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Plants in aquatic canopies deform when subjected to a water flow and so, unlike
a rigid bluff body, the resulting drag force FD grows sub-quadratically with the
flow velocity Ū. In this article, the effect of density on the canopy reconfiguration
and the corresponding drag reduction is experimentally investigated for simple 2D
synthetic canopies in an inclinable, narrow water channel. The drag acting on the
canopy, and also on individual sheets, is systematically measured via two independent
techniques. Simultaneous drag and reconfiguration measurements demonstrate that
data for different Reynolds numbers (400–2200), irrespective of sheet width (w)
and canopy spacing (ℓ), collapse on a unique curve given by a bending beam
model which relates the reconfiguration number and a properly rescaled Cauchy
number. Strikingly, the measured Vogel exponent V and hence the drag reduction
via reconfiguration is found to be independent of the spacing between sheets and
the lateral confinement; only the drag coefficient decreases linearly with the sheet
spacing since a strong sheltering effect exists as long as the spacing is smaller
than a critical value depending on the sheet width. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4962309]

I. INTRODUCTION

Vegetation in rivers is often considered as a source of water resistance which slows down the
water conveyance.1 It is also one of the main components for river equilibrium, insofar as it prevents
body erosion by providing bed stabilization, it plays a vital role during floods. It is crucial for sedi-
ment transport, water quality, and also shelter to provide the necessary habitat for the biodiversity
of aquatic species.2 It is then useful to understand the mechanical behaviour of aquatic canopies
resulting from the interaction between vegetation and a water flow. From land-use planning to river
management,3 such a knowledge would also shed light upon plant biomechanics4,5 and improve
bio-inspired engineering.6,7

Traditionally, studies on aquatic vegetation explored its influence on flow properties, like veloc-
ity distribution, wake dynamics, turbulence,8–10 water conveyance, and sediment transport11–13 by
considering it simply as a rigid or flexible roughness element. So far, such works describe qualita-
tively and quantitatively the role of real plants1,14 and rigid15 or flexible16–18 artificial canopies as
an active element on flow friction losses. Recent investigations also explore various mechanically
activated phenomena in plants or plant canopies that arise from interaction between the fluid flow
(air or water) and vegetation.19 For example, flow-induced vibration and the origin of coherent
structures on crop canopies,20–23 dissipation of wave energy,24,25 population growth and ecological
consequences,26 flow-triggered pruning,27 and seed-dispersal28,29 were studied.

For many such investigations, one of the key ingredients in the analysis is the drag force
experienced by a canopy, a plant, and its parts. The profile drag exerted by a flow on a bluff body
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(rigid or flexible) is proportional to the frontal area As exposed to the flow and to the square of the
flow velocity Ū such that the profile drag coefficient

CD =
FD

1
2 ρU2As

, (1)

where As is independent of the flow velocity for rigid objects. For flexible objects, however, the
frontal area As can reduce drastically due to bending and/or twisting. In this context, Vogel30–32

studied the deformation of tree leaves subjected to air flow and elucidated the resulting drag
reduction mechanism. In fact, the shape of a tree leaf (or any flexible object) is the result of an
equilibrium between drag FD and elastic restoring forces FE. Thereby, the reconfiguration of a
flexible body (and hence, As) is, in general, a function of the non-dimensional Cauchy number
(CY = FD/FE) and the boundary conditions.33 Numerous experimental and numerical investigations
then considered such reconfiguration effects in various systems. The effect of wind velocity on drag
was measured on real trees and leaves.31,34–37 Analogous artificial systems were studied, includ-
ing numerical models which reproduce experimental measurements on a fibre subjected to a soap
film,38,39 a flexible plate in air40 or water41,42 flow, and artificial leaves.43,44 Experimental data are
observed to collapse on a single reconfiguration curve so that As ∝ CV/2

Y , where V is the so called
Vogel exponent.31 Therefore, for given physical properties of the fluid and the flexible body, the
frontal area As is only a function of the flow velocity Ū and so the drag reduction can be understood
by introducing the Vogel exponentV . The drag force is then

FD ∝
1
2
ρU2+VA, (2)

where A is the undeformed frontal area so thatV = 0 for a rigid body and, in general,V < 0, for a
flexible body.4,38,42,43,45

However, in rivers, canopies are sets of plants close to each other, giving rise to a strong screen-
ing effect, so that plants in canopies do not behave like single plants.46,47 There is also an increasing
interest in theoretical models for drag force acting on poro-elastic systems.19,21,48–51 Few studies
make explicit the influence of canopy density on drag. Through theoretical modelling, Gosselin
and de Langre52 investigated the effect of surface density on the Vogel exponent of a synthetic
poro-elastic system. They considered a ball covered-up by filaments analogous to coniferous trees
to understand its reconfiguration due to a fluid flow through a porous medium. Depending on the
number of filaments per unit length, the Vogel exponent is shown to vary between −2/3 and −1.
In Thom46 the effective drag force is measured on an artificial canopy in a wind channel and it is
found to be much smaller than the expected value obtained by adding individual drag forces on each
roughness element taken separately. This sheltering effect is also observed in other configurations:
flexible stalks53 or rigid cylinders and trees54 in air. In water, the trend is not so obvious (see
Peterson et al.55). Nepf15 and Poggi et al.56 show opposite trends for the drag coefficients evolution
with density. Recent numerical work by Leclercq and de Langre57 shows that the Vogel exponent
V can depend on the incident velocity profile. In a dense canopy, it is expected that the velocity
field around the sheets depends on the canopy spacing. Therefore it is not straightforward how plant
density and confinement would affect deformation of individual plants in a canopy. In addition,
to the authors’ knowledge, there exists no simultaneous experimental measurements of drag and
reconfiguration in submerged canopies as a function of different canopy densities.

In this context, it is the objective of this article to investigate the drag force acting on an aquatic
canopy with respect to flow velocity, canopy densities, and lateral confinement. In order to estab-
lish the relationship between the global drag force acting on the canopy and the resulting canopy
reconfiguration and then to elucidate the role of canopy density, it is important to measure the drag
force and the sheet deflection independently for various sheet densities and confinements. The focus
is put on a simple quasi-2D porous media made up of an array of flexible flat plates aligned in the
direction of the flow and confined laterally by channel walls. Independent techniques to measure the
sheet deflection and the sheet drag force are first developed. Drag reduction via reconfiguration and
sheltering effects is then explored experimentally.
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II. SIMULTANEOUS RECONFIGURATION AND DRAG MEASUREMENTS

A. Experimental setup

The experimental setup consists of a narrow open channel (length L = 2 m and width b =
40 mm). Its slope β is adjustable from horizontal (0◦) to 2.7◦ with a precision of about 0.1 mm/m.
The flow rate Q at the channel entrance can be controlled using a variable area flow meter
(200–1400 l h−1). Thus, by measuring the mean water height hw with a stream gauge, the mean
flow velocity Ū = Q/bhw is known. The canopy consists of thin PVC transparent strips (thickness
e = 0.1 mm, height h = 60 mm, width w = 10,15, or 20 mm) embedded on LEGO® bricks so that
the spacing between each sheet, ℓ, can systematically be varied (about 10 different spacings were
tested for each sheet width, from ℓ = 8 to 160 mm). This canopy of PVC sheets is fixed to the
bottom of the hydraulic channel as illustrated in the schematic (Fig. 1). The canopy occupies the
entire channel length. The mechanical properties of each PVC sheet, namely, the physical dimen-
sions, density (ρ = 1.41 × 103 kg m−3), and elasticity modulus (E = 3.78 GPa) are measured before
hand using a digital calliper, analytical scales, and the tensile tests on dynamic mechanical analysis
machine Q800 from TA instruments, respectively.

The aim of the setup is to simultaneously measure drag force and the sheet deflection for
various canopy densities as a function of the water velocity. The former is accomplished by two
independent techniques: (1) via the pressure drop across the channel and (2) via direct observation
of individual sheet reconfiguration.

B. Sheet drag via deflection measurement

At any chosen flow rate, the water height can be maintained a constant at the canopy top level
by carefully adjusting the outlet valve and channel inclination β. Once a steady flow is established
in the channel, all sheets are observed to bend in the same manner and they are almost motionless.
Only very small-amplitude oscillations at natural frequency sometimes occur when the setup is
exposed to vibrations mainly due to the pump irregularities. For each sheet, the restoring bending
force should then be balanced by the normal drag force on the sheet,40,58

− EI
∂3ϕ

∂s3 = fN(s), (3)

where fN(s) is sheet drag force per unit height of the sheet, s is the coordinate along the beam, ϕ(s)
the local beam deflection (see left inset Fig. 1), e is the sheet thickness (0.1 mm), and I = we3/12 is

FIG. 1. The experimental setup. The open channel has an adjustable water flow rate Q and inclination angle β. An array of
PVC sheets representing an aquatic canopy is fixed all along the channel. The outlet valve is set to adjust the water height hw.
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FIG. 2. Comparison between individual sheet deflection (thick white line) and non-linear bending beam model (dashed black
line) for different mean flow velocities Ū . The Cauchy number CY (Eq. (4)) is adjusted until a close fit is obtained. Thus, an
equivalent drag coefficient is calculated: the local drag coefficient C l

D.

the sheet quadratic moment. The boundary conditions are applied at the extremities, embedded for
s = 0 and free for s = h, respectively, ϕ(0) = π/2 and ∂sϕ(h) = ∂2

sϕ(h) = 0. If Ū sin ϕ(s) is the local
incident flow speed on the sheet and s̃ = s/h is the non-dimensional coordinate along the beam,
Eq. (3) becomes

∂3ϕ

∂ s̃3 = −C
l
Y sin2 ϕ(s̃), (4)

where Cl
Y = Cl

Dρwh3Ū2/2EI is the Cauchy number and the local drag coefficient Cl
D is defined,

based on the local sheet drag F l
D, as Cl

D = F l
D/

1
2 ρŪ2hsw.

Using a planar LASER sheet, we can visualize the deflection of individual PVC sheets in the
canopy (see thick white lines in Fig. 2). Thus, the sheet deflection δ and height hs are directly
measured with an accuracy of 1 mm. Using δ and hs in the solution of the bending beam model,
an equivalent Cauchy number Cl

Y can be computed, so that the computed sheet profile (dashed
black lines) matches with the observed sheet reconfiguration as shown in Fig. 2. Knowing the sheet
physical properties and the mean flow velocity, the local sheet drag force F l

D is then determined.
Figures 3(a) and 3(b) show typical variations of the local sheet drag force F l

D with respect to
flow velocity Ū when the sheet width w = 10 mm and 20 mm, respectively. Each data point is an
average drag force over 9–12 sheets in the canopy (depending on the run considered). Different
symbols represent various measurements for a wide range of sheet spacings ℓ. For any given canopy
density, F l

D is observed to increase, in general, monotonically with water velocity Ū. At a fixed
velocity Ū , the drag force is observed to be smaller for a denser canopy. In fact, Fig. 3(b) shows that
F l

D can be stronger by an order of magnitude if the distance between sheets ℓ is much larger than
the sheet width w. When the sheet spacing is sufficiently large, i.e., ℓ > 32 mm and ℓ > 56 mm for
sheet widths w = 10 mm and w = 20 mm, respectively, the measured drag force data collapse onto
a leading curve given by F l

D ∝ Ū2. On the other hand, if the canopy is dense, the drag force data do
not collapse and in particular, they show a sub-quadratic variation, as inferred by Vogel for isolated
elements.30–32 This can be verified in Figure 4(a) where the same data as Figure 3(b) are shown in a
log-log plot. Two regimes appear, namely, “rigid” (small Ū, F l

D ∝ Ū2, continuous line) and “elastic”
(large Ū, F l

D ∝ Ū2+V, dashed line).

C. Sheet drag via an inclinometer

Once a steady flow is established in the channel, the drop in pressure across the channel must
be entirely compensated by wall friction losses and the global drag force experienced by the canopy.
Moreover, the contribution of the channel skin friction is small compared to the net profile drag
for the Reynolds numbers studied here (see, for example, Temple et al.59 or Nepf and Vivoni47).
The classical Darcy-Weisbach formula used to estimate the pressure drop due to skin friction gives
a maximal slope about 1 mm/m, which is of the order of the inclinometer precision. Therefore,
the gravity force should balance the head loss due to the presence of a canopy. Thereby, a global
measure of the canopy drag can be obtained as done by Wu et al.16 If β is the channel inclination
angle and Ac = bhw is the channel cross-sectional area, the pressure drop should be ρgL sin βAc.
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FIG. 3. On the left, the sheet drag force F l
D (in mN) is plotted as a function of the water velocity Ū (ms−1) for various

canopy densities. The sheet drag is deduced from the force required to produce the measured sheet deflection. The dashed
line where all data above a critical sheet spacing collapse is a quadratic fit (F l

D∝Ū
2) to the data listed in the inset. On the

right, a non-dimensional plot of the same data. The mean values are computed for the different series (dashed lines) and for
plateau value. The gray area represents the standard deviation for this plateau value.

FIG. 4. (a) Log-log representation of the same data as Figure 3(b). The black continuous line shows the trend FD∝Ū2

for small Ū and the red dashed line FD∝Ū2+V for large Ū . (b) Non-dimensional comparison with the global profile drag
measured from the pressure loss across the channel (closed symbols). Open symbols represent the local data from individual
sheet deflection measurements.
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Since the canopy spacing is uniform and it occupies the entire channel length, it is appropriate to
consider that the canopy drag force is uniformly distributed over its length. Thus, for equilibrium,

Fcanopy
D = NFg

D = ρgL sin βAc, (5)

where Fg
D is referred to as the global drag force experienced by individual sheets in the canopy and

N = L/ℓ is the number of sheets in the canopy, which is about 250 for the densest canopy. It is
pointed out here that this is a straightforward drag measurement as long as the canopy is sufficiently
dense. However, when the sheets are sparsely distributed, the measurement is less accurate as the
corresponding channel pressure drop is negligibly small.

This independent drag measurement is also studied for various flow velocities Ū and canopy
densities ℓ. The results are presented in Figure 4(b) which compares the drag force deduced by both
methods (local, open symbols; global, closed symbols). Both measurements are of the same order
of magnitude considering the measurement precision (error bars are shown for both series on the
figure).

In the following, index “g” and “l” are used to distinguish the values obtained from the global
and local measurements, respectively. Depending on the two techniques, one can compute Cl

D the
local drag coefficient based on the drag force measured via the sheet deflection and Cg

D is the global
drag coefficient. If the drag coefficient is to be independent of the water velocity then hs, the height
of the reconfigured sheet subjected to a water flow (see right inset Fig. 1), should be a function only
of Ū and the sheet spacing ℓ. Therefore, in the following, the effect of canopy density on the sheet
reconfiguration is studied to determine the relation between the Vogel exponent V and the canopy
properties.

III. CANOPY RECONFIGURATION

To study the reconfiguration of the canopy, it is convenient to use the non-dimensional Cauchy
number CY which measures the sheet deformation as a response for a given incident stress (see
Eq. (4)) and the reconfiguration number R which measures the drag-reduction ratio, as given by the
ratio of the drag on a flexible object to the drag on the same object if it were rigid. As the drag force
is proportional to the frontal area of the sheet that is facing the flow, the reconfiguration number is
then

R ≡ hs

h
=

 1

0
sin ϕ(s̃)ds̃. (6)

Using simultaneous global drag measurements and local deflection measurements as in Fig. 2,
the global Cauchy number Cg

Y = Cg
Dρwh3Ū2/2EI and the sheet reconfiguration number can be

calculated independently. They are displayed in Fig. 5(a) for a range of Reynolds numbers ReP =

400–2200 (ReP = wŪ/ν, where ν is the water kinematic viscosity) and canopy configurations corre-
sponding to three different sheet spacings and two sheet widths.

When the Cauchy number is small (Cg
Y ≪ 1), there is very little sheet reconfiguration. How-

ever, when the global Cauchy number is about O(1), there is a steep decrease in reconfiguration
number R. For given elastic properties, the Cauchy number is simply proportional to the drag force.
Thus, at small Cg

Y, the drag force is not sufficiently large to produce any remarkable bending of the
PVC sheets in a canopy. In this case, it can be easily shown from the bending beam model (Eq. (4))
that (1 − R) ∝ (Cg

Y)2 as depicted in Fig. 5(b) where all data collapse on a power-law for CY ≪ 1
(even for Cg

Y ∼ O(1)). On the other hand, at large Cg
Y, the drag force overtakes the elastic rigidity of

the PVC sheets and the reconfiguration number R decreases rapidly.
In Figure 5(a), the experimental data based on the global Cauchy number and the simultaneous

deflection measurements are compared to the non-linear flexible model (Eq. (4)) and to the rigid
model proposed by de Langre,4 where sheets are modelled by rigid cylinders mounted on torsional
springs. Both models provide good predictions for the reconfiguration of a sheet. The rigid model4

fits the data for small deflections but it over-predicts sheet reconfiguration at large Cauchy numbers,
i.e., when the canopy bends sharply. The flexible model which accounts for local sheet bending
matches well with data when Cg

Y ∼ O(1) or greater.
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FIG. 5. (a) Reconfiguration curve depicting the reconfiguration number, R, as a function only of the global Cauchy number,
CgY =C

g
Dρwh3Ū2/2EI , as computed from F

g
D via the inclinometer (see Section II C). The closed and open symbols

represent two sheet widths (w = 10 and 20 mm, respectively) in canopies with various sheet spacings ℓ = 32 mm (olive
green square), 16 mm (red circle), and 8 mm (blue triangle). For the sake of simplicity, the error bars are shown for only one
data series. The dashed and continuous lines denote rigid and flexible bending models, respectively. (b) Evolution of (1−R)
against CY wherein the solid line is the trend for small Cauchy numbers, (1−R)∝ C2

Y. (c) Deflected beam model (Eq. (4))
showing the trend R ∝ CαY at CY≫ 1.

The reconfiguration curve Fig. 5(c) indicates a power law R ∝
�
Cg

Y

�α at CY ≫ 1. As suggested
by Gosselin et al.,40 it is, thus, possible to compute the Vogel exponent V = 2α. For all canopy
configurations considered here, V ≃ −0.6, which is very close to that for a single fibre under large
deformation (V = −2/3).38,39 However, it is larger than that of an artificial leaf folding up in an air
flow (V = −4/3).43 This is simply due to the fact that individual sheets in our canopy configuration
are similar to a flexible body that deform predominantly by bending in the flow direction without
folding about their edges. In addition, data corresponding to various canopy density fall on the
same reconfiguration curve in Figure 5(a). Thus, our study strongly suggests that the canopy density
does not influence the Vogel exponent V . Note that this result for a 2D laterally confined canopy
is fundamentally different from that obtained for poro-elastic models of coniferous trees.52 In the
latter case, the filaments upstream are strongly deformed so that they are almost perpendicular to
the incoming flow while the filaments downstream align themselves with the downstream flow.
Whereas in the present case, the canopy is distributed evenly throughout the channel’s length and
so, no particular sheet is exposed differently from the others once a uniform (steady and fully
developed) flow is established after the first few sheets. Thus, the porous media seen by a fluid flow
over a ball covered-up by flexible filaments are not similar to that of a series of flexible flat plates
perpendicular to the flow.

As inferred in Section II, for a given sheet (or a canopy) subjected to a water velocity Ū, the
sheet drag force is smaller for a denser canopy configuration. It is not straightforward to deduce the
effect of sheet spacing on reconfiguration number in Figure 5. Thus, at a given velocity, the canopy
density plays an indirect role of reducing sheet reconfiguration via a reduced drag force.

IV. CANOPY DENSITY AND CONFINEMENT

The drag force on a sheet can be rewritten as FD = CD
1
2 ρŪ2whs, where hs = Rh ∝ ŪV is inde-

pendent of the canopy spacing ℓ (see Section III on reconfiguration). It is therefore expected that
the form drag coefficient CD should be a function of the canopy density. Hence, to further study the
effect of canopy density on the drag force and canopy reconfiguration, the effect of the former on
the drag coefficient should be explored. Even though the drag force measured via sheet deflection
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FIG. 6. (a) Profile drag coefficients C l
D of a PVC sheet in a canopy are plotted against the canopy spacing ℓ for different sheet

widths w = 10 mm (magenta lozenge), 15 mm (olive green triangle), and 20 mm (blue circle). The dashed line is the measured
asymptotic value for large spacings, whereas the point line is the same value estimated with Glauert’s formula (Eq. (7)).
(b) The data are normalized with the asymptotic value for large spacings C l,∞

D with respect to the non-dimensional canopy
spacing ℓ/w. They show two distinct regimes, namely, a dense regime where the drag coefficient first increases linearly as
ℓ/w (shaded zone) and an isolated sheet regime wherein it becomes approximatively a constant maximum corresponding to
that of an isolated sheet when ℓ > 4w.

F l
D and via an inclinometer Fg

D is of the same order of magnitude, only the “local” drag coefficient
Cl

D = F l
D/

1
2 ρŪ2whs are used in the following for the sake of simplicity. When data corresponding

to Cg
D is used along with Cl

D, there is some quantitative dispersion; nevertheless the conclusions of
this section remain the same for both measurements. Figure 6(a) displays Cl

D in different canopy
configurations. Here, for each configuration, the length of the canopy L ≃ 2 m is fixed and only the
spacing between each PVC sheet ℓ is modified over a range of about 8–160 mm. The error bars
for the local drag coefficient come from standard error between Cl

D of the ten measured sheet in the
canopy. Note that the drag coefficients are much larger than the commonly known values (about 2,
see Vogel32) at these Reynolds numbers. This is simply due to large confinement effects.38

Consider the case when the sheet width is w = 20 mm. Cl
D vary first linearly with respect to the

canopy spacing ℓ before it reaches approximately a constant maximum when ℓ > 10 cm. The same
trend is observed for the other two sheet widths displayed in Figure 6(a) while the critical spacing ℓc
at which Cl

D saturates is different for each sheet width w: ℓc ≈ 6 cm for w = 15 mm and ℓc ≈ 4 cm
for w = 10 mm. An estimation for the drag coefficient Cl,∞

D of a laterally confined isolated sheet can
be obtained by using the classical Glauert’s formula,60

Cl,∞
D ≈ C̄l,∞

D



1 + τλ
�
w
b

�2
�
1 − η w

b

�2

, (7)

which relates the measured drag coefficient Cl,∞
D of a bluff body subjected to lateral confinement

with that in an infinite medium C̄l,∞
D via the ratio between the sheet width w and the channel width

b. Here, τ = 0.822, λ = 0.5, and η = 1 are empirical constants for the case of a flat plate normal to
the flow. If we take C̄l,∞

D = 2 corresponding to a thin plate in an infinite inviscid medium,61 Glauert’s
formula (Eq. (7)) provides a decent prediction for the experimental values shown in Figure 6(a).

These data are now plotted (see Figure 6(b)) in terms of the normalized drag coefficient
Cl

D/CD
l,∞ against the non-dimensional canopy spacing ε = ℓ/w. Note that this single sheet drag

coefficient depends on the lateral confinement and then on the sheet width w. It is striking that all
data fall almost along a unique curve. Two dominant features are observed: (1) Cl

D ∝ (ℓ/w)CD
l,∞

as long as the spacing between sheets is smaller than the critical spacing ℓc (dense regime) and
(2) Cl

D is independent of the canopy spacing ℓ and is equal to that of an isolated sheet (isolated
sheet regime). Therefore, a sheet inside a canopy should experience a smaller drag force FD than its
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rigid counterpart via two drag reduction techniques: on one hand, the elastic reconfiguration which
results in a sub-linear speed-drag dependence (FD ∝ Ū2+V) and on the other hand, the sheltering
effect due to its neighbours wherein the drag force FD decreases linearly with the spacing between
sheets ℓ, as long as ℓ 6 ℓc.

Since the length of the recirculation zone behind a flat plate is about 4-5 times its width, it is
expected that the presence of a sheet influences its neighbours as long as ℓ 6 4w. In fact, Figure 6
indicate that the critical canopy spacing is indeed ℓc ≈ 4w. When ℓ < ℓc individual sheets are, thus,
expected to be sheltered so effectively by their neighbours’ recirculation zone that they are not
exposed to the incoming water velocity Ū but to a very negligible water flow perpendicular to them.
This implies that in the dense regime, due to the low momentum wake between the sheets, the can-
opy behaves like single continuous flexible media. The force acting on such a canopy should then
be equal to the product of the drop in pressure across the channel ∆P and the reconfigured frontal
area of the canopy As. For an inviscid flow, the former is proportional to the dynamic pressure 1

2 ρŪ2

whereas the latter is dependent on water velocity via the Vogel exponent as ŪV. Therefore, the total
drag Fcan on the whole canopy must be Fcan ∝ Ū2+V. But the net force Fcan on the canopy is equal
to the sum of all the forces acting on each sheet in it. Given that the sheets occupy the entire length
of the channel and, also, the canopy is quasi-two dimensional, the force per unit length should be
homogeneous across the canopy when the flow rate is constant across it. So, Fcan = NFD where FD

is the sheet and N = (L/ℓ) is the number of sheets in the canopy configuration. Therefore, the drag
force FD should be linearly proportional to the spacing, ℓ. On the other hand, if the sheets are not
exposed to their neighbours’ recirculation zone ℓ > ℓc, each one of them is left alone to face the
incoming water flow at about Ū. In this case, only drag reduction via reconfiguration occurs and the
drag force is simply independent of the sheet spacing. These results are expected to be valid for a
non-confined array of sheets, insofar as the dependence in channel width is included in the modified
value of the plateau drag coefficient C∞D .

Experimental results from the reconfiguration study of simple quasi-2D confined canopies
suggest thatV is independent of the canopy density. Since the Vogel exponentV should depend on
the incident velocity profile,57 this should arise from the fact that the velocity profile in the wake of
a vertical plate is self-similar with respect to the stream-wise direction.61 However, in real-life situ-
ations, dense vegetation is often irregular wherein the size of individual plants/trees inside a canopy
and also the spacing between them should differ considerably. Nonetheless, the Vogel exponent V
is expected to be approximatively −0.6 as in our case because the wake velocity profile should not
show any qualitative difference except maybe when the flow is turbulent. In fact, it is known thatV
varies only a little about −0.6 for most of the field observations.19,57

V. CONCLUSION

A 2 m long canopy of PVC sheets subjected to a laterally confined open channel flow is studied,
in order to determine the effect of sheet density on the drag reduction mechanisms. The canopy
is observed to behave as a continuous flexible object where all the sheets show approximatively
the same deflection when a uniform water flow is maintained. Two independent methods were per-
formed to make sheet deflection and drag measurements on various canopy configurations: (1) indi-
vidual sheet deflection and the respective “local” sheet drag force F l

D; and (2) a global drag force
Fg

D on a sheet in a canopy is computed via the global force balance on an inclinable water channel.
It is observed that F l

D and Fg
D are about the same order of magnitude over various Reynolds num-

bers and canopy densities. Then, by comparing the global Cauchy number (Cg
Y = Cg

Dρwh3Ū2/2EI)
based on the measured Fg

D and the local deflection measurements, the dimensionless reconfiguration
number representing the canopy deflection is shown to be a function only of the Cauchy number,
independent of the spacing between the sheets. It is, therefore, concluded that each sheet in a canopy
behaves like a single flexible object provided that an appropriate drag coefficient is defined, which
takes into account the canopy density; the Vogel exponentV is independent of the canopy density.

For a given sheet width w, if the sheet spacing ℓ ≤ 4w, the drag coefficient Cl
D of an individual

sheet decreases when the canopy becomes denser. Measurements indicate that Cl
D varies linearly

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  77.202.24.234

On: Tue, 04 Oct 2016 22:54:03



107101-10 Barsu et al. Phys. Fluids 28, 107101 (2016)

with the spacing between the sheet ℓ so that Cl
D ∝ (ℓ/w)CD

l,∞ where CD
l,∞ is the drag coefficient

of an isolated sheet (measured from its deflection). Within this limit, the drag force FD is simply
proportional to ℓ. Beyond this limit (ℓ ≥ 4w), the drag force does not depend on the canopy density
and is equal to that of an isolated flexible sheet. This observation is substantially different from
common assumptions in theoretical models21,23,48 that try to describe coherent structures arising
from fluid-structure interactions in submerged vegetation canopies. Most canopies are not as simple
as the ones considered here. Therefore, it is hoped that these new results for an array of flex-
ible plates perpendicular to the flow would encourage further investigations on the role of canopy
density in more complex flexible, porous media analogous to aquatic vegetation.
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