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Abstract

Tackling transient conjugate heat transfer with high-fidelity methods such as large-eddy simulation (LES) requires to
couple the LES solver with a heat transfer solver in the solid parts of the computational domain. Challenges include
performance scalability, numerical stability and accuracy. In such unsteady simulations, both solvers integrate their
respective set of equations in time independently for the sake of computational efficiency, and during a physical time
corresponding to a coupling period to be specified. During the separate temporal integrations, the thermal state at the
wall interface is typically set as a Dirichlet condition in the flow solver while a Neumann condition is imposed in the
heat transfer solver to enhance numerical stability. When carefully validated, the chosen value of the coupling period
which optimal value is initially unknown can be compared a posteriori with a refined solution. However, this optimal
value of the coupling period (neither too large to remain accurate nor too short not to penalize the computational cost)
is case-dependent.

In this study, an approach to automatically adapt the coupling period is presented. It relies on a describing the
temporal evolution of the boundary temperature in hybrid cells composed of the neighboring fluid and solid mesh
cells. Then, between coupling iterations, each solver advances separately with the same Dirichlet boundary condition
on the computed interface temperature. Yielding a first order Ordinary Differential Equation (ODE) for the boundary
temperature, the method allows using automatic adaptation of the step size to control the numerical integration error
based on a prescribed tolerance by using controllers.

The coupling method is studied on 1D unsteady configurations where the results demonstrate that this energy conserv-
ing method is able to determine the coupling period automatically and efficiently for different configurations. The impact
of excitation frequency and prescribed tolerance enables to select a specific PID controller which remains robust in spite
of not carrying out step rejections for the sake of computational performance in the context of an LES application.
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Nomenclature

Roman symbols
a λ/(ρcp), Thermal diffusivity
b

√
λρcp, Thermal effusivity

cp Thermal capacity at constant pressure
f Frequency
F Thickening factor
G af/as, Ratio of thermal diffusivities
H Enthalpy
K bf/bs, Thermal activity ratio
t Time
T Temperature
V Cell volume
x First space coordinate
Yc Progress variable

Greek symbols
∆t Time step size
ε Numerical integration error
η Numerical tolerance
λ Thermal conductivity
φ Face-averaged flux
Φ Face-integrated flux
ρ Density
ω̇ Reaction rate
ω Pulsation

Subscript
f Fluid domain value
s Solid domain value
hyb Hybrid cell value
opt Optimal value
cpl Coupling value
[k] Numerical value computed with an integration method of order k
ext External imposed conditions

Superscript
n Value taken at time t = tn
() Mean valuê Numerical estimation of mean value
′ Fluctuating contribution

Abbreviation
DNS Direct Numerical Simulation
LES Large Eddy Simulation
RANS Reynolds-Averaged Navier-Stokes equations
CHT Conjugate Heat Transfer
ODE Ordinary Differential Equation
RMS Root Mean Square value
PID Proportional-Integral-Derivative controller
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1. Introduction

Context

Industrial applications are constantly growing in size
and power and undergo more and more extreme condi-
tions in terms of levels of pressure and temperature. It
is therefore a key issue to accurately predict the wall
heat flux distribution as early as possible in the design
stage. Advanced methods such as Direct Numerical Simu-
lations (DNS), when affordable, and Large-Eddy Simula-
tions (LES) provide high-fidelity results and are becoming
more and more popular in industrial applications. Thanks
to the increasing confidence in Large-Eddy Simulation re-
sults, the range of applications is broadening to include
multiphysics problems: In particular, several works [1, 2]
have been carried out to characterize unsteady conjugate
heat transfer (CHT) with high-fidelity approaches such as
DNS or LES. In coupled multiphysics simulations, a parti-
tioned approach is often retained where different numerical
solvers are considered to treat the different physical phe-
nomena. In numerical studies unsteady CHT, a flow solver
and a solver solving the unsteady heat equation in the solid
domain are considered. The coupling is carried out so that
both solvers compute temporal iterations separately until
a given physical time that corresponds to the prescribed
coupling time step, also called coupling period. At these
instants, data from both solvers are exchanged with each
other, typically through MPI communications, in order to
update their boundary conditions. The emergence of such
detailed multiphysics calculations is very promising in or-
der to reach high-fidelity predictions: temporal variations
on the heat loads on the mechanical structure provide new
valuable pieces of information.

The unsteady variations at the walls can be due to a
transient following the starting (or shut down) of the sys-
tem or a transient between two operating conditions. For
a specific operating point with a turbulent flow, unsteady
conjugate heat transfer also occurs because of the fluctu-
ating heat loads generated by the turbulent flow. High-
fidelity simulations of turbulent flows such as DNS or LES
are the appropriate methods to capture the flow unsteadi-
ness and the associated variable heat loads on the sys-
tem. However, because of their computational costs, the
simulated physical time with such approaches is limited
(typically several seconds up to one minute at most in en-
gineering applications). Thus, simulating low-cycle vari-
ations and slow transient is out of reach. This is also
impractical because slow variations of the system condi-
tions in respect to flow time scales can be treated in a
quasi-steady approach. Therefore, unsteady CHT can be
covered with DNS or LES to predict unsteady heat loads
in transient regime or statistically steady turbulent flow as
long as the physical time to simulate remains affordable.
The transient time cannot then exceed several seconds typ-
ically while the fluctuations captured in steady regime are
larger than 10 Hz.

First applications of such advanced methods to unsteady
CHT problems have been related to nuclear engineering
where thermal fluctuations in the solid material may lead
to thermal fatigue. Kuhn et al. [1] have numerically in-
vestigated the mixing of hot and cold water streams in
a T-junction. Resulting unsteadiness within the wall was
characterized and analyzed in terms of root-mean-square
and spectra of the wall temperature. Tiselj et al. [2] car-
ried out DNS of a heated slab cooled with turbulent flow
on both sides. The impact of the slab thickness and the
material properties on the penetrating fluctuations of tem-
perature within the slab was studied. A key parameter is
the thermal activity ratio defined as the ratio of the fluid
thermal effusivity and the solid one. When larger than
unity, the temperature fluctuations in the flow are sig-
nificantly impressed on the solid wall, yielding a strong
thermal unsteadiness of the solid material.

In combustion applications, simulations of conjugate
heat transfer with accurate methods such as LES are also
recent [3, 4, 5]. Given the presence of hot temperature
gases, these studies have first focused on predicting the
mean thermal state of combustors’ walls while retaining
an approach appropriate to capture unsteady CHT details.
Several phenomena in combustion applications require un-
steady CHT studies which would be affordable with a LES
approach. The transient heating of an aero-engine liner
(≈ 1-mm thick) only takes several seconds for example.
However, when considering its interactions with its en-
vironment in the combustion chamber through fixations,
the duration is larger and cannot be simulated with LES.
Another example is during emergency procedure of a bi-
engine helicopter in case of One-Engine-Inoperative (OEI)
event where the additional power handled by the single
remaining engine damages the gas turbine in less than a
minute. The corresponding 30-Second and 2-Minute OEI
ratings are optional ratings in the engine European certi-
fication. A final example is given with combustion insta-
bilities which make the flame strongly unsteady with large
variations in pressure and velocity. This can cause several
issues [6] that either rapidly damage the system or result in
premature component wear: Enhanced heat transfer and
thermal stresses to combustor walls, oscillatory mechani-
cal loads that result in low- or high-cycle fatigue of system
components, and flame blowoff or flashback. In these phe-
nomena, the combination of LES with CHT is a promising
approach to address one of the fatigue contributions that
is high-cycle fatigue due to unsteady heat loads.

The unsteady heat loads in combustion applications are
induced by the flow which is gaseous. The correspond-
ing activity ratio is very small while increasing moder-
ately with pressure as p1/2 for ideal gases. The resulting
wall temperature fluctuations due to the flow variations are
then quite damped in comparison to configurations with
a larger activity ratio. However, since the temperature
variations in combustion systems are of several hundreds
Kelvins or even a couple of thousands Kelvins, the abso-
lute level of wall temperature variations is not necessarily
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negligible. This is even significant in extreme conditions as
met in high-pressure hydrogen/oxygen flames whose tran-
sient flame-wall interaction has recently been studied nu-
merically with transient CHT simulations of 1D head-on
quenching [7].

Because the unsteady heat loads captured by large-eddy
simulations of reactive flows can be of significant value,
the motivation and ultimate goal of this work is to capture
accurately such thermal variations within the solid parts of
combustors. Nevertheless, let us outline that the coupling
approach that is proposed is general and is not limited to
the scope of such configurations.

Coupling time step
As already explained, a common approach to carry out

multiphysics simulations is to couple several numerical
solvers dedicated to each physical phenomenon. Each
solver can therefore be optimized in terms of algorithms
or data structure independently from the others. Another
a priori simple approach consists in solving all sets of equa-
tions by the same numerical code [8, 2]. However, while
ensuring continuity of the different considered fields, such
an approach for unsteady CHTmost often relies on explicit
time integration for the sake of simplicity and is therefore
penalized by small time stepping due to the most stringent
phenomenon. This leads to a significant waste of computa-
tional resources due to one or several physical phenomena
being over-resolved. For example, the time scale of heat
conduction in a solid can be several orders of magnitude
apart from the diffusion or convection time scales in a flow
of gas or liquid. By considering separate solvers for each
physics instead, each solver can retain an optimal number
of time steps between coupling time steps. The issue is
then to determine this coupling period. It is either arbi-
trarily chosen or, at best, the adequacy of the chosen value
is verified in a posteriori tests [9, 3, 10]. Depending on the
applications different values have been reported: For ex-
ample, 3 ∆tf in [4] or 50 ∆tf in [5], where ∆tf is the flow
solver time step. For the setting up of such complex simu-
lations to mature, one should not leave free parameters to
users when they can be determined. This will be achieved
here thanks to the derived method.

The coupling period has also an impact on the com-
putational cost and the temporal accuracy of the cou-
pled simulation. With synchronized solvers, the flow
and solid solver time steps fulfil the following constraint:
∆tcpl = Ns∆ts = Nf∆tf where Ns and Nf are the num-
ber of iterations before exchanging data at the shared in-
terface. While ∆tf is fixed internally by the flow solver,
the number of solid solver iterations is typically set to one:
Ns = 1. Let us give an order of magnitude of the corre-
sponding computational cost in a practical coupled LES
of a complex geometry1: Berger et al. [5] report a cou-
pled CHT simulation compared to a flow simulation alone

1The retained coupling procedure by Berger et al. [5] is not syn-
chronized temporally. Nonetheless, by carrying out Ns = 1 steps

which costs 100,000 CPU hours. This computational time
of the flow simulation corresponds to solving the Navier-
Stokes equations in a reactive flow (with six additional
transport equations for species) on a mesh of 15 million
tetrahedral elements with an explicit second-order Lax-
Wendroff scheme during 40 ms of physical time. The solid
domain, where the heat conduction is solved, is meshed
with five points in the liner thickness and is then made
of 25 million tetrahedra. The solid heat transfer solver is
coupled every 50 flow iterations with the LES where 864
cpu cores are attributed to the LES solver. In order to
synchronize data exchange communications every 50 flow
iterations, 160 cpu cores are attributed to the solid solver.
These numbers provided in [5] enable to estimate the im-
pact of the coupling frequency on the computational cost.
Coupling every 50 flow iterations leads to a moderate 18%
additional cost for the coupled simulation, which was the
one retained by the authors. Coupling less frequently is
even more affordable. On the other hand, coupling af-
ter each flow iteration would require 50x160= 8,000 cpu
cores for the heat transfer solver (assuming an ideal paral-
lel scalability of the solver) to synchronize data exchange
communications 50 times sooner. This would lead to a
computational time ≈10 times larger i.e. 1,000,000 CPU
hours for the coupled simulation. Adding the burden of
solving heat transfer in the solid after each LES time step
solver is then impractical in large-scale simulations.
Regarding the impact on accuracy, the envisioned coupled
LES captures the flow unsteadiness and associated variable
heat loads. The accurate capturing of the corresponding
varying wall heat flux and temperature depends on the
size of the coupling time step: A large value might tempo-
rally under-resolved unsteady phenomena at the solid/flow
interface.

Considering the key role of this quantity, the objective
of this study is to derive a procedure to adapt the cou-
pling period automatically. The necessity to adapt the
time step to achieve accuracy/cpu work compromise is de-
tailed in reference books on the numerical resolution of
dynamic systems (see for example [11]). It is here applied
to the simulation of unsteady conjugate heat transfer to
determine the coupling time step. For large-scale appli-
cations: On the one hand, a smaller coupling time step
is more costly and will yield a more accurate capturing of
the simulated unsteady wall heat loads; On the other hand,
a larger time step makes the coupled simulations cheaper
but the temporal accuracy is reduced. The derived method
determines the most appropriate coupling time step as a
function of the desired accuracy. Two original benefits of
the approach are then the removal of an arbitrary setting
of the coupling period and the control of the compromise
between accuracy and computational cost for the targeted
multi-physics simulations using LES or DNS. In the un-

in the solid solver between each coupling operations, their work is
relevant here to illustrate the computational overhead of coupled sim-
ulations with a variable coupling period in synchronized approaches.
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conventional case where Ns increases with ∆tcpl due to a
fixed solid time step ∆ts smaller than the determined cou-
pling period, the relative computational overhead of the
coupled simulation is fixed and only saving in terms of ex-
changed data communications are achieved in addition to
selecting an accurate ∆tcpl.

Boundary conditions for coupled solvers
For conjugate heat transfer simulations involving a flow

solver coupled with a heat conduction solver, the compu-
tational domain is split into two sub-domains, fluid and
walls. In the context of steady conjugate heat transfer,
domain decomposition methods [12] provide the frame-
work to couple the solid and fluid solvers. Well-known
coupling methods such as Neumann-Dirichlet, Dirichlet-
Dirichlet and Neumann-Neumann enable to iteratively
converge towards the steady solution on the whole domain
[13, 14, 15, 16, 17, 18].

For unsteady conjugate heat transfer, the solid and fluid
solvers advance in time separately between coupling steps.
Identical temperature and heat flux cannot then be main-
tained on both sides of the wall interface at all instants
and one must deal with the discontinuity of temperature
or heat flux at the fluid-solid interface. This issue high-
lights the need to correctly choose the boundary conditions
used by the different codes at the shared boundary. Meth-
ods sharing the same terminology as their steady variant
have then been derived.

Hence, a Dirichlet-Dirichlet coupling approach for un-
steady conjugate heat transfer has been developed [19]:
Each solver uses a prescribed boundary temperature as a
Dirichlet condition, yielding different heat fluxes on both
sides. After each coupling iteration, the boundary temper-
ature is overwritten to ensure the boundary heat flux con-
tinuity. An analogous Neumann-Neumann coupling ap-
proach prescribes heat fluxes on both sides. During the
coupling exchange, requiring the continuity of the bound-
ary temperature yields a new heat flux value for the next
coupling iteration. Due to some shortcomings with the nu-
merical stability of the Dirichlet-Dirichlet and Neumann-
Neumann approaches, a much-preferred approach is the
Neumann-Dirichlet coupling [20, 21, 22, 23] to ensure the
temperature continuity and heat flux conservation through
the boundary at the discrete coupling steps: One solver is
given a fixed temperature at the interface (Dirichlet condi-
tion) while the other one uses a Neumann condition with a
given value of the wall heat flux. The interface boundary
condition in each case is sent by the other code.

The work by Giles [24] has studied the stability of this
Neumann-Dirichlet coupling. It was demonstrated that
the stability of this kind of numerical coupling depends on
the ratio ρfcf∆xf/ρscs∆xs. As long as this ratio is less
than unity, the Dirichlet boundary condition must be set
to the flow solver while the wall heat transfer solver must
use the Neumann boundary condition. As mentioned in
the work of Giles [24], the aforementioned ratio is indeed
below unity for gas-wall CHT applications. More recent

studies have based their coupling methodology on such a
Neumann-Dirichlet coupling [4, 25, 10, 26]. An issue en-
countered in some studies is the lack in energy conserva-
tion: Depending on the implementation of the boundary
conditions, an energy deficit can occur and must be cor-
rected [25].

Scope of the study
The literature review shows that the coupling period,

i.e. the gap between solvers’ communications, remains a
parameter whose adequate value is not known a priori and
is adjusted to each investigated configuration. To better
tackle the issue of determining the compromise value of
the coupling time step size, this study proposes a mod-
ified Neumann-Dirichlet coupling denoted as Hybrid-cell
Neumann-Dirichlet coupling.

The Hybrid-cell Neumann-Dirichlet coupling for un-
steady coupled conjugate heat transfer is presented in sec-
tion 2, while section 3 deals with the numerical properties
of the coupling: Validation, energy conservation and nu-
merical stability. Finally, section 4 introduces the coupling
time step size determination approach and a validation on
a 1D coupled problem. Only 1D problems are here pre-
sented to allow a thorough study. Several choices of al-
gorithms and implementations are nonetheless motivated
by the final objective of this research which are unsteady
conjugate heat transfer simulations using LES on parallel
supercomputers.

2. Hybrid-cell Neumann-Dirichlet coupling for un-
steady conjugate heat transfer

Unsteady conjugate heat transfer between a solid part
and a fluid flow is treated by considering one simulation
code for each domain: one for the fluid part, and one
for the solid part. The two domains share a common
boundary where both codes have to be coupled. The stan-
dard Neumann-Dirichlet approach yields algebraic cou-
pling equations which do not allow for a direct method to
automatically determine and adapt the coupling period.
Time-adaptive algorithms, detailed in section 4, are avail-
able for ordinary differential equations (ODE). To take
advantages of these algorithms, an ODE for the boundary
temperature Tbnd is required. To do so, the evolution of
Tbnd is obtained by writing a balance of energy on a hybrid-
cell control volume made of two sub-volumes, one fluid and
one solid. As detailed in this section, the boundary Tbnd is
then updated over time using the wall heat fluxes of both
solid and fluid codes. On the other hand, both codes use
a Dirichlet boundary condition on the shared boundary,
Tbnd. Let’s outline that such a procedure is totally differ-
ent from a Dirichlet-Dirichlet coupling [19], which is based
on algebraic relations (heat flux continuity) to update the
shared boundary and is limited by numerical instabilities.
In fact, it is shown that the proposed coupling procedure
retrieves the standard Neumann-Dirichlet correct behav-
ior while enabling time step adaptation, hence the name
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Hybrid-cell Neumann-Dirichlet coupling. This approach is
detailed in the following section.

Figure 1: Fluid and solid domains used for a coupled simulation.
Dashed triangles represent the cells (actual mesh cells for volume-
centred formalism or dual mesh cells for vertex-centred formalism).
Both grey triangles denote the fluid and solid cells of volume Vf and
Vs respectively, which define the hybrid cell of volume Vhyb around
the interface.

2.1. Derivation of the Hybrid-cell Neumann-Dirichlet cou-
pling approach

The Hybrid-cell Neumann-Dirichlet coupling relies on a
layer of hybrid cells at the boundary between the fluid and
solid domains. As described in Fig. 1, each hybrid cell is
composed of solid and fluid mesh cells on each side of the
interface. Writing a balance equation for the hybrid cell’s
enthalpy, Hhyb, contained in cell volume Vhyb gives:

dHhyb

dt
= −

Nface∑
j=1

φφφj · next,j Aj , (1)

where Nface is the number of faces for the considered hy-
brid cell, Aj the j−th face area and next,j is the normal
vector pointing outwards for j−th face. The face-averaged
fluxes φφφj describe diffusive, convective or even radiative
fluxes through the j−th face. For the sake of clarity, the
flux integrated over all internal faces in the solid domain
is denoted Φs,bnd, and Φf,bnd in the fluid. Hence,

dHhyb

dt
= −Φs,bnd − Φf,bnd. (2)

A first order approximation is made by taking the temper-
ature inside the hybrid cell equal to Tbnd, the temperature
value on the interface. Then, enthalpy being extensive, the
temporal variation is split into the solid and fluid domain
contributions, giving

dHhyb

dt
=

∫
Vf

ρfcp,f
dTbnd
dt

dVf

+
∫
Vs

ρscp,s
dTbnd
dt

dVs,

(3)

where ρf and cp,f denote the density and specific thermal
capacity at constant pressure in the fluid, and ρs and cp,s

denote the same properties in the solid. Neglecting varia-
tions of thermo-physical properties inside each sub-domain
in the hybrid cell, equation 3 becomes

dHhyb

dt
= (Vfρfcpf + Vsρscps)

dTbnd
dt

(4)

Finally, the temporal variation of the interface temper-
ature is described by the following ordinary differential
equation (ODE):

dTbnd
dt

= − Φf,bnd + Φs,bnd
Vfρfcpf + Vsρscps

(5)

The obtained equation can include an additional volume
source term if necessary. Heat capacities and thermal con-
ductivities involved in Eq. 5 can depend on temperature
in general.

2.2. Numerical implementation of the Hybrid-cell
Neumann-Dirichlet coupling

Unsteady conjugate heat transfer introduces the cou-
pling time step parameter which is denoted by ∆tcpl. Here,
it corresponds to the interval between each update of the
boundary temperature value set to both solid and fluid
solvers as boundary conditions. During a coupling itera-
tion of duration ∆tcpl, each numerical code carries out one
or more iterations independently with their own time step:
∆ts for the solid solver and ∆tf for the fluid solver. Hence,
∆tcpl = Ns∆ts = Nf∆tf , where Ns and Nf are the num-
ber of iterations within a coupling step for the solid and
fluid solvers, respectively. The updating procedure for the
boundary temperature is as follows:

• Both codes are at time tn and have the same boundary
condition Tbnd = Tnbnd

• Each code advances independently from t = tn to
tn+1 = tn + ∆tcpl, while the boundary temperature
is set to Tnbnd during the entire time. The fluid solver
code carries out Nf iterations while the solid solver
completes Ns iterations.

• The integrated heat fluxes Φs,bnd and Φf,bnd required
for the boundary temperature update are computed.

• Equation 5 is solved and yields the boundary temper-
ature for time t = tn+1, Tn+1

bnd

The Hybrid-cell Neumann-Dirichlet coupling approach re-
quires the introduction of a third solver (see Fig. 2 a).
This solver is a collection of ODE solvers for each hybrid
cell between the solid and fluid mediums. It updates the
temperature field at the boundary between both domains
after each coupling iteration by solving Eq. 5. Coupling
three solvers as depicted in Fig. 2 a would penalize signif-
icantly the parallel scalability of the conjugate heat trans-
fer computation. Instead, the practical implementation of
the Hybrid-cell Neumann-Dirichlet coupling is done by en-
capsulating the boundary solver within the flow and the
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solid solvers according to Fig. 2 b in order to reduce the
number of parallel communications. With such an imple-
mentation, the communication pattern is identical to the
standard Neumann-Dirichlet approach, i.e. one array sent
by each domain solver, and the method benefits from the
corresponding programming optimizations [4, 27]. Let’s
outline that the exchange of flow and solid heat fluxes
shown in Figure 2 b does not make the method similar to
a Neumann-Neumann coupling since the received fluxes
are used to solve Eq. 5.

a)

b)

Figure 2: Scheme of the interface model for coupled unsteady con-
jugate heat transfer. a) Theoretical coupling procedure. b) Numer-
ical implementation of hybrid-cell coupling: The boundary temper-
ature solver is duplicated inside each physics solver. The flow solver
and the solid heat transfer solver (HTS) exchange boundary fluxes,
Φs,bnd and Φf,bnd, and temperature, Tbnd, with the boundary solver
which determines Tbnd.

Between two coupling steps, the flow and solid solvers
carry out Nf and Ns inner iterations, respectively. The
solvers’ iterations yield then a group of discrete values
Φif,bnd and Φjs,bnd, corresponding to the solver inner steps
∆tif and ∆tjs. The total time averaged and face-integrated
flux between two coupling steps is then given by the
average value for the fluid side,

Φf,bnd = 1
∆tcpl

∫ tn+∆tcpl

tn

Φf,bnddt

= 1
∆tcpl

Nf∑
i=1

Φif,bnd∆tif (6)

and similarly for the solid side.
Given the energy balance equation applied to the hybrid

cell, the exact enthalpy change in the hybrid cell over the
period ∆tcpl is:

∆Hhyb

∆tcpl
= −(Φf,bnd + Φs,bnd) (7)

thus, the only time integration applied to the hybrid-cell
and which ensures a strict energy conservation over the

coupling period is the following first order explicit formula:

Tn+1
bnd = Tnbnd −∆tcpl

Φf,bnd + Φs,bnd
Vfρfcpf + Vsρscps

(8)

Because of the independent evolution of each code, en-
ergy is only conserved at the end of a coupling step, once
the boundary temperature has been updated using Eq. 8.
Equation 8 is therefore the first order integration method
used to numerically update the boundary temperature.

2.3. Comparison between Hybrid-cell Neumann-Dirichlet
and Neumann-Dirichlet coupling approaches

It has been highlighted that the proposed approach
is neither a Dirichlet-Dirichlet coupling nor a Neumann-
Neumann coupling. This section shows that it is in fact
very close to a Neumann-Dirichlet coupling in terms of nu-
merical behavior. The improvement consists in enabling
adaptation of the coupling time step which is detailed in
Sec. 4.

Earlier studies showed that when coupling a flow solver
with a solid heat transfer solver, a Neumann-Dirichlet cou-
pling should be used for the sake of numerical stability
[24]. This coupling method relies on applying a Dirich-
let boundary condition in the flow solver and a Neumann
boundary condition in the solid heat transfer solver at the
interface between both mediums. The corresponding en-
ergy budget of the separate fluid and solid cells at the
interface is represented in Fig. 3 (right). On the fluid side,
the Dirichlet condition on the wall temperature yields an
instantaneous equilibrated sum of fluxes on the fluid cell.
Therefore, the face-integrated flux, Φw, sent to the solid
heat transfer solver as a Neumann condition is identical to
the previously defined quantity Φf,bnd:

Φw =
∑
i,wall

(
φf,i · nexti

)
Ai = Φf,bnd. (9)

In the Neumann-Dirichlet approach, the wall temperature
is then determined by the solid heat transfer solver as

dTbnd
dt

= −Φw + Φs,bnd
Vsρscps

= −Φf,bnd + Φs,bnd
Vsρscps

(10)

Figure 3: Energy budget in the hybrid cell approach (left) and in
the Neumann-Dirichlet method (right). The fluid cell is denoted by
F, respectively S for the solid cell. Φw is the flux sent by the flow
solver to the solid solver in the Neumann-Dirichlet method.

The Hybrid-cell Neumann-Dirichlet coupling is com-
pared to this result for the Neumann-Dirichlet coupling
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method. When considering the conjugate heat transfer
between a gas and a wall, ρscps is several orders of mag-
nitude larger than ρfcpf , which makes Eq. 5 similar to
Eq. 10. Therefore, the Hybrid-cell Neumann-Dirichlet cou-
pling is a generic coupling which behavior degenerates into
the well-behaved Neumann-Dirichlet coupling behavior for
gas-wall interaction. This physical asymmetry between
both mediums is then retrieved by the proposed approach.

3. Numerical properties of the Hybrid-cell
Neumann-Dirichlet coupling method

3.1. Validation using the Method of Manufactured Solu-
tions

A numerical validation of the coupling is carried out
by comparing numerical results to an analytical solution
built using the Method of Manufactured Solutions ([28,
29]). This is done here on a two-layer 1D configuration
with the primary goal of verifying that the Hybrid-cell
Neumann-Dirichlet is able to correctly solve the physics
at the boundary. Each 1D layer is governed by a 1D heat
equation.

When obtaining an analytical solution is not easy such
as in the present configuration, the Method of Manufac-
tured Solutions enables to arbitrarily set the desired so-
lution. An analytical source term is added to the con-
sidered equation to make the chosen function a solution
of the problem, hence the name of manufactured solution.
The chosen function, which would be here the temperature
profile across both media, is assumed of class C1. Unfor-
tunately, this is not the case for the temperature because
of the conductivity jump at the interface. Therefore, the
method is here applied by first setting a C1 heat flux pro-
file. The imposed heat flux profile is

φmms(x, t) = −cos(kx)e−ωt (11)

where ω is a temporal pulsation and k a spatial wave-
number. Using the Fourier law, it is possible to determine
the temperature gradient profile:

∂Tmms

∂x
(x, t) = cos(kx)e−ωt

λ(x) (12)

and, the conductivity λ is uniform in each sub-domain.
The domain boundaries are located at x = −L1 and
x = L2 which are given in Tab. 1, and the interface lo-
cation is denoted by x0. Considering a fixed temperature
at x = −L1, the analytical solution for the method of
manufactured solutions can be obtained:

Tmms(x, t)− Tmms−L1
= e−ωt

∫ x

−L1

cos(kx)
λ(x) dx, (13)

where∫ x

−L1

cos(kx)
λ(x) dx = sin(kx)

λ(x) + sin(kL1)
λ1

+ Hx0(x)sin(kx0)
(

1
λ1
− 1
λ2

)
(14)

and Hx0(x) is the Heaviside function, such as Hx0(x) = 0
if x < x0 and Hx0(x) = 1 otherwise. Injecting the tem-
perature and heat flux functions inside the heat equation
leads to:

ρcp
∂Tmms

∂t
= −∂φ

mms

∂x
+ Smms(x, t) (15)

and the following analytical source term Smms:

Smms(x, t) = ke−ωtsin(kx)

− ρcpω

k

[
sin(kx)
λ(x) + sin(kL1)

λ1

+ Hx0(x)sin(kx0)
(

1
λ1
− 1
λ2

)]
(16)

The method is applied to two coupled 1D layers, the com-
putation parameters are given in Tab. 1. The configura-
tion and corresponding boundary conditions are exhibited
in Fig. 4. For the sake of this validation, the two codes are

1 2

2

1
1

1

1
2

2=0 Φ =0
2

Figure 4: Studied 1D configuration using the MMS approach. Two
media are present, of lengths L1 and L2. The outer boundary con-
ditions are also mentioned.

coupled every iteration and the coupling time step is set to
the time step value of medium 1, which corresponds to a
Fourier number of F = 0.1. Both codes use the same spa-
tial discretization step size. The outer boundary condition
on the left side (medium 1) is a Dirichlet condition with
Tmms−L1

= 0 while the one used on the right side (medium
2) is a Neumann condition with φ = 0. The temporal in-
tegration used is an explicit forward Euler and a centered
second-order space discretization scheme. The results are

Medium 1 Medium 2
ρ 10 200
λ 263 2000
C 50 200

Npoints 300 300
Length [m] 0.005 0.005625

k 4π/L1 -

Table 1: Parameters used for the MMS test case

plotted in Fig. 5. The numerical and analytical temper-
ature spatial profiles collapse at the shown instant, vali-
dating the numerical model of the Hybrid-Cell Neumann
Dirichlet approach.

3.2. Convergence order of the method
The test case described in the previous subsection is

used here in order to verify the first order convergence of

8



1.0 0.5 0.0 0.5 1.0

x/Lf

1.0

0.5

0.0

0.5

1.0
T
/
m
a
x
(T

(x
,0

))
t=0

Figure 5: Spatial profiles of the temperature fluctuations scaled by
the initial maximal temperature. Black plain line: Temperature at
t = 0. Blue dashed line: Numerically computed temperature profile
at t = 25 ms. Blue circles: Analytic manufactured solution at t =
25 ms.

the coupling method described by Eq. 8. The methodology
for the test is the following:

• The 1D configuration and mesh are the same as in the
previous section.

• The studied error is that of the interface temperature
computed using the hybrid-cell.

• In order to isolate the error induced by the hybrid-
cell coupling method, the numerical error produced
individually by each code is minimized: The largest
Fourier number (media #1) is set to 0.005 and both
codes use a second order explicit time integration.

100 101

∆tcpl/∆t1

100

101

ε

Figure 6: Scaled numerical error of the hybrid-cell computed inter-
face temperature (ε) as a function of the coupling step size used.
Black circles: Computed error values. Black plain line: Theoretical
first order evolution.

The results of the study for different coupling time step
sizes are plotted in Fig. 6. The numerical error is com-
puted with the help of the reference solution obtained with
the MMS approach. As shown by the obtained numerical
results, the hybrid-cell coupling is indeed a first order tem-
poral method.

3.3. Energy conservation
It was explained in the previous section that, for a strict

energy conservation, the first order integration scheme

Eq. 8 is needed. This scheme is compared to the first
order forward Euler integration scheme,

Tn+1
bnd = Tnbnd −∆tcpl

Φnf,bnd + Φns,bnd
Vfρfcpf + Vsρscps

, (17)

using the test case described in Sec. 4.2.1. Equation 17
is different from Eq. 8 where the average value Φf,bnd on
several fluid inner iterations is used instead of the instanta-
neous value Φnf,bnd. The comparison is done by monitoring
the enthalpy residual R of the whole domain, defined as:

R(t) =
∫
domain

ρ(x)cp(x)T (x, t)dx

+
∫ t

0
(φf,ext + φs,ext)dt′ (18)

The first term in Eq. 18 is the sensible enthalpy of the
entire domain at time t, while the second is the time in-
tegrated heat fluxes escaping from the outer boundaries
of both media. φf,ext is the heat flux computed at the
left (outer) boundary of the fluid medium while φs,ext is
the one exiting from the solid medium. Each domain be-
ing solved with a conservative numerical scheme, the en-
ergy conservation through the medium interface is ensured,
when the residual R(t) is always null. Figure 7 shows the
temporal evolution of R(t) scaled by the entire domain
absolute mean enthalpy |H|. As seen in Fig. 7, the modi-

Figure 7: Temporal evolution of the domain enthalpy residual, R,
scaled by the time-averaged enthalpy H . Black plain line: First or-
der explicit Euler from Eq. 17. Blue dashed line: Modified first order
explicit integration scheme Eq. 8. Case conditions (see Sec. 4.2.1):
fext = 100 Hz, η = 5 % and PID controller.

fied first order explicit integration scheme Eq. 8 is indeed
strictly energy conserving as expected. On the other hand,
the forward Euler scheme is not strictly energy conserv-
ing, though the energy lost over the plotted time lapse is
very small. However, the energy deficit is clearly increas-
ing over time, which could be an issue for long-duration
simulations. In the following, Eq. 8 is always used as the
first-order accurate integration scheme to enhance strict
conservation. As shown in this section, the proposed cou-
pling method ensures a strict energy conservation over a
coupling step. Yet, this method is a loosely coupled ap-
proach [3] and not a strong coupling approach [30]. Strong
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coupling methods as addressed by Schwarz methods for
domain decomposition [31, 32] are not considered here be-
cause of the unaffordable cost of global iterations. This
choice is motivated since the method is to be applied to
LES and DNS studies of unsteady conjugate heat transfer.
Indeed, for the sake of computational efficiency, there is no
iterative loop at the end of a coupling step which forces
continuity for both temperature and heat flux. The result
is that, between the boundary temperature and heat flux,
only one can be imposed through a boundary condition for
each code. The choice in this work is to impose a strict
temperature continuity on the interface between the two
domains and ensuring a strict energy conservation over a
full coupling period.

3.4. Numerical stability analysis
The validation in Sec. 3.1 considered coupling at every

iteration. This limitation is here elevated with a free cou-
pling time step ∆tcpl. Each sub-domain (fluid or solid)
then computes a given number of inner-iterations during a
coupling step with its own integration time step. Thus, the
fluid solver (respectively solid) computes Nf (respectively
Ns) iterations using an inner time step ∆tf (respectively
∆ts), such as:

∆tcpl = Nf∆tf = Ns∆ts. (19)

The global stability of the coupling procedure is stud-
ied using the amplification matrix analysis by consider-
ing a joint temperature vector T of the solid and fluid
domains’ unknowns. It gathers the nf + 1 fluid domain
points Tf,1, ..., Tf,nf

, Tbnd and the ns + 1 solid domain
points Tbnd, Ts,1, ..., Ts,ns

, where Tbnd is the shared bound-
ary temperature. The temperature vector T is then de-
fined as

T =
[
Tf,1, ..., Tf,nf

, Tbnd, Ts,1, ..., Ts,ns

]t
, (20)

The evolution of the temperature vector T between two
coupling iterations is determined by the amplification ma-
trixMhyb:

T n+1 =MhybT n (21)

The amplification matrix is a block-matrix characterizing
the interaction between the three solvers (fluid solver, cou-
pling approach, solid solver). The spectral radius ρ(Mhyb)
of the matrix Mhyb determines the stability of the dis-
cretization operator [33, 34]. Indeed, the requirement for
a stable scheme is:

ρ(Mhyb) ≤ 1 (22)

The numerical stability of the coupling approach is here
studied considering one unsteady heat equation solved in
each domain d (d = f or d = s),

∂Td
∂t

= ad
∂2Td
∂x2 , (23)

using forward Euler and second-order space discretization,
which leads to the well-known discretized form

Tn+1
d,i = Tnd,i + Fd

(
Tnd,i−1 − 2Tnd,i + Tnd,i+1

)
(24)

in each domain. Fd is the domain Fourier number,

Fd = ad∆td
∆x2

d

. (25)

The numerical stability described by Mhyb is the result
of the coupling procedure and of the retained numeri-
cal scheme in each domain. The latter is described by a
domain-specific matrixMd which represents a single inner
iteration in a specific domain. With Eq. 24 and Dirichlet
boundary conditions applied at the domain interface (Tbnd
fixed according to the retained approach) and at the sec-
ond extremity of the domain (for the sake of simplicity),
the (nd + 1)x(nd + 1) matrixMd is given by

Md =


1
Fd 1− 2Fd Fd

. . .

Fd 1− 2Fd Fd
1

 . (26)

The interface flux for a domain d for a given inner-iteration
k between the nth and (n+1)th coupling steps is computed
as:

φn,kd,bnd = −λd∇Tn,kbnd (27)
which can also be written as:

φn,kd,bnd = Dd,k · T n (28)

where T n is the temperature vector of the entire domain
corresponding to the n-th time step, of shape (nf + 1 +
ns, 1), and Dd,k the line vector of shape (1, nf + 1 + ns)
corresponding to the boundary heat flux of medium d and
the k-th internal substep. Dd,k is defined as:

Dd,k = −λd∇bnd · (Md)k (29)

where (Md)k, Md to the power of k, is the matrix cor-
responding to the time integration using k substeps for
medium d and ∇bnd is the boundary gradient operator.
Hence, the time averaged flux during the coupling itera-
tion, used by Eq. 8, is obtained as:

−∇(Φ)bnd
n

= ∇bnd

− λf
Nf

Nf−1∑
kf =0

(Md)kf

+ λs
Ns

Ns−1∑
ks=0

(Ms)ks

)
T n (30)

Therefore,Mhyb is defined as follows:

Mhyb =


(Mf )Nf

[1:nf−1] 0
−∇(Φ)bnd

n∑
d ρdcp,dVd

0 (Ms)Ns

[2:ns]


(31)
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where (Mf )Nf

[1:nf−1] is a (nf − 1) x nf matrix, equal to
(Mf )Nf without its last line. Thanks toMhyb the spectral
radius can be computed numerically. It is done for a fluid-
solid couple made of Inconnel steel and oxycombustion
burnt gases, used in the test case described in Sec. 4.2.1,
and which thermal properties are given in Tab. 3. The
coupling is considered stable if the spectral radius verifies
ρ(Mhyb) ≤ 1. The corresponding stability map is plotted
in Fig. 8 as a function of the solid domain Fourier number
Fs and an hybrid Fourier number:

Fhyb = ∆tcpl
ρfcpf∆xf + ρscps∆xs

(
λf

∆xf
+ λs

∆xs

)
(32)

Fhyb can also be expressed using the Fourier numbers of
each code, Ff and Fs, and the number of iterations be-
tween two coupling steps, Nf and Ns:

Fhyb = θNsFs + (1− θ)NfFf (33)

where:
θ = ρscps∆xs

ρfcpf∆xf + ρscps∆xs
(34)

The resulting stability map plotted in Fig. 8 is delimited

0.0 0.2 0.4 0.6 0.8 1.0

Fhyb

0.0

0.1

0.2

0.3

0.4

0.5

F
s

Stable

Unstable

Figure 8: Stability regions of the hybrid-cell coupling as a function
of the hybrid Fourier number, Fhyb and the solid maximal Fourier
number Fs. The hatched triangle corresponds to the zone where the
coupling time step is smaller than the solid time step corresponding
to Fs, and hence ∆ts = ∆tcpl. Black dashed line: Second order
spatial discretization. Blue dashed-dotted line: Fourth order spatial
discretization. Black plain line: ∆ts = ∆tcpl.

on the top-left corner by the requirement ∆tcpl ≥ ∆ts and
on the right side by a curve corresponding to ρ(Mhyb) =1,
here plotted for second-order and fourth-order spatial dis-
cretization. The hybrid Fourier number can be as high as
0.75 for moderate values of Fs. On the limit ∆tcpl = ∆ts
corresponding to the lower edge of the top-left shaded tri-
angle, the maximum solid Fourier number is 0.5 for the
second-order space discretization, respectively 0.375 for
the fourth-order discretization, which match the known
stability criterion for a single-domain heat equation solved
with forward Euler with the corresponding space dis-
cretization. Setting the solid Fourier number close to its
stability limit (Fs ≈ Fmaxs = 0.5 for a second-order dis-
cretization), the stability is enhanced by setting Fhyb lower

than an upper limit given by the intersection of the hori-
zontal line Fs = Fmaxs with the curves in Fig. 8.
Considering ∆xs = ∆xf , θ ≈ 1 for typical gas-wall

conjugate heat transfer. The hybrid Fourier number is
then given by Fhyb = NsFs. For the sake of stability,
the number of iterations Ns therefore remains small and
is typically one. The corresponding number of fluid it-
erations Nf = Ns (afFs)/(asFf ) is proportional to the
ratio of thermal diffusivities af/as which can attain sev-
eral orders of magnitude for classical gas-wall interaction.
The limited range of Ns makes the stability of the Hybrid-
cell Neumann-Dirichlet coupling similar to the one for un-
steady conjugate heat transfer in the solid using explicit
methods. The stability limit in the coupling time step is
then related to the solid conductive time scale based on
the solid cell size. One possible choice could be to set the
coupling time step to the maximum allowed value. Such
value is small enough to describe accurately a slow tran-
sient of heat conduction in the solid. However, considering
LES to compute this kind of phenomena is impractical (see
context section in the introduction).

In the targeted unsteady CHT applications, LES re-
solves flow time scales that are smaller than the solid con-
ductive time scale. Capturing the resulting unsteady loads
in the solid accurately is not guaranteed by the stability
criteria alone. Thus, requiring a given accuracy in the
predicted wall temperature can lead to reduce the cou-
pling time step below its critical stability value. The issue
is then to determine a value of the coupling time step than
enforces such an accuracy requirement.

4. Automatic determination of the coupling time
step

As explained in Sec. 2, the coupling method analyzed in
the previous section has been designed to yield an ordinary
differential equation (Eq. 5) for the boundary temperature
to allow a self-adaptation of the coupling time step. The
latter desired feature is addressed in this section. Numer-
ous ODE solvers determine a variable time step to adapt to
the local stiffness of the problem and control the resulting
numerical error [11]. Since the integration step size used
to solve the boundary temperature equation corresponds
to the coupling period, a control of the step size opens the
path to an automatic determination of the coupling period
in unsteady conjugate heat transfer simulations. The pre-
vious stability analysis of the coupling approach is very in-
formative since it outlines the maximum allowed coupling
time step. However, fulfilling the stability condition does
not guarantee accuracy. Ensuring a given accuracy can
require a more stringent limitation on the coupling time
step, specifically for time-resolved unsteady CHT with LEs
or DNS.

In this section, the retained method to estimate the nu-
merical integration error is first presented. Then, differ-
ent controllers for the time step size are introduced along
with the concept of step rejection. Finally, test cases on
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1D coupled simulations of conjugate heat transfer demon-
strate that a PID controller is adequate even when no step
rejection is performed.

4.1. Coupling time step determination algorithms
4.1.1. Step size determination with a generic control algo-

rithm
The step size control algorithm is a control loop shown in

Fig 9: After the boundary temperature is integrated, a test
is carried out to compare the numerical integration error
εn to the prescribed tolerance η. If the numerical error is
low enough, the time step ∆tn is approved and the next
step is then computed. On the other hand, if the error
is too large, the time step is rejected and the integration
is repeated with a smaller step ∆topt. For the next step,
the initial guess of the step size is chosen as equal to the
previously accepted one. The determination of the new
integration time step is explained in the following.

Step
accepted

Step
rejected

Figure 9: Generic control loop to advance the boundary temperature
Tn to its value Tn+1 with a numerical integration error εn below a
given tolerance η by adapting the integration time step ∆tn.

4.1.2. Estimation of the numerical integration error
In order to determine the best time step to use, it is

necessary to estimate the error of the integration scheme.
The estimation is done with the help of two schemes of
different orders. The numerical integration error at time
tn, for a method of order k is defined as:

εn = |Tn+1
[k] − T (tn+1)| (35)

where Tn[k] is the numerical approximation of order k at
time tn and T (tn) is the exact value. Since the value of
the exact solution over time is not available, the numerical
error is estimated by relying on a scheme of a higher order.
Hence, introducing Tn[k+1], an approximation of T (tn) of
order k + 1, in the definition of εn:

εn = |Tn+1
[k] − T (tn+1)|

= |Tn+1
[k] − T

n+1
[k+1] + Tn+1

[k+1] − T (tn+1)|

≤ |Tn+1
[k] − T

n+1
[k+1]|︸                 ︷︷                 ︸

O(∆tk+1)

+ |Tn+1
[k+1] − T (tn+1)|︸                     ︷︷                     ︸

O(∆tk+2)�O(∆tk+1)

leads to the following estimation of the numerical integra-
tion error at each step for the scheme of order k

εn ≈ |Tn+1
[k] − T

n+1
[k+1]|. (36)

The numerical error estimate requires solving the bound-
ary temperature equation (Eq. 5) with numerical integra-
tion schemes of different order approximations. This equa-
tion being connected to the flow and solid solvers, implicit
methods would require inner-iterations of the coupled flow
and solid heat transfer simulations with the temperature
updating procedure. Since unsteady CHT computations
involving direct numerical simulations or large-eddy sim-
ulations are the target applications, implicit methods for
the coupling process are deemed inadequate because of the
necessity of supplemental communications and their itera-
tive nature which lead to the re-computation of the current
coupling time step along with the detailed simulations’ in-
ner time integration steps. Explicit integration methods
are therefore preferred.

Given that previous values of boundary fluxes appear-
ing in the right-hand-side of Eq. 5 are easily stored at
each coupling period, Adams-Bashforth multi-step meth-
ods are selected. Consequently, the numerical error esti-
mate in Eq. 36 is evaluated with the energy conserving
first order approximation (Eq. 8) and the second order
Adams-Bashforth formula (Eq. 38):

fRHS = − Φf,bnd + Φs,bnd
Vfρfcp + Vsρscp

Tn+1
[1] = Tn + (tn+1 − tn)fnRHS (37)

Tn+1
[2] = Tn + (tn+1 − tn)fnRHS

+(tn+1 − tn)2

2
fnRHS − f

n−1
RHS

tn − tn−1
(38)

4.1.3. A first controller based on Taylor expansion
A simple step size control algorithm based on the Taylor

expansion of the numerical solution is first presented. By
definition, an integration scheme of order k verifies:

Tn+1
[k] = T (tn+1) + αe(∆tn,cpl)k+1

+o((∆tn,cpl)k+1)
(39)

between the instants tn and tn+1 = tn + ∆tn. Therefore,
the numerical integration error εn can be estimated:

εn ≈ αe(∆tn,cpl)k+1 (40)

Hence, if the aimed error value is η, its value can be linked
to the value of the optimal time step size ∆topt:

η = αe(∆topt)k+1 (41)

Combining equations 40 and 41 leads the following expres-
sion for the optimal time step size:

∆topt = ∆tn,cpl
(
η

εn

)1/(k+1)
(42)

Equation 42 yields a variable time step. The associated
variations can be troublesome by penalizing the dynamics
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of the numerical resolution. This simple step size controller
has been optimized in order to achieve higher smooth-
ness of the responses and to reduce the number of rejected
steps [35]. Noticing that Eq. 42 is similar to an I-controller,
more advanced PI or PID ([11, 35]) controllers can be used
instead.

4.1.4. PID controllers
Adopting the point of view of control theory to deter-

mine the optimal time step [11, 35], the following variables
are introduced

C = log(∆tcpl)
θ = log(ε)− log(η) (43)

where C is an actuator which influences θ, the variable
to be controlled. The definition of θ is based on the nu-
merical error ε and η the prescribed error tolerance. A
general PID (Proportional-Integral-Derivative) controller
will express the variation of C as

−Ċ(t) = KP θ̇(t) +KIθ(t) +KD θ̈(t) (44)

where KP , KI and KD are respectively the proportional,
integral and derivative control gains. Equation 44 can be
solved analytically with the help of finite differences [11],
which leads to:

∆topt = ∆tnn,cpl
(

η

εn−1

)−α(
η

εn

)β (
η

εn−2

)γ
(45)

and

α = KP + 2KD, β = KP +KI +KD, γ = KD (46)

Equation 45 determines the next coupling time step from
the numerical error of previous steps. The values of KP ,
KI and KD are chosen in order to obtain the best pre-
cision and the smoothest evolution of the time step size
[36, 35, 37]. The retained values are given in Table 2 for
the three types of controllers considered: I, PI and PID.
The PI controller gain coefficients are the ones originally
published by Gustafsson [37], while the chosen PID con-
troller is a member of the H312 family [36]. The automatic
determination of the time step with error control also guar-
antees the stability of the numerical resolution. Indeed,
numerical instabilities lead to larger numerical integration
errors which then lead to a reduction of the integration
time step by the controller [11]. The determined coupling
time step will then be lower than the one prescribed by
the stability constraint detailed in Sec. 3.4.

4.2. Validation of the interface model with determination
of the coupling time step

The automatic time step control is tested with the help
of a 1D heat-diffusion code. The code uses a finite-volume
formalism and fourth order spatial discretization. Since
the methodology is ultimately meant to be applied to an
explicit LES/DNS solver, only explicit time integrations
are considered. For the sake of simplicity, only the first
order forward Euler time integration is used here.

Controller α(k + 1) β(k + 1) γ(k + 1)
I 0 1 0
PI 0.4 0.7 0
PID 1/9 1/18 1/18

Table 2: Controllers I, PI and PID defined by their gain coeffi-
cients [36, 37] for an integration scheme of order k.

4.2.1. Description of the 1D test setup
The configuration studied here is composed of two medi-

ums: The burnt gases of oxycombustion at a 20-bars pres-
sure on the one hand, and an Inconnel steel on the other
hand. The properties of both mediums are given in table
3.

Inconnel steel Burnt gases
λs 11.7 λf 0.158
ρs 8510.0 ρf 3.65
cp,s 439.0 cp,f 1738

Table 3: Properties of both mediums considered in 1D test cases in SI
units: Thermal conductivity, density, thermal capacity at constant
pressure,

Figure 10: One-dimensional test case configuration. The length Lf

of the fluid part is 1 mm while the length Ls of the solid part is 1 cm.

The test case consists of two coupled one-dimensional
codes, each solving the unsteady heat equation in each
medium. The configuration is shown in Fig. 10: the inter-
face is located at the axial position x = 0 with the fluid
medium on the negative x-values and the solid medium at
the positive x-values. Boundary conditions are applied at
both extreme edges of the domain: at x = −Lf , the fluid
temperature fluctuates following a temporal sine wave of
frequency fext,

Tf,ext = T (x = −Lf , t)
= T0(1 + 0.1 sin(2πfextt)) (47)

with T0 = 1000 K, while at x = Ls, the solid’s outer
boundary Ts,ext is a fixed temperature equal to the initial
mean temperature in both mediums: 293 K.

The evolution of the resulting interface temperature
along time is plotted in Fig. 11. The fluctuations ampli-
tude is two orders of magnitude smaller than the one enter-
ing at x = −Lf . This effect can be attributed to the value
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of the thermal activity ratio, which is equal to 4.78 10−3

in this case. The reference solution was computed using
a Laplace transform over the system of coupled equation,
by combining a resolution in the Laplace-space, and the
application of the inverse Laplace transform.
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Figure 11: Temporal evolution of the boundary temperature for
fext = 100 Hz.

4.2.2. Control with time step rejection
The three controllers presented in table 2 are compared

considering step rejection: when the numerical error is not
below the specified tolerance, the integration step used to
update the temperature at the fluid-solid interface is re-
jected, meaning that it is restarted with a smaller time step
given by Eq. 45. When the tolerance criterion is satisfied,
the current step is accepted and the time step determined
by Eq. 45 is used for the next step.
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Figure 12: Evolution of the accepted coupling time step scaled by the
fluid solver’s time step (a) and corresponding numerical integration
error (b) for different controllers: I (red dashed-dotted line), PI (blue
dashed line) and PID (black plain line). Case conditions: η = 1%
and fext = 100 Hz.

Figure 13: Temporal evolution of the hybrid Fourier number for the
simulation controlled by a PID controller for two different tolerances.
Black plain line: η = 1%. Blue dashed line: η = 3%. Case condi-
tions: fext = 100 Hz.

Figure 12 shows the results for the three controllers with
the tolerance η = 1% and the frequency fext = 100 Hz.
In all three cases, the numerical error remains below the
1% prescribed tolerance. The numerical error used in this
work is the L1 error :

εn = |Tn+1
[2] − T

n+1
[1] | (48)

The error and coupling time step are seen to evolve ac-
cording to a frequency which is twice the one of the ex-
terior perturbation. This is due to the absolute value in
Eq. 36 which doubles the response frequency of the con-
troller in comparison to the fluctuations’ frequency. The
evolution of the accepted step size is similar for the PI
and PID controllers while the I controller presents much
larger variations. As reported in Tab. 4, such variations
of the step sizes determined by the I controller leads to a
larger number of rejected time steps compared to the PI
and PID controllers. In spite of such an ill behavior, the I
controller provides the most efficient solution in terms of
cost to precision ratio in this specific case.

Controller I PI PID
Total number of steps 478 739 721
Number of rejected steps 113 38 31

Table 4: Comparison of the total number of coupling steps with the
number of rejected steps for η = 1%, fext = 100 Hz and a simulated
time of 60 periods.

Figure 13 shows the temporal evolution of the hybrid
Fourier number for two different tolerances, 1% and 3%.
For both error tolerances, the obtained hybrid Fourier
number is below the stability limit 0.375. As expected
after explaining in Sec. 3.4 that the stability constraint is
not enough to determine the coupling time step, an accu-
racy requirement can require a more stringent limitation in
the coupling time step. Although this is here illustrate in
a 1D test case, this automatic adaptation of the coupling
period will enable to gain a significant control in the accu-
racy of unsteady CHT studies with LES or DNS without
arbitrarily prescribing a value.
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Considering that this approach is aimed to be used for
3D reactive simulations using LES or DNS the following
issue arises: Rejecting multiple LES or DNS iterations of
a flow solver is not affordable with the currently available
computing resources. For the sake of optimal computa-
tional cost, tests are henceforth carried out without any
rejection of the coupling time step. Hence, instead of clos-
ing the control loop, the optimal value for the nth coupling
step size is used directly for the (n+1)th coupling step size:

∆tn+1,cpl = ∆topt (49)

4.2.3. Control without time step rejection
In this section tests are conducted without rejection in

order to compare all three controllers in terms of stability
and efficiency. Figure 14 shows the fluctuating bound-
ary temperature over time for a signal of fext = 5 Hz.
The PI and PID controllers coincide on the reference so-
lution while an instability occurs for the I controller due
to a faulty time step control when non-optimal steps are
not rejected. This issue was only encountered for the I-
controller, and is due to the fact that it handles less effi-
ciently perturbations than the PI or PID controllers [36].
For this reason the I controller is not considered stable
enough and hence unsuitable for this usage. The rest of
the study will only compare the PI and PID controllers.
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Figure 14: Temporal evolution of the difference of the boundary
temperature Tbnd with its mean value, T bnd for the reference solution
(circles) and the I (red dashed-dotted line), PI (blue dashed line)
and PID (black plain line) controllers. Case conditions: η = 5 %
and fext = 5 Hz.

To differentiate the PI and PID controllers, it is inter-
esting to study the ratio of coupling time step over fluid
time step. The higher this ratio, the lower the coupling
cost is, since it indicates a lower number of communica-
tions between solvers. Hence, the controller with highest
ratio is the most cost efficient.

Figure 15 shows an example of deactivation of step re-
jection for the PI controller. It shows the instantaneous
error (in log scale) of the boundary temperature computed
using the interface model, as well as the ratio between
coupling time step and fluid time step for a frequency of
100 Hz and η = 0.1%. Unlike for the algorithm with
step-rejection, in this case the numerical integration er-
ror can sometimes reach values larger than the prescribed

tolerance. Nonetheless, the coupling step size is correctly
adapted to keep this difference small.
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Figure 15: Evolution of the coupling time step scaled by the fluid
time step (a) and the corresponding numerical integration error (b)
computed by the PID controller without considering step rejection.
Case conditions: η = 0.1% and fext = 100 Hz.

In order to characterize this behavior more quantita-
tively, the obtained average of the coupling time step and
its root-mean-square (RMS) are compared for different im-
posed frequencies fext and tolerances η. The impact of
these parameters on the computational cost due to solver
coupling can then be assessed. Indeed, the higher the mean
coupling time step is, the lower the computational cost is,
and a smaller step size RMS also reduces the cost thanks
to the removal of unnecessary fluctuations of the time step.

The influence of the error tolerance is first studied with
a constant frequency of 100 Hz. The evolution of both
mean and root mean square values of the ratio ∆tcpl/∆tf
with η are plotted in Fig. 16 and Fig. 17, respectively.
As expected, the mean value of the coupling step size

increases with the prescribed error tolerance. Moreover, it
appears that the relation between both quantities follows

∆tncpl = βηb, (50)

where b = 1/2 and β is independent of η, which is consis-
tent with Eq. 41. Thus, for a given frequency, the instan-
taneous optimal value found for the coupling time step is
proportional to the error tolerance to the power 1/(k+ 1)
where k is the order of the numerical integration method.
The mean value of the coupling time step is then also pro-
portional to ηb. The value of b = 1/2 is consistent with
the fact that the computed numerical integration error is
that of a first order scheme.
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Figure 16: The mean coupling time step scaled by the fluid time step
as a function of the prescribed tolerance η for the PI (blue dashed
line) and PID (black plain line) controllers. The dotted line indicates
a η1/2-law for comparison. Case condition: fext = 100 Hz.
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Figure 17: The root-mean-square (RMS) of the coupling time step
scaled by the fluid time step as a function of the prescribed tolerance
η for the PI (blue dashed line) and PID (black plain line) controllers.
The dotted line indicates a η1/2-law for comparison. Case condition:
fext = 100 Hz.

Figure 17 shows that the RMS of the coupling step size
has a similar behavior compared to the mean value. Equa-
tion 50 being valid instantaneously, the proportionality
with η1/2 remains valid for the RMS of the coupling step
size. Yet, the RMS for the PI controller is much larger
than for the PID controller, about an order of magnitude
of difference. This high variance leads to a larger com-
putational cost for the PI controller since very small time
steps then need to be computed which leads to a higher
number of coupling exchanges. The PID controller is then
retained subsequently.

In figure 18, the influence of the frequency on the cou-
pling step size is shown for three different error tolerances
with the PID controller. As the frequency of the imposed
fluctuations at x = −Lf on the fluid side increases, the
dissipation of the fluctuations in the fluid becomes more
and more pronounced. The results are then shown with
frequencies scaled by the fluid cut-off frequency fc. fc is
here defined as the frequency for which only 1% of the
imposed fluctuations amplitude would reach the distance
Lf in a semi-infinite domain. It is then estimated ana-
lytically as fc = 25af/(πL2

f ), and for the considered test
case: fc = 200 Hz. For all three values of η (0.05%, 0.5%
and 5%) shown in Fig. 18, the encountered behavior is
the same: A first zone, for fext ≤ fc, where the coupling
step decreases as fext increases, and then a second zone for
fext ≥ fc where the profiles of coupling step size flattens
and then increases.

In the first zone, the slope indicates a f−1
ext-law, which

can be explained. For an integration method of order 1,
a detailed Taylor expansion of the numerical integration
error reveals that the proportionality factor in Eq. 41 is
in fact linked to the second derivative of the boundary
temperature:

εn ∝
∂2Tbnd
∂t2

(∆tncpl)2 (51)

When using the PID controller, the numerical integration
error is close to the prescribed tolerance: εn ≈ η. Fur-
thermore, the second order time derivative is proportional
to f2

ext. Therefore, the approximated coupling time step
dependency on the fext is given by

∆tncpl ∝
η1/2

fext
, (52)

which is the observed behavior.
In the second zone, the imposed frequencies are larger

than the fluid domain cut-off frequency. Therefore, the
fluctuations reaching the fluid-solid interface are below
1% and become smaller and smaller when fext increases.
Hence, the boundary temperature behavior is closer and
closer to a fixed boundary conditions that does not need to
be resolved with finer coupling time steps to be computed
accurately given the prescribed tolerance.

This section has showed that relying on the PID con-
troller is necessary to minimize computational cost when
step rejection is not affordable. Even though too large time
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Figure 18: The mean coupling time step scaled by the fluid time
step computed by the PID controller as a function of the frequency
fext for different values of the prescribed tolerance η: 0.05% (line
and circles), 0.5% (line and squares) and 5% (line and diamonds).
The frequency is scaled by the fluid domain cut-off frequency fc =
25af/(πL2

f ) = 200 Hz.

steps are not rejected, the controller showed sufficient ro-
bustness by adjusting the next steps accordingly in terms
of accuracy and numerical stability.

5. Conclusion

When studying multiphysics heat transfer, a practical
and accurate approach is to consider different numerical
solvers for each phenomenon. Hence, for unsteady conju-
gate heat transfer, an unsteady flow solver is then coupled
to an unsteady heat transfer solver in the solid domain.
Previous works have considered different methodologies
to couple these solvers (Neumann-Dirichlet or Robin-
Dirichlet approaches) consistently. The typical issues that
are addressed or still need to be solved are: the numeri-
cal stability of the coupling method or the lack of strict
energy conservation. In particular, the coupling period, a
key parameter in these simulations, is not known a priori.
For large-scale applications with LES or DNS, it impacts
the computational cost and accuracy of the simulation.
This work introduces a coupling method named Hybrid-
cell Neumann-Dirichlet to automatically determine this
coupling period for unsteady conjugate heat transfer sim-
ulations. It is based on a prescribed threshold on the cou-
pling method accuracy.

The coupling approach relies on a layer of hybrid cells
on which an ordinary differential equation for the bound-
ary temperature is solved using the wall heat fluxes pro-
vided by both flow and solid solvers. Dirichlet boundary
conditions are then provided for the flow and solid heat
transfer solvers. Several features (explicit time integra-
tion, no iterative procedure, ...) of the proposed coupling
approach have been selected in agreement with the tar-
get applications which are coupled DNS/LES of unsteady
CHT. Thanks to this formulation, the coupling approach
is conservative over a coupling period and an automatic
determination of the coupling time step is achieved by con-
trolling the numerical integration error. The retained PID
controller has been shown to remain robust and efficient

even when no step rejection is carried out for the sake of
computational performance. The control of the numerical
error also ensures the numerical stability of the coupling
procedure. The only parameter is then a prescribed tol-
erance to control the numerical accuracy of the coupling
method.

This methodology has been validated on one-
dimensional configurations and it has been demonstrated
that the coupling time step adapts to the dynamics of each
particular configuration, highlighting the interest of hav-
ing an on-the-fly control of the coupling period. This self-
adaptation of the coupling period is to be applied to high-
fidelity unsteady conjugate heat transfer in future work
with the use of multiphysics LES. Such simulations will
benefit from the removal of an arbitrary setting of the
coupling period and the control of the numerical accuracy.
While initially motivated for combustion applications, the
method is general. It can indeed also be of great interest in
coupled CHT studies with a larger thermal activity ratio
(than the one met with gaseous flows) which yield stronger
coupling effects due to the more pronounced fluctuations
of wall temperature.

The method still requires a mean to compute the perma-
nent regime statistics. To do so, an artificial acceleration of
the solid walls slow transient heating or cooling is usually
retained to yield a reasonable computational cost. The
proposed hybrid-cell approach will also need to address
non-conformal meshes in the future.
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