking extreme value conditions (Dietrich et al. [15], Drees et al. [17], Hüsler and

Li [27]), bias-corrected extreme value index estimators (de Haan et al. [14]) and estimators

of extreme Wang distortion risk measures (El Methni and Stupfler [21, 22]).

The present paper fills this important gap in the current understanding of sample inter-

mediate expectiles, under Pareto-type models that accurately describe the tail structure of

most actuarial and financial data [see, e.g., Embrechts et al. ([23], p.9) and Resnick ([34],

p.1)]. In Section 2, we show that the aforementioned convergence result on single interme-

diate sample expectiles can vastly be generalized to the tail empirical expectile process. We

first prove in Theorem 1 that the tail expectile process can be approximated by a sequence

of Gaussian processes with drift and we derive its joint asymptotic behavior with the tail

quantile process. Then, we analyze in Theorem 2 the difference between the tail empirical

expectile process and its population counterpart. These two results constitute the major

contribution of the paper; they open the door to the theoretical analysis of a wide range

of functionals of the tail expectile process. Even more strongly, our joint weighted approx-

imations of the tail empirical expectile and quantile processes make it possible to consider

complex functionals of both processes.

We shall discuss below a number of applications of our main results. Section 3 applies the

analysis of the tail expectile process in Theorem 1 to extreme expectile estimation. We first

construct a general class of weighted estimators for intermediate expectiles ξτn , by combining

nonparametric asymmetric least squares estimates with semiparametric quantile-based esti-

mates. The latter involve the traditional Hill estimator of the tail index (Hill [25]). Thanks

to the joint convergence result on the tail expectile and quantile processes, in Theorem 1, we

derive the joint asymptotic normality of both empirical intermediate expectile and quantile

estimators with Hill’s tail index estimator in Theorem 3. Built on this theorem, we obtain

the asymptotic normality of the generalized weighted ξτn estimators in Theorem 4. Based

on the ideas of Daouia et al. [12], our weighted intermediate expectile estimators are then

extrapolated to the very extreme expectile levels that may approach one at an arbitrarily fast

rate. The asymptotic properties of the extrapolated estimators are established in Theorem 5.

Theorem 2 is particularly important in tail risk estimation using Expected Shortfall

(ES) measures. In Section 4, we show first that the expectile-based form XTCEτ of ES

introduced by Taylor [39] is not a coherent risk measure. Instead, we define a coherent

alternative form that we call XESτ . It is simply an average of tail expectiles, which is in
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addition asymptotically equivalent to the XTCEτ . Asymptotic connections of XESτ to other

tail quantities, such as high quantiles qτ and expectiles ξτ , are also provided in Proposition 3

before moving on to the extreme value estimation problem. XESτ being an average of tail

expectiles, it is readily estimated at an intermediate level τ “ τn by an average of the

empirical tail expectile process, whose discrepancy with the true XESτn can be unraveled

thanks to Theorem 2. This intermediate estimator, like our generalized expectile estimators,

can then be extrapolated to the very far tails of the distribution of Y where few or no data

lie. Financial institutions and insurance companies are typically interested in the extreme

region τ “ τ 1n Ò 1 such that np1 ´ τ 1nq Ñ c ă 8, as n Ñ 8 (see, for example, Cai et al. [9]

and Daouia et al. [12]). In Theorems 7 and 8 we provide the asymptotic properties of the

resulting extrapolated estimator, along with those of alternative plug-in estimators built on

the asymptotic properties of XESτ in Proposition 3. We conclude this section by using XES

estimators as the basis for estimating the more traditional quantile-based ES (QES) itself.

We derive three composite expectile-based estimators for QES, at extreme levels τ 1n, whose

asymptotic properties are established in Theorem 9.

Section 5 contains a simulation study of the estimators introduced hereafter. Applications

to medical insurance data and financial returns data are presented in Section 6. Section 7

concludes. The Supplementary Material document contains all proofs and auxiliary results

along with further simulation results.

2 Tail empirical expectile process

Suppose we observe independent copies tY1, . . . , Ynu of a random variable Y and denote by

Y1,n ď Y2,n ď ¨ ¨ ¨ ď Yn,n their nth order statistics. A high expectile ξτn of order τn Ñ 1, as

nÑ 8, can be estimated by its empirical counterpart

rξτn “ arg min
uPR

1

n

n
ÿ

i“1

rητnpYi ´ uq ´ ητnpYiqs “ arg min
uPR

n
ÿ

i“1

ητnpYi ´ uq. (2)

Here the expectile level τn approaches one at an ‘intermediate’ rate in the sense that np1´

τnq Ñ 8 as n Ñ 8. By analogy to the well-known tail empirical quantile process (see

Definition 2.4.3 in de Haan and Ferreira [13])

p0, 1s Ñ R, s ÞÑ pq1´ks{n :“ Yn´tksu,n,

where t¨u stands for the floor function and k “ kpnq Ñ 8 is a sequence of integers with

k{nÑ 0, we define the tail empirical expectile process to be the stochastic process

p0, 1s Ñ R, s ÞÑ rξ1´p1´τnqs.
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Note that the tail quantile process is nothing but tpq1´p1´τnqsu0ăsď1 with τn “ 1 ´ k{n.

Our main objective in this section is to provide general asymptotic approximations of the

tail expectile process by Gaussian processes, under the model assumption of heavy-tailed

distributions. To this end, some preparatory remarks and work are necessary.

2.1 Statistical model and preliminary results

We focus on the maximum domain of attraction of Pareto-type distributions with tail index

0 ă γ ă 1. The survival function of these heavy-tailed distributions can be expressed as

F pyq :“ 1´ F pyq “ y´1{γLpyq, (3)

for y ą 0 large enough, where L is a slowly varying function at infinity, i.e., a positive function

on the positive half-line satisfying Lptyq{Lptq Ñ 1 as t Ñ 8 for any y ą 0. Equivalently,

by Corollary 1.2.10 in de Haan and Ferreira [13], the tail quantile function of Y , defined as

Uptq :“ q1´t´1 ” infty P R | 1{F pyq ě tu, satisfies

lim
tÑ8

Uptxq

Uptq
“ xγ for all x ą 0. (4)

The index γ tunes the tail heaviness of F : the larger the index, the heavier the right tail. Let

Y´ “ minpY, 0q denote the negative part of Y . Then, together with condition E|Y´| ă 8,

the assumption γ ă 1 ensures that the first moment of Y exists, and hence expectiles of Y

are well-defined. It has also been found under (3) or equivalently (4) that

ξτ
qτ
„ pγ´1 ´ 1q´γ as τ Ñ 1 (5)

(Bellini and Di Bernardino [7]). An asymptotic expansion of ξτ{qτ with a precise quantifi-

cation of the bias term is obtained in Corollary 1 of Daouia et al. [12] under the following

standard second-order extreme value condition:

C2pγ, ρ,Aq For all x ą 0,

lim
tÑ8

1

Aptq

„

Uptxq

Uptq
´ xγ



“ xγ
xρ ´ 1

ρ

where ρ ď 0 is a constant parameter and A is a function converging to 0 at infinity and

having ultimately constant sign. Hereafter, pxρ ´ 1q{ρ is to be read as log x when ρ “ 0.

The meaning and the rationale behind this second-order extension of the regular varia-

tion condition (4) are extensively discussed in Beirlant et al. [5] and de Haan and Fer-

reira [13], along with abundant examples of commonly used continuous distributions satis-

fying C2pγ, ρ, Aq. The asymptotic expansion in Daouia et al. [12] can actually be further

strengthened to match our purposes, as follows.
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Proposition 1. Assume that E|Y´| ă 8 and condition C2pγ, ρ, Aq holds, with 0 ă γ ă 1.

(i) We have, as τ Ñ 1,

ξτ
qτ

“ pγ´1 ´ 1q´γ
ˆ

1`
γpγ´1 ´ 1qγ

qτ
pEpY q ` op1qq

`

ˆ

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
`
pγ´1 ´ 1q´ρ ´ 1

ρ
` op1q

˙

App1´ τq´1q

˙

.

(ii) Let τn Ñ 1 be such that np1´ τnq Ñ 8, and pick s P p0, 1s. Then

ξ1´p1´τnqs
ξτn

“ s´γ
ˆ

1` psγ ´ 1q
γpγ´1 ´ 1qγ

qτn
pEpY q ` op1qq

`
p1´ γqpγ´1 ´ 1q´ρ

1´ γ ´ ρ
ˆ
s´ρ ´ 1

ρ
App1´ τnq

´1
qp1` op1qq

˙

.

Part (i) of this proposition relaxes the conditions in Corollary 1 of Daouia et al. [12]

by removing their unnecessary assumption of strict monotonicity of F . Part (ii) gives the

asymptotic expansion of intermediate expectiles akin to condition C2pγ, ρ, Aq for intermediate

quantiles, which also reads as

q1´p1´τnqs
qτn

“ s´γ
ˆ

1`
s´ρ ´ 1

ρ
App1´ τnq

´1
qp1` op1qq

˙

.

2.2 Main results

It is well-known that, under condition C2pγ, ρ, Aq, the tail quantile process can be approx-

imated by a sequence of scaled Brownian motions with drift. Namely, one can construct a

sequence Wn of standard Brownian motions and a suitable measurable function A0 such that

sγ`1{2`ε
ˇ

ˇ

ˇ

ˇ

?
k

ˆ

pq1´ks{n
q1´k{n

´ s´γ
˙

´ γs´γ´1Wnpsq ´
?
kA0pn{kqs

´γ s
´ρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

converges in probability to 0 uniformly in s P p0, 1s for any sufficiently small ε ą 0 (see

Theorem 2.4.8 in de Haan and Ferreira [13]). In addition to satisfying k Ñ 8 and k{nÑ 0,

the sequence of integers k “ kpnq should also satisfy
?
kA0pn{kq “ Op1q. The proof of this

approximation result reveals that it is subject to a potential enlargement of the underlying

probability space and is valid for a suitable version of the tail quantile process, equal to

the original one in distribution. This result being a convergence in probability, we will not

explicitly make this distinction in the sequel; full details can be found in the Supplementary

Material document. Besides, the function A0 is actually asymptotically equivalent to A. We
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may therefore write:

pq1´p1´τnqs
qτn

“ s´γ

˜

1`
1

a

np1´ τnq
γs´1Wnpsq `

s´ρ ´ 1

ρ
App1´ τnq

´1
q

` oP

˜

s´1{2´ε
a

np1´ τnq

¸¸

uniformly in s P p0, 1s, (6)

where we set k “ np1 ´ τnq, with τn Ñ 1 and np1 ´ τnq Ñ 8. As regards the tail expectile

process, it is known from Theorem 2 of Daouia et al. [12] that rξτn is, under certain conditions,

an asymptotically normal estimator of ξτn . Similarly to the uniform approximation (6) of

the tail quantile process, this result can be vastly generalized to a uniform approximation of

the tail expectile process s ÞÑ rξ1´p1´τnqs. This is the first main result of the paper.

Theorem 1. Suppose that E|Y´|2 ă 8. Assume further that condition C2pγ, ρ, Aq holds, with

0 ă γ ă 1{2. Let τn Ñ 1 be such that np1´ τnq Ñ 8 and
a

np1´ τnqApp1´ τnq
´1q “ Op1q.

Then there exists a sequence Wn of standard Brownian motions such that, for any ε ą 0

sufficiently small,

pq1´p1´τnqs
qτn

“ s´γ

˜

1`
1

a

np1´ τnq
γ
a

γ´1 ´ 1 s´1Wn

ˆ

s

γ´1 ´ 1

˙

`
s´ρ ´ 1

ρ
App1´ τnq

´1
q ` oP

˜

s´1{2´ε
a

np1´ τnq

¸¸

and
rξ1´p1´τnqs

ξτn
“ s´γ

ˆ

1` psγ ´ 1q
γpγ´1 ´ 1qγ

qτn
pEpY q ` oPp1qq

`
1

a

np1´ τnq
γ2
a

γ´1 ´ 1 sγ´1
ż s

0

Wnptq t
´γ´1 dt

`
p1´ γqpγ´1 ´ 1q´ρ

1´ γ ´ ρ
ˆ
s´ρ ´ 1

ρ
App1´ τnq

´1
q

` oP

˜

s´1{2´ε
a

np1´ τnq

¸¸

uniformly in s P p0, 1s.

In the particular case s “ 1, Theorem 1 entails

a

np1´ τnq

˜

rξτn
ξτn

´ 1

¸

d
ÝÑ γ2

a

γ´1 ´ 1

ż 1

0

W ptq t´γ´1 dt

where W denotes a standard Brownian motion. The right-hand side is a centered Gaussian

random variable, whose variance is

γ3p1´ γq

ż 1

0

ż 1

0

minps, tqpstq´γ´1 ds dt “
2γ3

1´ 2γ
.
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We do therefore recover Theorem 2 of Daouia et al. [12], subject to the additional condition
a

np1´ τnqApp1 ´ τnq
´1q “ Op1q, but under the reduced moment condition E|Y´|2 ă 8.

Note that the bias condition
a

np1´ τnqApp1 ´ τnq
´1q “ Op1q is also required in order to

establish the desired approximation (6) for the tail quantile process.

Theorem 1, however, does not compare directly the tail expectile process with its popu-

lation counterpart s ÞÑ ξ1´p1´τnqs. Our second main result analyzes the discrepancy between

these two quantities. Such a comparison is particularly relevant when developing the asymp-

totic theory for integrals of the tail expectile process, as discussed below in Section 4. This

result cannot be obtained as a direct corollary of Theorem 1, because Proposition 1(ii) is

not a uniform result.

Theorem 2. If the conditions of Theorem 1 hold with ρ ă 0, then there exists a sequence

Wn of standard Brownian motions such that, for any ε ą 0 sufficiently small,

rξ1´p1´τnqs
ξ1´p1´τnqs

“ 1`
1

a

np1´ τnq
γ2
a

γ´1 ´ 1 sγ´1
ż s

0

Wnptq t
´γ´1 dt

` oP

˜

s´1{2´ε
a

np1´ τnq

¸

uniformly in s P p0, 1s.

Note that the Gaussian term appearing in Theorem 2 is exactly the same as in the

approximation of the tail expectile process in Theorem 1. Both theorems open the door to

the analysis of the asymptotic properties of a vast array of functionals of the tail expectile

and quantile processes. We discuss in the next sections particular examples where these

results can be used to construct general weighted estimators of extreme expectiles and of an

expectile-based analogue for the Expected Shortfall risk measure. Theorems 1 and 2 will be

the key tools when it comes to unravel the asymptotic behavior of these estimators.

3 Extreme expectile estimation

In this section, we first return to intermediate expectile estimation by combining nonpara-

metric asymmetric least squares estimates with semiparametric quantile-based estimates to

construct a more general class of estimators for high expectiles ξτn such that τn Ñ 1 and

np1 ´ τnq Ñ 8 as n Ñ 8. Then we extrapolate the obtained estimators to the very high

expectile levels that may approach one at an arbitrarily fast rate.

Alternatively to the direct nonparametric estimator rξτn defined in (2), one may use the

asymptotic connection ξτn „ pγ´1 ´ 1q´γqτn between ξτn , γ and the intermediate quantile

qτn , described in (5), to define the following indirect semiparametric estimator of ξτn :

pξτn :“
`

pγ´1τn ´ 1
˘´pγτn

pqτn ,
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where pγτn is a suitable estimator of the tail index γ. We will consider in the sequel the Hill

estimator (Hill [25])

pγτn “
1

tnp1´ τnqu

tnp1´τnqu
ÿ

i“1

log

ˆ

pq1´pi´1q{n
pq1´tnp1´τnqu{n

˙

, (7)

which enjoys a high degree of popularity thanks to its simplicity and advantageous variance

properties. Beirlant et al. [5] and de Haan and Ferreira [13] give an extensive overview of

the asymptotic theory for this popular estimator.

More generally, one may also combine the two estimators pξτn and rξτn to define, for β P R,

the weighted estimator

ξτnpβq :“ β pξτn ` p1´ βq rξτn .

The two special cases β “ 1 and β “ 0 correspond to the unique existing intermediate

expectile estimators in the literature, namely, the estimators pξτn and rξτn first introduced in

Daouia et al. [12]. These were coined, respectively, “indirect estimator” and “direct estima-

tor” to reflect the pure asymmetric least squares nature of the latter and the reliance of the

former on quantiles. The limit distribution of their linear combination ξτnpβq crucially relies

on the asymptotic dependence structure between the tail expectile and quantile processes

established in Theorem 1, since ξτnpβq is built on both of these processes. More specifically,

it relies on the following asymptotic dependence structure between the Hill estimator pγτn

and the intermediate sample quantile pqτn and expectile rξτn .

Theorem 3. Suppose that E|Y´|2 ă 8. Assume further that condition C2pγ, ρ, Aq holds,

with 0 ă γ ă 1{2. Let τn Ñ 1 be such that np1 ´ τnq Ñ 8, and suppose that the bias

condition
a

np1´ τnqApp1´ τnq
´1q Ñ λ1 P R is satisfied. Then,

a

np1´ τnq

˜

pγτn ´ γ,
pqτn
qτn

´ 1,
rξτn
ξτn

´ 1

¸

d
ÝÑ N pm,Vq

where m is the 1ˆ 3 vector

m :“

ˆ

λ1
1´ ρ

, 0, 0

˙

,

and V is the 3ˆ 3 symmetric matrix with entries

Vp1, 1q “ γ2, Vp1, 2q “ 0, Vp1, 3q “
γ3

p1´ γq2
pγ´1 ´ 1qγ,

Vp2, 2q “ γ2, Vp2, 3q “ γ2
ˆ

pγ´1 ´ 1qγ

1´ γ
´ 1

˙

, Vp3, 3q “
2γ3

1´ 2γ
.

Based on the joint asymptotic normality in Theorem 3, we obtain the following limit

distribution of the weighted estimator ξτnpβq.
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Theorem 4. Suppose that the conditions of Theorem 3 hold with the additional bias condition
a

np1´ τnq{qτn Ñ λ2 P R. Then, for any β P R,

a

np1´ τnq

˜

ξτnpβq

ξτn
´ 1

¸

d
ÝÑ β

`

b` rp1´ γq´1 ´ logpγ´1 ´ 1qsΨ`Θ
˘

` p1´ βqΞ

where the bias component b is b “ λ1b1 ` λ2b2 with

b1 “
p1´ γq´1 ´ logpγ´1 ´ 1q

1´ ρ
´
pγ´1 ´ 1q´ρ

1´ γ ´ ρ
´
pγ´1 ´ 1q´ρ ´ 1

ρ
,

b2 “ ´γpγ
´1
´ 1qγEpY q,

and pΨ,Θ,Ξq is a trivariate Gaussian centered random vector with covariance matrix V as

in Theorem 3.

Remark 1. The same second-order conditions involving the auxiliary function A in The-

orems 3 and 4 are also required to derive the marginal asymptotic normality of the con-

ventional Hill estimator pγτn , with asymptotic bias λ1{p1 ´ ρq and asymptotic variance γ2

[see Theorem 3.2.5 in de Haan and Ferreira ([13], p.74)]. Theorem 4 features, however, a

further bias condition involving the quantile function q; this was to be expected in view of

Proposition 1(ii), of which a consequence is that the remainder term in the approximation

ξ1´p1´τnqs{ξτn « s´γ depends on both A and q.

Remark 2. When β “ 1, we recover the convergence of the ‘indirect’ estimator pξτn obtained

in Corollary 2 of Daouia et al. [12]. When β “ 0, we get the convergence of the ‘direct’

estimator rξτn stated in Theorem 2 of [12].

The use of the weighted estimator ξτnpβq is, by construction, most appropriate when it

comes to deal with intermediate expectile levels τ “ τn Ñ 1 such that np1´ τnq Ñ 8. In the

very far tails where the expectile level τ “ τ 1n Ñ 1 is such that np1 ´ τ 1nq Ñ c P r0,8q, this

estimator becomes unstable and inconsistent due to data sparsity. To estimate an extreme

expectile ξτ 1n , Daouia et al. [12] propose to extrapolate any consistent intermediate expectile

estimator, say qξτn , to the very high level τ 1n by considering the generic class of estimators

qξ‹τ 1n :“

ˆ

1´ τ 1n
1´ τn

˙´qγn

qξτn , (8)

where qγn is a suitable estimator of γ. Here, we choose to use the general weighted interme-

diate estimator ξτnpβq in conjunction with the Hill estimator pγτn to define the following class

of extreme expectile estimators:

ξ
‹

τ 1n
pβq :“

ˆ

1´ τ 1n
1´ τn

˙´pγτn

ξτnpβq. (9)
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The two special cases β “ 1 and β “ 0 correspond to the unique existing extreme expectile

estimators in the literature, namely, the extrapolated indirect and direct expectile estimators

suggested in Daouia et al. [12]. The next theorem gives the asymptotic behavior of the

generalized extreme expectile estimators ξ
‹

τ 1n
pβq.

Theorem 5. Suppose that the conditions of Theorem 4 hold. Assume also that ρ ă 0 and

np1´ τ 1nq Ñ c ă 8 with
a

np1´ τnq{ logrp1´ τnq{p1´ τ
1
nqs Ñ 8. Then, for any β P R,

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

ξ
‹

τ 1n
pβq

ξτ 1n
´ 1

¸

d
ÝÑ N

ˆ

λ1
1´ ρ

, γ2
˙

.

One can observe that the limiting distribution of ξ
‹

τ 1n
pβq is controlled by the asymptotic

distribution of pγτn . In particular, in the cases β “ 1 and β “ 0, we exactly recover Corollar-

ies 3 and 4 of Daouia et al. [12] on the convergence of the extrapolated indirect and direct

expectile estimators.

4 Estimation of tail Expected Shortfall

4.1 Background

The risk of a financial position Y is usually summarized by a risk measure %pY q, where %

is a mapping from a space of random variables to the real line. Value at Risk (VaR) is

arguably the most common risk measure used in practice. It is given at probability level

τ P p0, 1q by the τ -quantile VaRτ pY q :“ qτ . Hereafter, we adopt the convention that Y is a

real-valued random variable whose values are the negative of financial returns. The right-tail

of the distribution of Y , for levels τ close to one, then corresponds to the negative of extreme

losses.

One of the main criticisms of VaRτ is that it does not account for the size of losses

beyond the level τ , since it only depends on the frequency of tail losses and not on their

values (Dańıelsson et al. [10]). Furthermore, VaRτ fails to be subadditive, since the inequality

VaRτ pY1 ` Y2q ď VaRτ pY1q `VaRτ pY2q does not hold in general (Acerbi [2]). It is therefore

not a coherent risk measure in the sense of Artzner et al. [4], which is problematic in risk

management.

An important alternative to VaRτ is Expected Shortfall at level τ . This risk measure is

defined as (Acerbi [2])

QESτ :“
1

1´ τ

ż 1

τ

qt dt. (10)

When Y is continuous, QESτ is identical to the Conditional Value at Risk (Rockafellar and

Uryasev [36, 37]), known also as Tail Conditional Expectation (TCE), defined as QTCEτ :“

ErY |Y ą qτ s. Both QESτ and QTCEτ can then be interpreted as the average loss incurred
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in the event of a loss higher than VaRτ . We note, however, that QESτ defines a coherent

risk measure but QTCEτ does not in general (see Wirch and Hardy [43] and Acerbi and

Tasche [3]).

4.2 Expectile-based Expected Shortfall

Motivated by the merits and good properties of expectiles, Taylor [39] has introduced an

expectile-based form of Expected Shortfall (ES) as the expectation XTCEτ :“ ErY |Y ą ξτ s

of exceedances beyond the τth expectile ξτ of the distribution of Y . This expectile-based

TCE was actually implemented by Taylor [39] only as an intermediate instrument for the

ultimate interest in estimating the conventional quantile-based form QTCEτ , or equivalently,

the coherent version QESτ under the continuity of Y . Although the interpretability of

XTCEτ is straightforward, its coherence as a proper risk measure has been an open issue

so far. This is now elucidated below in Proposition 2, showing the failure of XTCEτ to

fulfill the coherence property in general. It would then be awkward to use this non-coherent

measure as the basis for estimating the coherent quantile-based version QESτ . Instead, by

analogy to QESτ itself, we propose to use the new expectile-based form of ES

XESτ :“
1

1´ τ

ż 1

τ

ξt dt, (11)

obtained by substituting the expectile ξt in place of the quantile qt in the standard form (10)

of ES. It turns out that, in contrast to XTCEτ , the new risk measure XESτ is coherent in

general.

Proposition 2. For all τ ě 1{2,

(i) XESτ induces a coherent risk measure;

(ii) XTCEτ is neither monotonic nor subadditive in general, and hence does not induce a

coherent risk measure.

The coherence property of XESτ , contrary to that of QESτ , is actually a straightforward

consequence of the coherence of the expectile-based risk measure ξτ , for τ ě 1{2.

Next, we show under the model assumption (3) that XESτ is asymptotically equivalent

to XTCEτ as τ Ñ 1, and hence inherits its direct meaning as a conditional expectation for

all τ large enough.

Proposition 3. Assume that E|Y´| ă 8 and that Y has a Pareto-type distribution (3) with

tail index 0 ă γ ă 1. Then

XESτ
QESτ

„
ξτ
qτ
„

XTCEτ

QTCEτ

and
XESτ
ξτ

„
1

1´ γ
„

XTCEτ

ξτ
as τ Ñ 1.
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Propositions 2 and 3 then afford convincing arguments that the new form XESτ of

expectile-based ES provides a perfectly better alternative to XTCEτ not only as a proper risk

measure, but also as an intermediate tool for estimating the classical quantile-based version

QESτ . Indeed, XESτ is coherent and keeps the intuitive meaning of XTCEτ as a conditional

expectation when τ Ñ 1, since XESτ „ XTCEτ . Most importantly, XESτ may be adopted

as a reasonable alternative to QESτ itself. As is the case in the duality (5) between the

expectile ξτ and the VaR qτ , the choice in practice between the expectile-based form XESτ

and its quantile-based analogue QESτ will then depend on the value at hand of γ ž 1
2
. More

precisely, the quantity XESτ is more extreme (respectively, less extreme) than QESτ , for all

τ large enough, when γ ą 1
2

(respectively, γ ă 1
2
).

The connections in Proposition 3 are very useful when it comes to interpreting and

proposing estimators for XESτ . Also, by considering the second-order regular variation

condition C2pγ, ρ, Aq, one may establish a precise control of the remainder term which arises

in the asymptotic equivalent XESτ{ξτ „ p1´ γq
´1.

Proposition 4. Assume that E|Y´| ă 8. Assume further that condition C2pγ, ρ, Aq holds,

with 0 ă γ ă 1. Then, as τ Ñ 1,

XESτ
ξτ

“
1

1´ γ

ˆ

1´
γ2pγ´1 ´ 1qγ

qτ
pEpY q ` op1qq

`
1´ γ

p1´ γ ´ ρq2
pγ´1 ´ 1q´ρApp1´ τq´1qp1` op1qq

˙

.

This result will prove instrumental when examining asymptotic properties of our tail

expectile-based ES estimators in the next section.

4.3 Estimation and asymptotics

Propositions 1(i) and 4 indicate that the expectile-based ES satisfies a regular variation

property in the same way as quantiles and expectiles do. To estimate an extreme value

XESτ 1n , where τ 1n Ñ 1 and np1 ´ τ 1nq Ñ c ă 8, we may therefore start by estimating

XESτn , with τn being an intermediate level, before extrapolating this estimator to the far

tail using an estimator of the tail index γ. A natural estimator of XESτn is its direct empirical

counterpart:

ĆXESτn :“
1

1´ τn

ż 1

τn

rξt dt,

obtained simply by replacing ξt in (11) with its sample version rξt described in (2). Since this

estimator is a linear functional of the tail empirical expectile process, Theorem 2 is more

adapted than Theorem 1 for the analysis of its asymptotic distribution.
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Theorem 6. Under the conditions of Theorem 2,

a

np1´ τnq

˜

ĆXESτn
XESτn

´ 1

¸

d
ÝÑ N

ˆ

0,
2γ3p1´ γqp3´ 4γq

p1´ 2γq3

˙

.

On the basis of Proposition 1(ii) and then Proposition 3, we have for τn ă τ 1n Ñ 1 that

XESτ 1n
XESτn

„
ξτ 1n
ξτn

«

ˆ

1´ τ 1n
1´ τn

˙´γ

.

Therefore, to estimate XESτ 1n at an arbitrary extreme level τ 1n, we replace γ by the Hill

estimator pγτn and XESτn at an intermediate level τn by the estimator ĆXESτn to get

ĆXES
‹

τ 1n
:“

ˆ

1´ τ 1n
1´ τn

˙´pγτn
ĆXESτn . (12)

The next result analyzes the convergence of this Weissman-type estimator.

Theorem 7. Assume that the conditions of Theorem 5 hold. Then

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

ĆXES
‹

τ 1n

XESτ 1n
´ 1

¸

d
ÝÑ N

ˆ

λ1
1´ ρ

, γ2
˙

.

One can also design alternative options for estimating XESτ 1n by using the asymptotic

connections in Proposition 3. The asymptotic equivalence XESτ 1n „ p1´γq
´1ξτ 1n , established

therein, suggests that XESτ 1n can be estimated consistently by substituting the tail quantities

γ and ξτ 1n with their consistent estimators pγτn and ξ
‹

τ 1n
pβq described in (7) and (9), respectively.

This yields the extrapolated estimator

XES
‹

τ 1n
pβq :“ r1´ pγτns

´1 ξ
‹

τ 1n
pβq (13)

for the weight β P R. Another option motivated by the second asymptotic equivalence

XESτ 1n „
ξτ 1n
qτ 1n

QESτ 1n , as established in Proposition 3, would be to estimate XESτ 1n by

zXES
‹

τ 1n
pβq :“

zQES
‹

τ 1n

pq‹τ 1n
ξ
‹

τ 1n
pβq (14)

for the estimators pq‹τ 1n of qτ 1n and zQES
‹

τ 1n
of QESτ 1n defined as

pq‹τ 1n :“

ˆ

1´ τ 1n
1´ τn

˙´pγτn

pqτn , (15)

zQES
‹

τ 1n
:“

ˆ

1´ τ 1n
1´ τn

˙´pγτn 1

tnp1´ τnqu

tnp1´τnqu
ÿ

i“1

Yn´i`1,n. (16)

These estimators are, respectively, the popular qτ 1n estimator of Weissman [42] and the ex-

trapolated QESτ 1n estimator of El Methni et al. [20].
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Theorem 8. Assume that the conditions of Theorem 5 hold. Then, for any β P R,

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

XES
‹

τ 1n
pβq

XESτ 1n
´ 1

¸

d
ÝÑ N

ˆ

λ1
1´ ρ

, γ2
˙

and

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

zXES
‹

τ 1n
pβq

XESτ 1n
´ 1

¸

d
ÝÑ N

ˆ

λ1
1´ ρ

, γ2
˙

.

Theorems 7 and 8 are, like Theorem 5, derived by noticing that, on the one hand, the

asymptotic behaviors of ĆXES
‹

τ 1n
, ξ

‹

τ 1n
pβq, zQES

‹

τ 1n
and pq‹τ 1n are controlled by the asymptotic

behavior of tp1´ τ 1nq{p1´ τnqu
´pγτn , which is itself governed by that of pγτn . On the other

hand, the nonrandom remainder term coming from the use of Proposition 3 can be controlled

thanks to Proposition 4.

4.4 Extreme level selection

A major practical question that remains to be addressed is the choice of the extreme level τ 1n

in the tail risk measure XESτ 1n . Since XESτ 1n „ ErY |Y ą ξτ 1ns, this problem translates into

choosing ξτ 1n itself.

When moving from the conventional VaR qpn , for a pre-specified tail probability pn Ñ 1

with np1´pnq Ñ c ă 8, to the expectile ξτ 1n , Bellini and Di Bernardino [7] have suggested to

pick out τ 1n so that ξτ 1n ” qpn . The expectile ξτ 1n then inherits the same intuitive probabilistic

interpretation as the quantile qpn while keeping its coherence. This idea was, however,

implemented for a normally distributed Y . Instead, Daouia et al. [12] have suggested to

estimate nonparametrically the level τ 1n that satisfies ξτ 1n “ qpn , without recourse to any a

priori distributional specification apart from the standard assumption (3) of heavy tails. By

taking the derivative with respect to θ in the L2 criterion (1) and setting it to zero, we get

τ “
E t|Y ´ ξτ |1IpY ď ξτ qu

E |Y ´ ξτ |
for all τ P p0, 1q.

The extreme expectile level τ 1nppnq :“ τ 1n such that ξτ 1n ” qpn then satisfies

1´ τ 1nppnq “
E t|Y ´ qpn | 1I pY ą qpnqu

E |Y ´ qpn |
.

Under the model assumption of Pareto-type tails (3), it turns out that

1´ τ 1nppnq „ p1´ pnq
γ

1´ γ
as nÑ 8.

The proof of this result can be found in Daouia et al. ([12], Proposition 3). Built on the Hill

estimator pγτn of γ, we can then define a natural estimator of τ 1nppnq as

pτ 1nppnq :“ 1´ p1´ pnq
pγτn

1´ pγτn
. (17)
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By substituting this estimated value in place of τ 1n ” τ 1nppnq in the extrapolated estimators
ĆXES

‹

τ 1n
, XES

‹

τ 1n
pβq and zXES

‹

τ 1n
pβq described in (12), (13) and (14), we obtain composite esti-

mators that estimate XESτ 1nppnq „ QESpn , by Proposition 3. It is actually easily seen that the

quantile-based estimator zQES
‹

pn , defined in (16), is identical to the composite expectile-based

estimator zXES
‹

pτ 1nppnq
p1q, obtained for the special weight β “ 1. The convergence results in

Theorems 7 and 8 of the extrapolated estimators ĆXES
‹

τ 1n
, XES

‹

τ 1n
pβq and zXES

‹

τ 1n
pβq still hold

true for their composite versions as estimators of QESpn , with the same technical conditions.

Theorem 9. Suppose the conditions of Theorem 5 hold with pn in place of τ 1n. Then, for

any β P R,

a

np1´ τnq

logrp1´ τnq{p1´ pnqs

˜

ĆXES
‹

pτ 1nppnq

QESpn
´ 1

¸

d
ÝÑ N

ˆ

λ1
1´ ρ

, γ2
˙

,

a

np1´ τnq

logrp1´ τnq{p1´ pnqs

˜

XES
‹

pτ 1nppnq
pβq

QESpn
´ 1

¸

d
ÝÑ N

ˆ

λ1
1´ ρ

, γ2
˙

,

and

a

np1´ τnq

logrp1´ τnq{p1´ pnqs

˜

zXES
‹

pτ 1nppnq
pβq

QESpn
´ 1

¸

d
ÝÑ N

ˆ

λ1
1´ ρ

, γ2
˙

.

5 Numerical simulations

In order to illustrate the behavior of the presented estimation procedures of the two expected

shortfall forms XESτ 1n and QESpn , we consider the Student t-distribution with degree of

freedom 1{γ, the Fréchet distribution F pxq “ e´x
´1{γ

, x ą 0, and the Pareto distribution

F pxq “ 1 ´ x´1{γ, x ą 1. The finite-sample performance of the different estimators is

evaluated through their relative Mean-Squared Error (MSE) and bias, computed over 200

replications. The accuracy of the weighted estimators is investigated for various values of

the weight β P t0, 0.2, 0.4, 0.6, 0.8, 1u. All the experiments have sample size n “ 500 and tail

index γ P t0.05, 0.25, 0.45u. In our simulations we used the extreme levels τ 1n “ pn “ 1 ´ 1
n

and the intermediate level τn “ 1 ´ k
n
, where the integer k can be viewed as the effective

sample size for tail extrapolation.

5.1 Estimates of XESτ 1n

We evaluated the finite-sample performance of ĆXES
‹

τ 1n
described in (12), XES

‹

τ 1n
pβq in (13)

and zXES
‹

τ 1n
pβq in (14), as estimators of XESτ 1n , for the different chosen scenarios and values

of β. We first compared the performance of ĆXES
‹

τ 1n
with XES

‹

τ 1n
pβq, in Figures 1-2, and with

zXES
‹

τ 1n
pβq in Figures 3-4.

Figures 1 and 2 give, respectively, the MSE (on a logarithmic scale) and Bias estimates of

XES
‹

τ 1n
pβq{XESτ 1n , as functions of the sample fraction k (each curve corresponds to a value of
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β as indicated by the colour-scheme). The Monte-Carlo estimates obtained for ĆXES
‹

τ 1n
{XESτ 1n

are superimposed in black curves. In the case of Student distribution (top panels), the latter

estimates perform clearly better in terms of both MSE and Bias, for all values of γ. In

the case of Fréchet distribution (panels in the middle), it may be seen that the orange

curves pβ “ 1q behave quite well in terms of MSE and Bias, for the three values of γ. In

the case of Pareto distribution (bottom panels), it may be seen from left to right that the

green pβ “ 0.4q, blue pβ “ 0.8q and orange pβ “ 1q curves are superior, respectively, for

γ “ 0.05, 0.25, 0.45.

The Monte-Carlo estimates for zXES
‹

τ 1n
pβq{XESτ 1n are compared with those of the bench-

mark ĆXES
‹

τ 1n
{XESτ 1n in Figures 3 and 4. It may be seen that the latter estimates (represented

by the black curves) are still superior in the case of Student distribution (top panels). In the

case of Fréchet distribution (panels in the middle), the orange curves pβ “ 1q seem to behave

quite well similarly to Figures 1-2. In the case of Pareto distribution (bottom panels), it may

be seen respectively from left to right that the green pβ “ 0.4q, blue pβ “ 0.8q and orange

pβ “ 1q curves perform better, similarly to Figures 1-2.

To summarize, when comparing the rival estimators ĆXES
‹

τ 1n
, XES

‹

τ 1n
pβq and zXES

‹

τ 1n
pβq

with each other, our simulations indicate that ĆXES
‹

τ 1n
is clearly the winner in the case of the

real-valued Student distribution, while both XES
‹

τ 1n
pβq and zXES

‹

τ 1n
pβq appear to be the most

efficient in the case of the non-negative Fréchet and Pareto distributions. The best choice

of the weight β in the case of Fréchet distribution is globally β “ 1. By contrast, the best

choice of β in the case of Pareto distribution seems to increase with γ.

5.2 Estimates of QESpn

We have also undertaken simulation experiments to evaluate the finite-sample performance

of the composite versions ĆXES
‹

pτ 1nppnq
, XES

‹

pτ 1nppnq
pβq and zXES

‹

pτ 1nppnq
pβq studied in Theorem 9,

with pτ 1nppnq being described in (17). These composite expectile-based estimators estimate the

same conventional expected shortfall QESpn as the direct quantile-based estimator zQES
‹

pn

defined in (16). To save space, all figures illustrating our simulation results here are deferred

to the Supplementary Material document. In Supplement A, we arrive at the following

tentative conclusions:

• In the case of the (real-valued) Student distribution, the best estimator seems to be
ĆXES

‹

pτ 1nppnq
;

• In the cases of Fréchet and Pareto distributions (both positive), the best estimators

seem to be XES
‹

pτ 1nppnq
pβ “ 1q and/or zXES

‹

pτ 1nppnq
pβ “ 1q ”zQES

‹

pn .
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Figure 1: MSE estimates (in log scale) of ĆXES
‹

τ 1n
{XESτ 1n (black) and XES

‹

τ 1n
pβq{XESτ 1n

(colour-scheme), against k, for Student (top), Fréchet (middle) and Pareto (bottom) dis-
tributions, with γ “ 0.05 (left), γ “ 0.25 (middle) and γ “ 0.45 (right).
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Figure 2: Bias estimates of ĆXES
‹

τ 1n
{XESτ 1n (black) and XES

‹

τ 1n
pβq{XESτ 1n (colour-scheme).
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Figure 3: MSE estimates (in log scale) of ĆXES
‹

τ 1n
{XESτ 1n (black) and zXES

‹

τ 1n
pβq{XESτ 1n

(colour-scheme), against k, for Student (top), Fréchet (middle) and Pareto (bottom) dis-
tributions, with γ “ 0.05 (left), γ “ 0.25 (middle) and γ “ 0.45 (right).
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Figure 4: Bias estimates of ĆXES
‹

τ 1n
{XESτ 1n (black) and zXES

‹

τ 1n
pβq{XESτ 1n (colour-scheme).
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6 Applications

6.1 Application to medical insurance data

The Society of Actuaries (SOA) group Medical Insurance large claims database contains

75,789 claim amounts exceeding 25,000 USD, collected over the year 1991 from 26 insurers.

The full database which records about 3 million claims over the period 1991-92 is available

at http://www.soa.org. The scatterplot and histogram of the 1991 log-claim amounts,

displayed in Figure 5(a), exhibit a considerable right-skewness. Beirlant et al. ([5], p.123)

have argued that the underlying distribution is heavy-tailed with a γ estimate around 0.35. A

traditional instrument to assess the magnitude of future unexpected higher claim amounts is

the expected shortfall QESpn described in (10). Insurance companies typically are interested

in an extremely low exceedance probability of the order of 1{n, say, 1 ´ pn “ 1{100,000 for

the sample size n “ 75,789. This corresponds to rare events that happen on average only

once in 100,000 cases.

In this situation of non-negative data with heavy right tail, our experience with simulated

data indicates that XES
‹

pτ 1nppnq
pβ “ 1q and zXES

‹

pτ 1nppnq
pβ “ 1q ” zQES

‹

pn provide the best

extrapolated pointwise estimates of the extreme value QESpn in terms of MSE and bias. As

such, these are the estimates we adopt here. For the sake of simplicity, they will be denoted

in the sequel by XES
‹

pτ 1nppnq
and zQES

‹

pn , respectively.

The path of the composite expectile-based estimator XES
‹

pτ 1nppnq
against the sample frac-

tion k is shown in Figure 5(b) as rainbow curve, for the selected range of intermediate values

of k “ 10, 11, . . . , 700. The effect of the Hill estimate pγ1´k{n on XES
‹

pτ 1nppnq
is highlighted by a

colour-scheme, ranging from dark red (low pγ1´k{n) to dark violet (high pγ1´k{n). This γ esti-

mate seems to mainly vary within the interval r0.35, 0.36s, which corresponds to the stable

(blue-green) part of the plot over k P r150, 500s. The curve k ÞÑ XES
‹

pτ 1nppnq
exceeds overall

the sample maximum Yn,n “ 4.51 million (indicated by the horizontal pink dashed line).

To select a reasonable pointwise estimate, we applied a simple automatic data-driven device

that consists first in computing the standard deviations of XES
‹

pτ 1nppnq
over a moving window

large enough to cover 20% of the possible values of k in the selected range 10 ď k ď 700.

Then the k where the standard deviation is minimal defines the desired sample fraction. The

resulting estimate XES
‹

pτ 1nppnq
“ 6.42 million is obtained for the value k “ 222 in the window

r119, 259s.

The path of the direct quantile-based estimator zQES
‹

pn against k is graphed in the same

figure as dashed black curve. It is very similar to that of XES
‹

pτ 1nppnq
. The pointwise estimate

zQES
‹

pn “ 6.37 million is indicated by the minimal standard deviation achieved at k “ 222
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over the window r119, 259s. By Theorem 9 we have

?
k

logrk{np1´ pnqs

˜

XES
‹

pτ 1nppnq

QESpn
´ 1

¸

d
ÝÑ N

ˆ

λ1
1´ ρ

, γ2
˙

.

Under the bias condition λ1 “ 0 in Theorem 3, the asymptotic bias reduces to zero. With this

condition, the (symmetric) expectile-based asymptotic confidence interval with confidence

level 100ϑ% has the form CIϑpkq “ XES
‹

pτ 1nppnq
ˆ I, where I stands for the interval

I :“

„

1˘ zp1`ϑq{2 log

ˆ

k

np1´ pnq

˙

b

`

pγ1´k{n
˘2
{k



, (18)

with zp1`ϑq{2 being the p1` ϑq{2´quantile of the standard Gaussian distribution. Likewise,

the confidence interval derived from the asymptotic normality of zQES
‹

pn ”
zXES

‹

pτ 1nppnq
p1q, in

Theorem 9, can be expressed as xCIϑpkq “zQES
‹

pn ˆ I.
The two asymptotic 95% confidence intervals CI0.95pkq and xCI0.95pkq are superimposed

in Figure 5(b) as well, respectively, in dotted blue and solid grey lines. Clearly, they point

towards similar conclusions. In particular, the stable parts of their lower boundaries (around

k P r100, 500s) remain quite conservative as they are very close from the maximum recorded

claim amount.

Finally, we would like to comment on the estimator pτ 1nppnq of the extreme expectile

level τ 1nppnq which ensures that XES
‹

pτ 1nppnq
estimates XESτ 1nppnq „ QESpn . The plot of pτ 1nppnq

versus k is graphed in Figure 5(c) as rainbow curve, and the corresponding optimal pointwise

estimate is indicated by the horizontal dashed black line. This selected optimal level pτ 1nppnq “

0.9999941 is higher than the pre-specified relative frequency pn “ 0.99999 indicated by

the horizontal dashed pink line. This is actually in line with our theoretical findings in

Proposition 3 that lead in conjunction with (5) to

XESpn
QESpn

„
ξpn
qpn

„ pγ´1 ´ 1q´γ as pn Ñ 1.

Since γ ă 1{2, it follows that XESpn is less extreme than QESpn „ XESτ 1nppnq, for all pn large

enough. Therefore pn ă τ 1nppnq by monotonicity of τ ÞÑ XESτ , which follows from the fact

that XESτ “ p1´ τq
´1

ş1

τ
ξt dt, where the expectile function t ÞÑ ξt is continuous and strictly

increasing by Proposition 1 in Holzmann and Klar [26].

6.2 Application to financial data

In this section, we apply our method to estimate the ES for three large US financial insti-

tutions. We consider the same investment banks as in the study of Cai et al. [9], namely

Goldman Sachs, Morgan Stanley and T. Rowe Price. All of these banks had a market cap-

italization greater than US $5 billion at the end of June 2007. The dataset consists of the
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negative log-returns pYiq on their equity prices at a weekly frequency during 10 years from

July 3rd, 2000, to June 30th, 2010. The choice of the frequency of data and time horizon

follows the same set-up as in Cai et al. [9] and Daouia et al. [12]. The use of weekly rather

than daily loss returns reduces substantially the potential serial dependence. This results

in the sample size n “ 522. We use our composite expectile-based method to estimate the

standard quantile-based expected shortfall QESpn , or equivalently the expectile-based ex-

pected shortfall XESτ 1nppnq, with an extreme relative frequency pn “ 1 ´ 1
n

that corresponds

to a once-per-decade rare event.

In this situation of real-valued profit-loss distributions, our experience with simulated

data indicates that the composite estimator ĆXES
‹

pτ 1nppnq
provides the best QESpn estimates in

terms of MSE and bias. In the estimation, we employ the intermediate sequence τn “ 1´k{n

as before, for the selected range of values k “ 1, . . . , 80. The confidence interval with

confidence level 100ϑ% derived from the asymptotic normality of ĆXES
‹

pτ 1nppnq
, in Theorem 9,

has the form ĂCIϑpkq “ ĆXES
‹

pτ 1nppnq
ˆ I, where I is described in (18). For our comparison

purposes, we use as a benchmark the direct quantile-based estimator zQES
‹

pn ”
zXES

‹

pτ 1nppnq
pβ “

1q of El Methni et al. [20], along with the corresponding asymptotic confidence interval
xCIϑpkq.

For each bank, we superimpose in Figure 6 the plots of the two competing estimates
ĆXES

‹

pτ 1nppnq
and zQES

‹

pn against k, as rainbow and dashed black curves respectively, along

with their associated 95% confidence intervals ĂCI0.95pkq in dotted blue lines and xCI0.95pkq

in solid grey lines. The effect of the Hill estimate pγ1´k{n on ĆXES
‹

pτ 1nppnq
is highlighted by a

colour-scheme, ranging from dark red (low pγ1´k{n) to dark violet (high pγ1´k{n).

We have already provided some Monte Carlo evidence that the composite expectile-

based estimator ĆXES
‹

pτ 1nppnq
is efficient relative to the pure quantile-based estimator zQES

‹

pn .

Its superiority in terms of plots’ stability, including confidence intervals, can clearly be

visualized in Figure 6 for the three banks. The final ES levels based on minimizing the

standard deviations of the estimates, computed over a moving window covering 20% of the

possible values of k, are reported in Table 1, along with the asymptotic 95% confidence

intervals of the ES. Based on the reliable ĆXES
‹

pτ 1nppnq
estimates (in the second column), the

ES levels for Goldman Sachs and T. Rowe Price seem to be close (around ´38% to ´44%),

whereas the ES level for Morgan Stanley is almost twice higher (around ´81%). It is worth

noticing that the difference between the ĆXES
‹

pτ 1nppnq
levels for Goldman Sachs and T. Rowe

Price is very close to the difference between their respective maxima Yn,n. The zQES
‹

pn

estimates (in the fourth column) point towards slightly more pessimistic risk measures for

the three banks.

Our two applications with real data seem to indicate that the more accurate composite

expectile-based estimates tend to be less (respectively, more) conservative than the pure
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Bank ĆXES
‹

pτ 1
nppnq

ĂCI0.95 zQES
‹

pn
xCI0.95 Yn,n

Goldman Sachs 0.445 (0.194, 0.620) 0.495 (0.226, 0.680) 0.365
Morgan Stanley 0.817 (0.384, 1.305) 0.883 (0.366, 1.478) 0.904
T. Rowe Price 0.386 (0.213, 0.511) 0.407 (0.216, 0.548) 0.305

Table 1: ES levels of the three investment banks, with the 95% confidence intervals and the
sample maxima. Results based on weekly loss returns, with n “ 522 and pn “ 1´ 1

n
.

quantile-based estimates zQES
‹

pn in the case of real-valued profit-loss (respectively, non-

negative loss) distributions.

7 Concluding remarks

Originally introduced in Newey and Powell [33], expectiles have found recently an increasing

usage in finance and actuarial science as alternative instruments of risk protection to quan-

tiles. Their estimation via the method of asymmetric least squares is still in full development

in the areas of risk management and extreme value statistics. Our general joint theory for tail

empirical expectile and quantile processes opens new horizons for a wide variety of tail risk

estimation problems. This is illustrated through a fruitful estimation of Expected Shortfall

(ES), based on general weighted combinations of both top order statistics and high expec-

tiles. Interestingly, pure asymmetric least squares estimators are particularly advantageous

in the case of real-valued profit-loss distributions.

In our motivating application we focus on both quantile and expectile-based forms of ES,

but our weighted approximation theorems can be applied to other complex risk functionals

of both expectile and quantile processes. This includes the wider class of coherent spectral

risk measures (Acerbi [2]), but also the very recent concept of extremiles (Daouia et al. [11]).

The latter concept defines a new least squares analogue of quantiles, which is motivated via

several angles and includes the family of expected minima and expected maxima. Its char-

acterization as weighted average of all quantiles, as well as its specific merits and strengths,

raise the question of extending this concept by replacing quantiles with expectiles. The class

of Wang [41] distortion risk measures with concave distortion functions is another concrete

example of genuine interest for future research. The formulation and estimation of extreme

versions of these coherent risk measures, tackled for instance in Vandewalle and Beirlant [40]

and El Methni and Stupfler [21, 22], can also be adapted and extended by substituting

expectiles in place of quantiles and applying our general theory.
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Supplementary Material

The supplement to this article contains simulation results along with technical lemmas and

the proofs of all our theoretical results.
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Figure 5: (a) Scatterplot and histogram of the log-claim amounts. (b) The ES plots k ÞÑ

XES
‹

pτ 1nppnq
pβ “ 1q as rainbow curve, and k ÞÑzQES

‹

pn in dashed black, along with the constant

sample maximum Yn,n in horizontal dashed pink. The confidence intervals CI0.95pkq in dotted

blue lines and xCI0.95pkq in solid grey lines. (c) The plot of k ÞÑ pτ 1nppnq as rainbow curve,
along with the selected optimal pointwise estimate in horizontal dashed black line, and the
constant tail probability pn in horizontal dashed pink.
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Figure 6: Results based on weekly loss returns of the three investment banks: (a) Gold-
man Sachs, (b) Morgan Stanley, and (c) T. Rowe Price, with n “ 522 and pn “ 1 ´ 1{n.

The estimates ĆXES
‹

pτ 1nppnq
as rainbow curve and zQES

‹

pn as dashed black curve, along with the

asymptotic 95% confidence intervals ĂCI0.95pkq in dotted blue lines and xCI0.95pkq in solid grey
lines. The sample maximum Yn,n indicated in horizontal dashed pink line.
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