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Abstract

This work is concerned with the numerical simulation of sound pressure field in three-dimensional cavities
in which absorbing materials are present. Standard techniques such as the Finite Element Method are
known to be extremely demanding computationally when the frequency increases and thus limited to low
frequency applications. To alleviate these difficulties, an alternative formulation based on the Partition of
Unity Finite Element Method is proposed. The method involves enriching the approximation finite element
space by expanding the acoustic pressure in a set of plane waves propagating in various directions over
the unit sphere. Particular attention is devoted to the fast and accurate computation of highly oscillatory
integrals which is required by the method. Convergence studies show that these wave finite elements allow
to capture accurately the wave field with a number of degrees of freedom that only grows quadratically with
the frequency yielding drastic data reduction compared to classical FEM. Results of practical interest are
shown for the case of a sound source placed in a reverberation room with absorbing materials.
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1. Introduction

Traditional Finite Element Method (FEM) is not efficient enough to solve medium and high frequency
acoustic waves because of excessive demands involving heavy computational cost. This results from the
thumb rule which indicates that at least 10 nodal points per wavelength are required. Moreover FEM is
known to suffer from the so-called pollution error which requires a fine mesh discretization, especially at
high frequency, in order to maintain acceptable accuracy.

New deterministic prediction techniques have been developed in the recent years to overcome this limita-
tion. Mainly developed for domain-based methods, one direction of particular interest to us is the reduction
of the complexity by expanding the dynamic field variable with a set of oscillatory wave functions which are
the analytical solutions to the governing equation of the problem. These techniques include the Partition of
Unity Finite Element Method (PUFEM) [1], the Ultra-Weak formulation [2], Wave-Based Methods [3], the
Discontinuous Galerkin Method [4] and the Variational Theory of Complex Rays [5, 6]. All of these methods
can offer a drastic reduction in degrees of freedom compared with conventional FEM. Among them, PUFEM
offers the advantage of being very similar to the FEM, can be easily adapted to any FEM mesh and has
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been successfully used to solve acoustic wave scattering [7, 8], flow acoustic [9] and other wave propagation
problems including porous and poroelastic materials [10, 11].

Although these prediction techniques allow a huge reduction in the number of degrees of freedom, the
computation of element matrices requires the integration of highly oscillatory functions leading to expensive
computational costs due to the need of a too large number of integration points. These limitations can
be prohibitive especially for 3D simulations. Therefore, several new integration schemes were developed
to improve competitiveness of the PUFEM and in this regard we can cite the earlier work of Sugimoto
[12], Bettess [13] and Gordon [14]. By using the divergence theorem Gabard [15] addresses the issue of
integrating general polynomial–exponential products by deriving exact expressions for these integrals in the
case where the domain of integration is polygonal. The author applies the technique to the calculation of
PUFEM triangular elements. Following a somewhat different approach El Kacimi [16] presents an exact
integration scheme for the evaluation of PUFEM element matrices for elastic wave scattering problems in
two dimensions. In this work successive integration by parts is performed to obtain closed forms that do not
require the coefficients of the polynomial function of the integrand, unlike in reference [15]. More recently, a
semi-analytical procedure to efficiently integrate the product of a smooth function and a complex exponential
over tetrahedral elements has been published in [17]. The method allows to consider a wider class of smooth
functions, i.e. non-polynomial, but remains limited to exponentials with arguments depending linearly with
geometrical coordinates.

The purpose of this paper is to bring new contribution to the PUFEM technique for the simulation
of acoustic fields in 3D domains. In particular, a new exact integration scheme over linear tetrahedral
elements is presented. Through successive use of Green’s theorem, it is shown that volume integrals have
closed-form expressions in which no numerical integration is involved. Some numerical aspects of this
integration algorithm are also discussed and illustrated. The efficiency of the PUFEM method, in terms of
data reduction, is shown and a guideline for selecting the number of plane waves attached to each nodes of
the mesh is proposed.

The paper is organized as follows: after presenting the general PUFEM formulation with plane waves
in Section 2, the derivation of an exact integration algorithm for the computation of element matrices is
explained in Section 3. A convergence anaysis is performed in Section 4. It is shown that PUFEM elements
allow to capture accurately the wave field with a number of degrees of freedom that only grows quadratically
with the frequency, yielding drastic data reduction compared to classical FEM. The case of a singularity
(radiating monopole) in the computational domain is also investigated. The paper finishes with applications
of practical interest in Section 5 for the case of a monopole sound source placed in a reverberation room
with locally reacting walls.

2. PUFEM formulation

For the time harmonic wave oscillation problem, where time-dependence e−iωt is assumed, the homoge-
neous Helmholtz equation for the acoustic pressure p in the bounded three-dimensional domain Ω is

∆p+ k2p = 0 in Ω, (1)

where k = ω
c is the wavenumber and ω is the angular frequency. In this work, we assume that the pressure

satisfies the local boundary condition of Robin type:

∂p

∂n
= α̂p+ β̂ (2)

where α̂ and β̂ are complex-valued functions defined on the boundary Γ = ∂Ω. Applying the standard
weighted residual scheme to the governing equation, we can write∫

Ω

w(∆p+ k2p)dΩ = 0, (3)
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where w stands for the weighting function. The choice of this function is not unique. Among them, the
Galerkin method which is probably the most common approach adopted in the finite element community,
consists in choosing the weighting function to be identical to the trial basis function. The reason of its
popularity among others stems from the fact that this selection allows the construction of a symmetric
linear system. By applying integration by parts, the weak form of the Helmholtz equation becomes∫

Ω

(
∇p · ∇w − k2pw

)
dΩ−

∫
Γ

α̂pw dΓ =

∫
Γ

β̂w dΓ. (4)

The computational domain is now partitioned as Ω =
⋃N
e=1 Ωe, in which N denotes the number of partitioned

element of the whole domain. Like standard FEM, each element is parameterized classically via Lagrange
interpolation

x ∈ Ωe ⇔ x =

J∑
j=1

Nj(ζ1, ζ2, ζ3)xj , (5)

in which Nj is the Lagrangian shape function with regard to the jth node of the element Ωe, call it xj ,
and (ζ1, ζ2, ζ3) are the coordinates in the reference frame. Following PUFEM discretization procedure, the
sound pressure field is approximated in each element Ωe as

p(x) =

J∑
j=1

NjPj(x), (6)

In classical FEM, functions Pj are simply the value of the pressure at node xj , the key idea of the PUFEM
relies on the enrichment of the conventional finite element approximation by including solutions of the ho-
mogeneous partial differential equation. In the Helmholtz case plane waves, circular waves (Bessel functions)
and wavebands are commonly used [5,15-17]. In this work, plane waves are chosen as they permit to develop
fast integration algorithms, as shown in the next section. We introduce the set of Qj plane waves as

Pj(x) =

Qj∑
q=1

Ajq exp(ikdjq · x), (7)

where djq denotes the wave direction which belongs to the unit sphere, i.e. ‖djq‖ = 1, and the unknown
coefficient Ajq stands for the amplitude of the q-th plane wave attached to node j. Figure 1 illustrates the
set of plane waves at node xj of element Ωe (a tetrahedral element with four node is shown here).

We now proceed to derive the PUFEM matrix Ae associated with a single element Ωe. From (6) and
(7), both trial and test functions are of the following form:

p = Nj exp(ikdjq · x) and w = Nj′ exp(ikdj′q′ · x). (8)

Substituting (8) in the weak form of the governing Helmholtz equation (4), we arrive at PUFEM matrix
coefficients which are of the form:

(Ae)jq,j′q′ =

∫
Ωe

(
∇p · ∇w − k2pw

)
dΩ

= −k2(1 + djq · dj′q′)
∫

Ωe

NjNj′φdΩ + ikdj′q′ ·
∫

Ωe

∇NjNj′φ dΩ

+ ikdjq ·
∫

Ωe

∇Nj′Njφ dΩ +

∫
Ωe

∇Nj · ∇Nj′φ dΩ, (9)

where, function φ is also a plane wave stemming from the product of the trial and test functions. This can
be written as

φ = exp(iκd · x) with κ = k‖djq + dj′q′‖ and d =
djq + dj′q′

‖djq + dj′q′‖
. (10)
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Unit sphere

Figure 1: Distribution of 30 plane wave directions (resulting from the Coulomb force algorithm) attached to node xj .

Note that for all quantities defined in (10) we omitted the dependence in j, q, j′ and q′ for the sake of clarity.
As for the choice of the wave directions, these are chosen to be regularly distributed over the unit cir-

cle in the bidimensional case. In three dimensions, in order to ensure that the distribution of plane wave
directions is also based on the equal spacing of points on the unit sphere, we apply the Coulomb force
method developed by [18]. It is based on the use of an explicit time stepping scheme to converge to a static
equilibrium state for a set of charged particles on a unit spherical surface. Compared to the discretized cube
method used in [8], the use of Coulomb force method allows to obtain uniformly spaced directions, and at
the same time, avoid the possibility of a subset of plane waves gathering together in a preferred direction
which might deteriorate the stability of the PUFEM solution. The other advantage of the Coulomb force
method is that an arbitrary number of wave directions can be assigned, which renders the PUFEM method
more flexible. The computational aspect of the Coulomb force method is given in detail in [18] and this will
not be repeated here. The special case in (10) when directions of waves are opposite, i.e. κ = 0, is avoided
by adding small random variations, such that two wave directions will never be exactly opposite to each
other. Finally, once a particular set of directions has been found, it is stored once for all. For the sake of
illustration, the distribution of 30 plane wave directions is given in Fig. 1.

3. Exact integration algorithm for linear transformation

At this point, it is imperative to develop an efficient three-dimensional integration algorithm for address-
ing the computation of 3D highly oscillatory wave integrals involved in (9). Typically, the computational
burden stemming from the huge amounts of integration Gauss points, which is expected to grow cubically
with k, will be inevitable if standard quadrature methods are used. To make some progress, we consider a
linear mapping system between real and local coordinate, as shown in Figure 2. The linear shape functions
are of the form: N1 = ζ1, N2 = ζ2, N3 = ζ3 and N4 = 1− ζ1− ζ2− ζ3, and we can write explicitly the linear
mapping between real space x = (x1, x2, x3) and local space (ζ1, ζ2, ζ3) as

x =

4∑
j=1

Njxj = x4 + ζ1e41 + ζ2e42 + ζ3e43. (11)

Here, we adopt the notation ejj′ = xj′ − xj , so that the Jacobian matrix can be written by

J = [e41 e42 e43]>. (12)
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a) real space b) local element space c) local triangular space
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Figure 2: 3D coordinates systems in real and local element space. The boundary of the 3D element Ωe is made of 4 triangular
surfaces Tα which are all parameterized via the local coordinate system (x, y) defined over the unit triangle T .

Its inverse H = J−1 can be easily calculated, which allows us to get the transformation formulas for the
gradient and Laplace operators:

∇F = H∇ζF and 4F = HilHij∂ζlζjF. (13)

Since the geometric mapping is linear and the shape functions Ni are also linear, some terms can be moved
out of the integrals in (9), which results in

(Ae)jq,j′q′ = −k2(1 + djq · dj′q′)
∫

Ωe

NjNj′φdΩ + ikdj′q′ · ∇Nj
∫

Ωe

Nj′φ dΩ

+ ikdjq · ∇Nj′
∫

Ωe

Njφ dΩ +∇Nj · ∇Nj′
∫

Ωe

φ dΩ. (14)

All integrals involved are of the form ∫
Ωe

FφdΩ, (15)

where function F is either quadratic (regardless of the coordinate system, real or local), F = NjNj′ , linear
F = Nj or simply a constant F = 1. We can take advantage of the fact that φ is a plane wave and apply
the Green theorem iteratively (see Appendix A). This yields the series of surface integrals∫

Ωe

F φdΩ = −
∫
Se

(εFd + ε2∇F + ε34Fd + · · · ) · nφ dS, (16)

where ε = i/κ and Se = ∂Ωe. Though the series contains, in principle, an infinite number of terms, the
important feature of the linear mapping signifies that the maximum order of the polynomial F in the above
volume integrals is quadratic, so only the first three terms of the series are kept. Note that the above
equation can be regarded as an alternative formulation to previous research work (see Section 4.1 in [16]).
In the following, we define the notation:

Se =

4⋃
α=1

Tα, (17)
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to represent all surfaces of the tetrahedron element, where the triangle Tα denotes one surface of the element,
here α stands for the node number of the element which lies opposite to the surface. Applying (16), we get∫

Ωe

NjNj′φ dΩ = −
4∑

α=1

d · nα
(
ε

∫
Tα

NjNj′φdS + ε34(NjNj′)

∫
Tα

φ dS

)

−ε2
4∑

α=1

nα · ∇Nj′
∫
Tα

NjφdS − ε2
4∑

α=1

nα · ∇Nj
∫
Tα

Nj′φ dS,

(18)

and ∫
Ωe

NjφdΩ = −
4∑

α=1

d · nαε
∫
Tα

Njφ dS − ε2
4∑

α=1

nα · ∇Nj
∫
Tα

φ dS, (19)

and ∫
Ωe

φ dΩ = −
4∑

α=1

d · nαε
∫
Tα

φ dS. (20)

Here, nalpha are outward-pointing normal vectors. At this stage, we shall operate an appropriate change
of variable from the real space Tα to the local coordinate system (x, y) defined over the unit triangle
T ≡ {x ≥ 0, y ≥ 0, x+ y ≤ 1}. By definition, the node xα does not belong to Tα. Thus, the set Tα can be
defined using the three other nodes and we can put

x ∈ Tα ⇔ x = xα−1 + x(xα+1 − xα−1) + y(xα+2 − xα−1) (21)

with the convention that xα+4 = xα. So, if we define ωα = iκd · xα, we can calculate∫
Tα

φdS =

∫
Tα

exp[iκd · (xα−1 + x(xα+1 − xα−1) + y(xα+2 − xα−1))] dS

=2Aαeωα−1

∫
T

exp[(ωα+1 − ωα−1)x+ (ωα+2 − ωα−1)y] dxdy,

(22)

where Aα is the aera of Tα. Now, it is useful for the analysis to introduce the family of surface integrals

Imn(a) =

∫
T
xmynφ̂dxdy, (23)

where φ̂ = exp(ax+ by) and a = (a, b) is an arbitrary vector. Thus, we can write∫
Tα

φ dS = 2Aαeωα−1I00(a) with a = (ωα+1 − ωα−1, ωα+2 − ωα−1). (24)

It is also convenient to introduce a set of integers S which contains the four node numbers associated with
the element, that is S = {1, 2, 3, 4}. Following the same approach, it can be shown that∫

Tα

Njφ dS = 2AαeωrI10(a) with a = (ωj − ωr, ωl − ωr), (25)

where it must be understood that the set of indices α, j, l and r must constitute the set S, namely,
{α, j, l, r} = S, which signifies that α, j, l, r must be all different. Otherwise, the value of the integral is zero
(this happens when α = j). Similarly∫

Tα

NjNj′φdS = 2AαeωrI11(a) with a = (ωj − ωr, ωj′ − ωr), (26)
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where it must be understood that {j, j′, α, r} = S. Otherwise, the value of the integral is zero (this happens
when α = j or α = j′). For the particular case where j = j′, we have∫

Tα

N2
j φ dS = 2AαeωrI20(a) with a = (ωj − ωr, ωl − ωr). (27)

The numerical treatment of (23) is presented with all necessary details in Appendix B.
We shall mention exceptional cases that might lead to wrong results corrupted by round-off errors. The first
one corresponding to κ ≈ 0 is easily circumvented by selecting plane wave directions accordingly (see previous
section). A second scenario occurs when a ≈ 0 in equation (45), this case characterizes the fact that the
resulting plane wave direction is orthogonal to one of the surfaces of the element. To tackle this problem, we
shall take advantage of the fact that the exponential function φ̂ is nearly a constant so quadrature methods
are well suited. Integrals are computed numerically using the discrete sum∫

T
f(x, y) dxdy ≈

∑
g

wgf(xg, yg), (28)

where wg and (xg, yg) are, respectively the weight and the quadrature point on the unit triangle. In practice,
the summation is performed over a very small number of terms to achieve high accuracy and the condition
a ≈ 0 means ‖a‖ < 10−2. The use of closed-form expressions also break down when a ≈ 0 or b ≈ 0 or
s ≈ 0 in Eq. (48), this case signifies that the resulting plane wave direction is orthogonal to one edge of the
surface integration domain. Again, the use of Gauss quadrature allows to obtain extremely accurate and
reliable results.

4. Note on computational efficiency

The complexity of the integration algorithm can be assessed for the case of single element having Qj
plane wave directions ‘attached’ to each node xj . Thus, Qj ×Qj′ corresponds to the total number of plane
waves (i.e. function φ) involved for a given pair of indices (j, j′). The computational cost depends largely
on the number of (non-zero) surface integrals and the number of blocks B(j,j′) (of size Qj × Qj′ ) in the
PUFEM elementary matrix which is of the form:

Ae =


B(1,1) B(1,2) B(1,3) B(1,4)

” B(2,2) B(2,3) B(2,4)

” ” B(3,3) B(3,4)

” ” ” B(4,4)

 . (29)

and for which only 6 off-diagonal and 4 diagonal blocks need computing as the rest is obtained by invoking
symmetry. The implemented version of the algorithm follows the description presented earlier : the volume
integral is converted into surface integrals over the reference triangle and then converted into line integrals
for which closed-form solutions are available. To speed up the integration, a Fortran version has been
implemented and linked as a mexfile to Matlab core. This version takes advantage of multithread capability
of modern CPU with openMP shared memory parallelism. The double loop over the tetrahedron vertices is
distributed over the available threads.

As illustrated in Fig. 3, for a sufficiently large number of plane waves (say Q > 150, here we took
Qj = Q), the scaling is almost linear up to 5 threads. The use of a larger number of threads appears to be
inefficient due to the overhead. A profile (valgrind/cachegrind) indicates that around 15% of CPU time is
spent for the computation. The reminder of the computational time is spend mostly for the recombination.

5. Convergence analysis

In this section, we shall investigate the numerical performance of the PUFEM in terms of accuracy and
data reduction. Here the idea is to test the convergence of the method without modifying the coarse mesh.
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Figure 3: Running time for computing a single elementary PUFEM matrix with different number of plane waves Q = 50, 150, 250
and 350. Test ran on 4 Intel(R) Xeon(R) CPU E5-2670 @ 2.60GHz with 16 cores and 32 threads available.

In other words, we perform a Q-refinement as opposed to a h-refinement. Following theoretical arguments
given in [20] and [21] on acoustic field synthesis and the Fast Multipole method, we may assume that the
number of plane waves attached to each node of the FEM mesh should vary quadratically as

Qnode = C(kh̄)2. (30)

This criteria which is also consistent with results given in [6] is node-dependent and h̄ is the longest edge
attached to the node of the mesh. In practice, coefficient C must also be viewed as a function of kh̄ and it
must be adjusted depending on the configuration and the expected accuracy. The behavior of C with respect
to the non-dimensional frequency kh̄ can be found by taking advantage of an artificial wave propagation
problem for which the analytical solution is easily available. To do this, we consider an arbitrary incident
plane wave pinc propagating inside a single regular tetrahedron (the 4 edges are all of equal length h = h̄).
The boundary condition applied on each face is given by

∂p

∂n
= ik(p− pinc) +

∂pinc

∂n
. (31)

To be fair in our convergence test, the incident plane wave direction is always chosen as far as possible from
the plane waves directions of the PUFEM basis, so that peculiar behaviors can be avoided. In all cases,
plane wave directions are computed through the algorithm presented in Section 2, with the aim to ensure a
regularly spaced distribution. The numerical error is evaluated via L2 error criteria on the boundary of the
domain (here we have simply: Γ = ∂Ωe, as there is a single element, and pex = pinc):

ε2 =
‖pex − p‖L2(Γ)

‖pex‖L2(Γ)
. (32)

In Table 1, convergence results are reported. All these tests have been carried out to assess the con-
vergence and verify the effectiveness of the method. Here the condition number Cond is estimated with
Matlab by using the command Condest. Moreover, we also introduce the average discretization level nλ in
the context of 3D PUFEM, nλ describes the number of variables needed to capture a single wavelength. For
3D problems, it is evaluated via:

nλ = λ

(
Ndof∫
Ωe

dΩ

)1/3

. (33)
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kh C Q nλ h/λ log10(Cond) ε2(%)

20 0.080 32 2.04 3.18 6.99 86.59
0.130 52 2.39 3.18 9.24 9.21
0.180 72 2.67 3.18 11.53 0.42
0.230 92 2.89 3.18 14.26 0.020
0.280 112 3.09 3.18 16.44 0.0036
0.300 120 3.16 3.18 17.70 0.0057

45 0.090 183 1.62 7.16 10.72 2.82
0.105 213 1.70 7.16 12.37 0.64
0.120 243 1.78 7.16 14.07 0.077
0.135 273 1.85 7.16 16.19 0.018
0.150 303 1.91 7.16 17.67 0.0027
0.164 333 1.98 7.16 19.23 0.0025

65 0.085 360 1.40 10.35 13.12 9.41
0.094 395 1.45 10.35 14.33 0.19
0.102 430 1.49 10.35 16.39 0.037
0.110 465 1.53 10.35 17.22 0.018
0.118 500 1.56 10.35 18.68 0.0027
0.127 535 1.60 10.35 19.20 0.0029

80 0.080 513 1.28 12.73 14.09 1.08
0.086 549 1.31 12.73 15.30 0.29
0.091 585 1.34 12.73 16.28 0.092
0.097 621 1.37 12.73 17.29 0.011
0.103 657 1.39 12.73 18.75 0.0021
0.108 693 1.42 12.73 19.78 0.0018

Table 1: Convergence test of the PUFEM for a single element of size h.
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Figure 4: The relative error (a), condition number (b), with respect to kh.
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Figure 5: Coefficient C with respect to kh for an expected accuracy of 1% (dotted) and 0.1% (straight).

where Ndof is the total number of degrees of freedom.
After running a series of numerical tests, we managed to obtain the error performance with respect to
different values of the non-dimensional parameter kh, varying from 5 to 80. For the sake of clarity, only 5 of
them are displayed in Figure 4. We can observe that the region of convergence, once it begins, is relatively
narrow, and the error drops abruptly showing exponential rates of convergence until it reaches a plateau.
This is mainly caused by the large condition number inherent to PUFEM with plane waves. A closer analysis
reveals that the plateau is reached as soon as the condition number exceeds 1016 or 1017.
Interestingly, if we draw a horizontal line corresponding to a specified error level, say 1% for instance, then
the intersection points with each curve corresponding to a given value of kh will give the required number
of plane wave directions to attain this accuracy. Hence, by inverting formula (30), we can deduce the
value of coefficient C that guarantees a certain prescribed accuracy. Values of coefficient C are reported
in Figure 5 for two prescribed accuracies of ε2 = 1% and ε2 = 0.1%. It can be observed that the value
of C decreases and converges to a certain value around 0.1 for high frequency. More precisely, the curves
show similar asymptotic behavior as Q ∼ 0.1(kh)2 and the coefficient C ranges between 0.1 and 0.7 as
long as the frequency is sufficiently high compared to the element length (i.e., kh > 10). This suggests
that an unreasonable number of plane waves are needed for small value of kh. In practice, it shows that
PUFEM is not efficient enough for the low-frequency scenario when kh < 10. In this case, the use of classical
piecewise polynomial functions would be a better option. For sufficiently large frequency, or more precisely
when kh > 10, the PUFEM clearly outperforms standard piecewise polynomial FEM. To summarize, we
can anticipate that, the number of plane waves should vary quadratically with respect to kh whereas the
number of degrees of freedom required by standard FEM should grow cubically with frequency, thus the
computational gain is expected to be very substantial at high frequency.

Before we end this section, one should have in mind that these results can be regarded as nearly-optimal
as the problem treated here consists in approximating an arbitrary propagating plane wave with other plane
waves propagating in multiple directions. In the 2D case, a rigorous analysis can be conducted as in [19], the
3D case appears to be more tricky since the wave directions are not known a priori as these are computed
using the Coulomb force method. Finally, the optimal curves of figure 5 should provide a useful ‘rule-of-
thumb’ for assigning the appropriate number of plane waves at each node of the mesh. An example of this
shall be given in the next section.
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6. Applications

6.1. Response to a point source in a hard wall cubic cavity

We now consider the case of radiating monopole placed in a hard wall cubic cavity of size 2 × 2 × 2
(dimensions are given in meters). The total pressure field satisfies

∆p+ k2p = δ(x− x0), (34)

where x0 is the source location. The exact solution to this problem can be recovered by the modal series
[22]

pex =
∑
m

ψm(x)ψm(x0)

k2 − k2
m

(35)

where (ψm, km) are the normalized cavity modes and the associated frequency. In order to circumvent the
singular behavior of the solution, it is judicious to split the pressure as p = pI + pS where

pI = exp(ik|x− x0|)/(4π|x− x0|) (36)

is the free space incident field and pS is the scattered field which is solved with the PUFEM with Neumann
boundary conditions: ∂np

S = −∂npI . The cavity is meshed with 24 elements of typical size h = 2 with a
total of 15 nodes. In Fig. 6, are plotted the PUFEM solution due a point source located near the center
with x0 = (0.9, 0.8, 1). Three numerical tests have been ran by increasing the number of plane waves. Note
that the selection rule (30) indicates that the number of plane waves differs depending on the type of node
it is attached to, thus Qmax refers to the number of plane waves attached to nodes belonging to largest
elements, i.e. the eight corners of the cavity. Clearly, PUFEM solutions with Qmax = 278 have converged
to reasonable accuracy. A careful examination of the imaginary part of the computed solution, which is a
consequence of the complex-valued plane wave basis, shows that it tends to vanish as the number of plane
waves increases. Since the true solution is purely real, the imaginary part could serve as an indicator of the
numerical accuracy. In this scenario, we shall take advantage of this and define the following error estimate

ε̃2 =
‖=(p)‖L2(Γ)

‖<(p)‖L2(Γ)
. (37)

Results of Fig. 7 confirm that the two error indicators (32) and (37) are in perfect agreement (note that 〈Q〉
refers to the average number of plane waves per node used in the calculation). The observed discrepancies
when 〈Q〉 exceeds 300 stem simply from the fact that the truncated modal series does not contain enough
terms to guarantee very precise results. Thus the indicator (37) is very reliable and results show similar
convergence properties as for the test problem of Figure 4. The third curve shows errors obtained when the
total pressure p is computed using a direct approach, that is by expanding the right-hand side of the wave
equation in the PUFEM plane wave basis. In this context, the weak form (4) is∫

Ω

(
∇p · ∇w − k2pw

)
dΩ = −

∫
Ω

w δ(x− x0) dΩ = −w(x0). (38)

This indicates, as expected, that the plane wave basis cannot capture correctly singular or quasi-singular
fields.

6.2. Response to a point source in a treated room

In this section, the simulation of acoustic fields in a reverberation room with treated walls is considered.
The shape of the room is taken from a reverberation chamber from our laboratory in SUPMECA and the
upper surface (‘roof’ as indicated in Fig. 8) is treated acoustically. It is assumed that the surface is locally
reacting and

∂np = ikZ−1p, (39)
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(a) Qmax = 139 (b) Qmax = 278 (c) Qmax = 417

Figure 6: Response in the cavity due to a point source with kh = 30: PUFEM solution with Qmax = 139 (a), Qmax = 278
(b) and Qmax = 417 (c). Top: Real part, Bottom: Imaginary part

where Z is the reduced wall impedance. The acoustic monopole source is located at x0 = (0, 0, 0.5).
First, one shall consider a somewhat artificial problem by choosing a purely imaginary wall impedance

Z = 2i. Figure 9 (left) shows the amplitude of the total pressure field at the specific frequency f = 1620 Hz.
Using dimensionless quantities, this corresponds approximately to kH = 60 where H ≈ 2m stands for the
longest edge of the mesh, i.e. the height of the room. The number of plane waves at each node of the mesh
is chosen using Qnode = 2C(kh̄)2 (which is twice the ‘optimal’ case of (30)) where coefficient C = C(kh̄) is
node-dependent and chosen from results of Figure 5. The total number of degrees of freedom is about 12400,
which means that the average discretization level is nλ = 2.4 d.o.f. per wavelength. In this scenario, the
exact solution is real-valued so it is fair to assume that error estimate (37) is good indicator and it is found
that ε̃2 ≈ 1% which is sufficiently accurate for engineering purposes. We now repeat the same calculation
with a more conventional value for the wall impedance: Z = 2 + 2i. The corresponding acoustic field is
illustrated in Figure 9 (right) showing that the wall treatment allows the amplitude of the sound pressure
to be reduced by an order of magnitude.

In this last example, we shall consider a cavity problem in the presence of a re-entrant corner, where the
sound field is produced by a monopole source placed inside the cavity. In Figure 10, it can be seen that a
small cube of size 1 × 1 × 1 is cut out from the original cubic cavity of dimension 2 × 2 × 2. Similarly to
the reverberant room case, a surface impedance boundary condition Z = 2 + 2i is also applied on the roof
of the cavity, i.e. at z = 2. The characteristic length of this cavity is H = 2 m. The position of the point
source x0 = (0.99, 0.99, 1.01) is located in close proximity of the re-entrant corner of the cavity at a distance
of about d ≈ 1.73 × 10−2 m from the corner. Results (viewed from a given observing angle) are shown in
Figure 10 for two discretization levels. In this example, taking an average number of 〈Q〉 = 220 plane wave
directions per node suffices to guarantee converged results as differences between the two results are hardly
noticeable.
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Figure 7: Response in the cavity due to a point source with kh = 30. Classical error estimate (32) (dotted) and error indicator
based on the imaginary part (37) (straight). Dashed line corresponds to results computed using a direct approach.

7. Conclusions

This paper has brought new contribution to the PUFEM technique for the simulation of acoustic fields in
3D domains. In particular, an exact integration scheme is presented for the fast and accurate computation
of highly oscillatory integrals arising from the PUFEM matrix coefficients associated with the 3D Helmholtz
equation. It is shown that, through successive use of Green’s theorem, volume integrals have closed-form
expressions in which no numerical integration is involved. Through convergence tests, a criteria for selecting
the number of plane waves is proposed. It is shown that this number only grows quadratically with the
frequency thus leading to a drastic reduction in the total number of degrees of freedoms in comparison to
classical FEM. The method has been verified for two numerical examples. In both cases, the method is
shown to converge to the exact solution. For the hard wall cavity problem with a monopole source located
inside, a direct approach which consists in projecting the delta function in the plane wave basis shows
poor convergence due to the singular nature of the solution. Results of practical interest are shown for
the case of a sound source placed in a reverberation room with locally reacting walls. When the surface
impedance is purely imaginary the exact solution is real and an error estimate based on the imaginary part
of the numerical solution allows to assess the quality of the results at a relatively cheap cost. It is believed
that the error estimate could also serve as reliable indicator for arbitrary impedance values. Because the
work presented in this paper is still restricted to linear 3D elements, there is a need for more sophisticated
integration algorithms able to handle geometrically curved elements and this should be the subject of future
work.
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Figure 8: Geometry of the reverberant chamber at SUPMECA (a) meshed with PUFEM elements (b).

(a) (b)

Figure 9: Amplitude of the total pressure field |p|, at f = 1620 Hz. (a): treated roof with purely imaginary impedance Z = 2i
and (b): treated roof with Z = 2 + 2i.

Appendix A: Green’s identity

Recall that the plane wave φ satisfies

∇φ = iκdφ and 4φ = −κ2φ. (40)

By using second Green’s identity,∫
Ωe

FφdΩ = − 1

κ2

∫
Ωe

4F φdΩ− 1

κ2

∫
Se

(F∂nφ− φ∂nF ) dS. (41)

A similar formula holds by replacing F by 4F and it finally yields∫
Ωe

FφdΩ = − 1

κ2

∫
Se

(F − 1

κ2
4F )∂nφ− (∂nF −

1

κ2
∂n4F )φ+ . . . (42)
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Figure 10: Response to a point source located near a re-entrant corner. (b): 〈Q〉 = 220 and (c): 〈Q〉 = 275.

Or in a more tractable form (recall that ε = i/κ):∫
Ωe

FφdΩ = −
∫
Se

(εFd + ε2∇F + ε34Fd + ε4∇(4F ) + . . .) · nφ dS. (43)

Appendix B: Integration over the reference triangle

The aim is to arrive to a closed-form expression for the exact computation of

Imn(a) =

∫
T
xmynφ̂dxdy, (44)

where φ̂ = exp(ax+ by) and the vector a = (a, b) is complex-valued. In the present context, indices m,n are
only varying from 0 to 2. Figure 11 shows the reference triangular domain. The dimension of the integral
domain can be further reduced from surface to its edges by applying Green theorem as in formula (43). This
yields

Imn(a) =
1

‖a‖2
[
a ·
∫
γ

xmyn φ̂ n̂dγ︸ ︷︷ ︸
I1mn(a)

−
∫
γ

∇(xmyn) · n̂ φ̂ dγ︸ ︷︷ ︸
I2mn(a)

+
a

‖a‖2
· 4(xmyn)

∫
γ

φ̂ n̂dγ︸ ︷︷ ︸
I3mn(a)

]
, (45)

in which, the first line integral can be written in its closed-form expression:

I1
mn(a) =

3∑
β=1

a · n̂β
∫
γβ

xmynφ̂dγ

= −b
∫ 1

0[y=0]

xmyneax dx− a
∫ 1

0[x=0]

xmyneby dy + (a+ b)eb
∫ 1

0

xm(1− x)nesx dx

= −bIm,0(a) δn,0 − aIn,0(b) δm,0 + (a+ b)ebIm,n(s), (46)

in which s = a− b. The closed-form expression for the second integral can be expressed as

I2
mn(a) =

3∑
β=1

∫
γβ

∇(xmyn) · n̂βφ̂ dγ

=−
∫ 1

0

nxmyn−1eax dx−
∫ 1

0

mxm−1yneby dy

+ eb
∫ 1

0

[nxm(1− x)n−1 +mxm−1(1− x)n]esx dx

=− Im,0(a) δn,1 − In,0(b) δm,1 + eb[nIm,n−1(s) +mIm−1,n(s)].

(47)
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Figure 11: The integration domain of the reference triangle in the local coordinates system.

The closed-form expression of third integral can be derived based on the previous calculated integrals, which
is given by

I3
20(a) = I3

02(a) =
2

‖a‖2
I1
00(a). (48)

The line integrals are all expressed in terms of the elementary integrals

Im,n(s) =

∫ 1

0

xm(1− x)nesx dx (49)

For the purposes of avoiding round off errors, enhancing the numerical stability as well as saving computa-
tional time, Evans and Webster [23, 15] have shown that these integrals can be obtained via the recurrence:

Qm(s) =

∫ 1

0

xmesxdx, (50)

Qm(s) = [es −mQm−1(s)] /s, (51)

where Q0(s) = (es − 1)/s and Qm(0) = 1/(m+ 1) when s = 0. The other integrals can be easily recovered
once all monomials have been computed.

References

[1] J.M. Melenk, I. Babuška, The Partition of unity finite element method: Basic theory and applications, Comput. Meth.
Appl. Mech. Eng. 139 (1996) 289–314.

[2] T. Huttunen, P. Monk, J.P. Kaipio, Computation aspects of the ultra weak variational formulation, J. Comput. Phys. 182
(2002) 27–46.

[3] E. Deckers, O. Atak, W. Desmet, The wave based method: An overview of 15 years of research, Wave Motion 51 (2014)
550–565.

[4] C. Farhat, I. Harari, L. Franca, The discontinuous enrichment method, Comput. Meth. Appl. Mech. Eng. 190 (2001)
6455–6479.
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