N
N

N

HAL

open science

Lattice-Based zk-SNARKSs from Square Span Programs

Rosario Gennaro, Michele Minelli, Anca Nitulescu, Michele Orru

» To cite this version:

Rosario Gennaro, Michele Minelli, Anca Nitulescu, Michele Orru. Lattice-Based zk-SNARKSs from
Square Span Programs. ACM CCS 2018, Oct 2018, Toronto, Canada. hal-01743360

HAL Id: hal-01743360
https://hal.science/hal-01743360
Submitted on 26 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01743360
https://hal.archives-ouvertes.fr

Lattice-Based zk-SNARKSs from Square Span Programs

Rosario Gennaro', Michele Minelli?3, Anca Nitulescu®?, and Michele Orru??3

! City College of New York, USA
2 DIENS, Ecole normale supérieure, CNRS, PSL Research University, 75005 Paris, France

3 Inria

rosario@cs.ccny.cuny.edu
{michele .minelli, anca.nitulescu, michele. orru}@ens fr

Abstract. Zero-knowledge SNARKSs (zk-SNARKS) are non-interactive proof systems with
short (i.e., independent of the size of the witness) and efficiently verifiable proofs. They
elegantly resolve the juxtaposition of individual privacy and public trust, by providing an
efficient way of demonstrating knowledge of secret information without actually revealing
it. To this day, zk-SNARKs are widely deployed all over the planet and are used to keep
alive a system worth billion of euros, namely the cryptocurrency Zcash. However, all current
SNARKSs implementations rely on so-called pre-quantum assumptions and, for this reason,
are not expected to withstand cryptanalitic efforts over the next few decades.

In this work, we introduce a new zk-SNARK that can be instantiated from lattice-based
assumptions, and which is thus believed to be post-quantum secure. We provide a gener-
alization in the spirit of Gennaro et al. (Eurocrypt’13) to the SNARK of Danezis et al.
(Asiacrypt’14) that is based on Square Span Programs (SSP) and relies on weaker computa-
tional assumptions. We focus on designated-verifier proofs and propose a protocol in which a
proof consists of just 5 LWE encodings. We provide a concrete choice of parameters, showing
that our construction is practically instantiable.

Keywords: SNARK, zero-knowledge, post-quantum.

1 Introduction

In a zero-knowledge proof, a powerful prover P can prove to a weaker verifier V that a particular
statement x € L is true, for some NP language L (with corresponding witness relation R), without
revealing any additional information about the witness. For NP languages, P can be a polynomial
time machine with input also the witness w that x € L (the witness is a proof that = € L, i.e.
R(z,w) holds, but is not a zero-knowledge proof, since it reveals more information than just the
mere fact that « € L). Since their introduction in [GMR89] zero-knowledge (ZK) proofs have been
shown to be a very powerful instrument in the design of secure cryptographic protocols.

For practical applications, researchers immediately recognized two limiting factors in zero-
knowledge proofs: the original protocols were interactive and the proof could be as long as (if not
longer than) the witness. Non-interactive zero-knowledge (NIZK) proofs [BFMS88] and succinct
ZK arguments [Kil92, Mic94] were introduced shortly thereafter. Those results were considered
mostly theoretical proofs of concept until more recently, when several theoretical and practical
breakthroughs have shown that such proofs (renamed zk-SNARGs for Succinct Non-interactive
ARGuments or zk-SNARKSs if the proofs also guarantee that the Prover knows the witness w) can
indeed be used in practical applications.

Gennaro, Gentry, Parno and Raykova [GGPR13] proposed a new, influential characterization of
the complexity class NP using Quadratic Span Programs (QSPs), a natural extension of span pro-
grams defined by Karchmer and Wigderson [KW93]. They show there is a very efficient reduction
from boolean circuit satisfiability problems to QSPs. Their work has lead to fast progress towards
practical verifiable computations. For instance, using Quadratic Arithmetic Programs (QAPs), a
generalization of QSPs for arithmetic circuits, Pinocchio [PHGR13] provides evidence that verified
remote computation can be faster than local computation. At the same time, their construction is

Table 1. Security estimates for different choices of LWE parameters (circuit size fixed to d = 219), together with
the corresponding sizes of the proof 7 and of the CRS (when using a seeded PRG for its generation).

security level A n log o logq |7 |crs| ZK
. 164 950 —150 800 0.45 MB 9.37MB
medium
172 1400 —180 800 0.67MB 9.37 MB v
. 253 1200 —150 800 0.57MB 9.37MB
high
247 1700 —180 800 0.81 MB 9.37MB v
. 357 1450 —150 800 0.69 MB 9.37MB
paranoid
363 2100 —180 800 1.00 MB 9.37MB v

zero-knowledge, enabling the server to keep intermediate and additional values used in the com-
putation private. Optimized versions of SNARK protocols based on QSPs approach are used in
various practical applications, including cryptocurrencies such as Zcash [BCG*14al, to guarantee
anonymity while preventing double-spending (via the ZK property).

The QSP approach was generalized in [BCI*13] under the concept of Linear PCP (LPCP) (there
is a construction of an LPCP for a QSP satisfiability problem) — these are a form of interactive
ZK proofs where security holds under the assumption that the prover is restricted to compute
only affine combinations of its inputs. These proofs can then be turned into (designated-verifier)
SNARKSs by using a linear-only encryption, i.e. an encryption scheme where any adversary can
output a valid new ciphertext, only if this is an affine combination of some previous encodings that
the adversary had as input (intuitively this “limited malleability” of the encryption scheme, will
force the prover into the above restriction).

So far all known practical SNARKSs rely on “classical” pre-quantum assumptions?®. Yet, widely
deployed systems relying on SNARKSs (such as the Zcash cryptocurrency [BCG*14b]) are expected
not to withstand cryptanalitic efforts over the course of the next 10 years [ABL"17, Appendix
C]. It is an interesting research question, as well our responsibility as cryptographers, to provide
protocols that can guarantee people’s privacy over the next decade. We attempt to make a step
forward in this direction by building a designated-verifier zk-SNARK that relies on the Learning
With Errors (LWE) assumption, initially proposed by Regev in 2005 [Reg05], and right now the
most widespread post-quantum cryptosystem supported by a theoretical proof of security.

SNARKS based on lattices. Recently, in two companion papers [BISW17, BISW18], Boneh et
al. provided the first designated-verifier SNARKS construction based on lattice assumptions.

The first paper has two main results: an improvement on the LPCP construction in [BCI*13]
and a construction of linear-only encryption based on LWE. The second paper presents a different
approach where the information-theoretic LPCP is replaced by a LPCP with multiple provers,
which is then compiled into a SNARK again via linear-only encryption. The main advantage of this
approach is that it reduces the overhead on the prover achieving what they call quasi-optimality’.

Our contributions. In this paper, we frame the construction of Danezis et al. [DFGK14] for
Square Span Programs in the framework of “encodings” introduced by Gennaro et al. [GGPR13].

* We note that the original protocol of Kilian [Kil92] is a SNARK which can be instantiated with a
post-quantum assumption since it requires only a collision-resistant hash function — however (even in
the best optimized version recently proposed in [BSBHR18]) the protocol does not seem to scale well
for even moderately complex computations.

5 This is the first scheme where the prover does not have to compute a cryptographic group operation
for each wire of the circuit, which is instead true e.g., in QSP-based protocols.

We slightly modify the definition of encoding to accommodate for the noisy nature of LWE schemes.
This allows us to have a more fine-grained control over the error growth, while keeping previous
examples of encodings still suitable for our construction. Furthermore, SSPs are similar but simpler
than Quadratic Span Programs (QSPs) since they use a single series of polynomials rather than 2 or
3. We use SSPs to build simpler and more efficient designated-verifier SNARKSs and Non-Interactive
Zero-Knowledge arguments (NIZKs) for circuit satisfiability (CIRC-SAT).

We think our approach is complementary to [BISW17, BISW18]. However, there are several
reasons why we believe that our approach is preferable:

— Zero-Knowledge. The LPCP-based protocols in [BISW17, BISW18] are not ZK and the
works do not explicitly describe ways to make them ZK (except by referring to generic trans-
formations). Considering the LPCP constructed for a QSP satisfiability problem, there is a
general transformation to obtain ZK property [BCIT13], but this introduces some overhead.
Nevertheless, in the lattice setting, we are not sure this approach still holds. In contrast, our
protocol is SSP-based and can thus be made ZK at essentially no cost for either the Prover or
the Verifier. Our transformation is different, exploiting special features of SSPs, and yields a
zk-SNARK with almost no overhead (if an adapted encoding is used).

— Weaker Assumptions. The linear-only property introduced in [BCI*13] implies all the se-
curity assumptions needed by a SSP-suitable encoding, but the reverse is not known to hold.
Our proof of security therefore relies on weaker assumptions, and by doing so, “distills” the
minimal known assumptions needed to prove security for SSP, and instantiates them with an
LWE-based approach.

— Simplicity and Efficiency. While the result in [BISW18] seems asymptotically more efficient
than any SSP-based approach, we suspect that, for many applications, the simplicity and
efficiency of the SSP construction will still provide a concrete advantage in practice. To drive
this point home we have been implementing our scheme and testing it on real-life applications
and the results are encouraging (on the other hand no implementation is offered for [BISW17,
BISW18] pointing to the theoretical nature of those results).

Technical challenges. Although conceptually similar to the original proof of security for QSP-
based SNARKS, our proof encounters some specific technical challenges due to the noise growth of
the LWE-based encoding. In particular these impose additional LWE-specific verification checks
not needed in a “pure” QSP implementation. Such issues arise from the reduction to the weaker
assumptions used in our proofs and are not needed in [BISW17, BISW18] because of the stronger
linear-only assumption used there. Additionally, we incorporate some optimizations from SSP-
based SNARKS [DFGK14].

Instantiating our encoding scheme with a lattice-based scheme like Regev encryption, differs
from [GGPR13] and introduces some technicalities, first in the verification step of the protocol,
and second in the proof of security. Our encoding scheme is additively homomorphic and supports
affine operations. On the other hand, we are constrained to only allow for a limited number of
homomorphic operations because of the bounded error growth in lattice-based encryption schemes.
Since in these schemes the error is additive, to compute a linear combination of N encodings (where
the coefficients for the linear combination are drawn from a field F = Z,,), we need to scale some
parameters for correctness to hold. However, if the encryption scheme supports modulus switching,
it may be possible to work with a smaller modulus during decoding. Anyway, we will consider in this
work that we are allowed to perform just a bounded number of “linear” operations on encodings
and make sure that this bound is sufficient to perform verification and to make a security reduction.

Furthermore, the operations considered are affine rather than linear. The main reason for this
adaptation is that the description is more appropriate for our proposed lattice-based encoding (in
which a careful analysis of the noise growth needs to be made).

2 Prerequisites

Notation. We denote the real numbers by R, the natural numbers by N, the integers by Z and
the integers modulo some g by Z,. Let A € N be the computational security parameter, and x € N
the statistical security parameter. For two integers a,b € Z, we denote with a//b the quotient of
the Euclidean division between a and b. We say that a function is negligible in A\, and we denote
it by negl(\), if it is a f (A) = 0 (A\7°) for every fixed constant c. We also say that a probability is
overwhelming in X if it is 1 — negl(X). We let M.rl(\) be a length function (i.e. a function N — N
polynomially bounded) in A defining the length of the randomness for a probabilistic interactive
Turing Machine M. When sampling uniformly at random the value a from the set S, we employ
the notation a «s.S. When sampling the value a from the probabilistic algorithm M, we employ
the notation a < M. We use = to denote assignment. For an n-dimensional column vector d, we
denote its i-th entry by a;. In the same way, given a polynomial f, we denote its i-th coefficient
by fZ Unless otherwise stated, the norm |-| considered in this work is the ¢ norm. We denote by
@b the dot product between vectors @ and b. For a NP relation R between a set of statements
denoted by u and witnesses denoted by w: we use L(R) to denote the language associated to R.

Unless otherwise specified, all the algorithms defined throughout this work are assumed to be
probabilistic Turing machines that run in time poly (\) - i.e. PPT. An adversary is denoted by A4;
when it is interacting with an oracle O we write A®. For two PPT machines A, B, with the writing
(A|B)(z) we denote the execution of A followed by the execution of B on the same input x and
with the same random coins. The output of the two machines is concatenated and separated with
a semicolon, e.g., (outa; outg) < (A|B) (z).

2.1 Square Span Programs

We characterize NP as Square Span Programs (SSPs) over some field F of order p. SSPs were
introduced first by Danezis et al. [DFGK14].

Definition 1 (SSP). A Square Span Program (SSP) over the field F is a tuple consisting of m+1
polynomials vo(x), ..., vm(x) € F[z] and a target polynomial t(x) such that deg(v;(x)) < deg(t(x))
foralli=0,...,m. We say that the square span program ssp has size m and degree d = deg(t(x)).
We say that ssp accepts an input aq,...,a; € {0,1} if and only if there exist apy1,...,am € {0,1}
satisfying:

t(z) divides <vo(x) + Z aivi(x)> —1.
i=1

We say that ssp verifies a boolean circuit C : {0,1}* — {0,1} if it accepts exactly those inputs
(a,...,a¢) € {0,1}* that satisfy C(a1,...,as) = 1.

Universal circuit. In the definition, we may see C as a logical specification of a satisfiability
problem. In our zk-SNARK we will split the ¢ inputs into £, public and ¢,, private inputs to make
it compatible with universal circuits Cyy : {0, 1} x {0,1}» — {0, 1}, that take as input an £,-bit
description of a freely chosen circuit C and an £,,-bit value w and return 1 if and only if C(w) = 1.
Along the lines of [DFGK14], we consider the “public” inputs from the point of view of the prover.
For an outsourced computation, they might include both the inputs sent by the clients and the
outputs returned by the server performing the computation. For CIRC-SAT, they may provide a
partial instantiation of the problem or parts of its solution. This treatment is more general than
CIRC-SAT, for which ¢,, = 0 - since the SSP is satisfied if the witness w satisfies C(w) = 1.

Theorem 2 ([DFGK14, Theorem 2]). For any boolean circuit C: {0,1}* — {0,1} of m wires
and n fan-in 2 gates and for any prime p = max(n,8), there exist polynomials vo(x), ..., vm(x)
and distinct roots r1,...,rq € F such that C is satisfiable if and only if:

d

m 2
n(x — ;) divides (vo(:z?) + Z aivi(x)> -1,
i=1

i=1

where ay, ..., ay, € {0,1} correspond to the values on the wires in a satisfying assignment for the
circust.

Define t(x) =]_[le(:c — 1), then for any circuit C: {0,1}* — {0,1} of m wires and n gates,
there exists a degree d = m + n square span program ssp = (vo(x), ..., vm(x),t(z)) over a field F

of order p that verifies C.

SSP generation. We consider the uniform probabilistic algorithm SSP, that on input a boolean
circuit C : {0,1} — {0,1} of m wires and d gates, chooses a field F, with |F| > max(n,8), and
samples d = m+n random elements r1, ..., rq € F to define the target polynomial t(x) = H;Ll(x—
r;), together with the set of polynomials {vg(z),...,vm(x)} composing the SSP corresponding to
C.

(vo(x),...,vm(x),t(x)) < SSP(C)

2.2 Succinct Non-Interactive Arguments

In this section we provide formal definitions for the notion of succinct non-interactive arguments
of knowledge (SNARKSs).

Definition 3. A designated-verifier non-interactive proof system for a relation R is a triple of
algorithms N = (G, P, V) as follows:

(vrs,crs) < G(1M, R) takes as input some complexity 1* and outputs a common reference string
crs that will be given publicly, and vrs, a trapdoor key that will be used for verification. For
simplicity, we will assume in the future that crs can be extracted from vrs, and that the unary
complezity 1* can be derived as well from crs.

7 «— P(crs,u,w) takes as input the crs, a statement u and a witness w, and outputs some proof of
knowledge .

bool — V(vrs,u,) takes as input a statement u together with a proof w, and the trapdoor key vrs,
and outputs true if the proof was accepted, false otherwise.

If the verification algorithm V takes as input the CRS instead of vrs, then the NI proof system
is called publicly verifiable.

Definition 4 (SNARK). A succinct non-interactive argument of knowledge (SNARK) is a non-
interactive proof system that satisfies the additional properties of completeness, succinctness, and
knowledge soundness.

Roughly speaking, completeness means that all correctly generated proofs verify; succinctness that
the size of the proof is linear in the security parameter X; knowledge soundness [BG93] that for
any prover able to produce a valid proof for a statement in the language, there exists an efficient
algorithm capable of extracting a witness for the given statement. More formally:

Definition 5 (Completeness). A non-interactive proof system I for the relation R is (compu-
tationally) complete if for any PPT adversary A:

AdviyRPy (M) = Pr[COMPLp 4(A)] =1 — negl()),
where COMPLp » 4(A) is the game depicted in Fig. 1.

Definition 6 (Knowledge Soundness). A non-interactive proof system N for the relation R
is knowledge-sound if for any PPT adversary A there exists an extractor Ext 4 such that:

AV 4 Exe (V) = Pr[KSNDp s e, (M)] = negl (V)

where KSNDp 4 e, (A) is defined in Figure 1.

Game COMPLp . 4()\)

Game KSNDH)R,A)EXM \)

crs — M.G(1%)
(u, w) < A(crs)

m «— MN.P(crs, u, w)

(crs, vrs) « M.G(1%)
(u, m;w) < (A|Exta)(crs)

return (R(u,w) = false A M.V(vrs,u,r)) return M.V(crs, u, 7) and R(u, w) true

Game ZKp % sim, 4 () Oracle PROVE(u, w)

(crs,vk) — M.G(1%) if R(u, w) = false return L
b<«s{0,1} if b=1 7« M.P(crs, u,w)
b — ARV (yrs) else m «— Sim(vrs, u)

return (b =b) return

Fig. 1. Games for completeness (COMPL), knowledge soundness (KSND), and zero-knowledge (ZK).

An argument of knowledge is a knowledge-sound proof system. If the adversary is computation-
ally unbounded, we speak of proofs rather than arguments.

Remark 7. An important consideration that arises when defining knowledge soundness in the
designated-verifier scenario is whether the adversary should be granted access to a proof-verification
oracle. Pragmatically, allowing a verification oracle captures whether or not a CRS can be reused
poly (A) times. While this property follows immediately in the public-verifier setting, the same is
not true for the designated-verifier setting. In the specific case of our construction, we formulate
and prove our protocol with the stronger notion (which has been addressed to as strong soundness
in the past [BISW17]), and quickly discuss which optimizations can take place when using the
weaker notion of soundness.

We distinguish two types of arguments of knowledge: publicly verifiable ones, where the security
holds against adversaries that have access to vrs; and those with designated verifier, where the
verification step needs access to vrs. It is straightforward to note that, with the help of an encryption
scheme, any publicly-verifiable proof system can be transformed into an analogous designated-
verifier one. It is nonetheless important to note that in the standard model, all constructions we
are aware of so far somehow imply the existence of an encryption scheme.

A proof system [1 for R is zero-knowledge if no information about the witness is leaked by the
proof. More precisely:

Definition 8 (Zero-Knowledge). A non-interactive proof system I is zero-knowledge if there
exists a simulator Sim such that for any PPT adversary A:

AdV?llfR,Sim,A(/\) = Pr [ZKI'I,R,Sim,A(/\)] = negl(A),

where ZKn g sim.4(A) s defined in Figure 1. Zero-knowledge SNARKs are informally called zk-
SNARKs.

2.3 Encoding Schemes

Definition 9 (Encoding Scheme). An encoding scheme Enc over a field F is composed of the
following algorithms:

— (pk,sk) < K(1*), a key generation algorithm that takes as input some complexity 1 and
outputs some secret state sk together with some public information pk. To ease notation, we
are going to assume the message space is always part of the public information and that pk can
be derived from sk.

— S < E(a), a non-deterministic encoding algorithm mapping a field element a to some encoding
space S, such that {{E(a)} : a € F} partitions S, where {E(a)} denotes the set of the possible
evaluations of the algorithm E on a, that is {E(a;r) : v € E.xl(\)}. In other words, we require
the decoding algorithm D to be a function.

Depending on the encoding algorithm, E will require either the public information pk generated
from K or the secret state. For our application targeted at designated-verifier proofs it will be
the case of sk. To ease notation, we will omit this additional argument.

The above algorithms must satisfy the following properties:

d-affinely homomorphic: there exists a poly(\) algorithm Eval that, given as input the public

parameters pk, a vector of encodings (E(a;))%, coefficients & = (c;)% € F and constant factor
beF, outputs a valid encoding of d - ¢+ b with probability overwhelming in . If the constant
factor is omitted, it is assumed to be 0.

quadratic root detection: there exists an efficiently computable algorithm Q(J,pp) that, given
as input some parameter § (either the public information pk or the verification key sk, depending
on the kind of verifier), can test if the evaluation of quadratic polynomial pp with coefficients
in the field is zero.

image verification: there exists an efficiently computable algorithm € that, given as input some
parameter § (again, either pk or sk), can distinguish if an element c is a correct encoding of a

field element.

Sometimes, in order to ease notation, we will employ the writing ct := Eval((E(a;)), (¢;):) = E(c)
actually meaning that ct is a valid encoding of ¢ = Y] a;¢;, that is ct € {E(c) }. It will be clear from
the context (and the use of symbol for assignment instead of that for sampling) that the randomized
encoding algorithm is not actually invoked.

Decoding algorithm. When using an encryption scheme in order to instantiate an encoding
scheme, we can naturally define the decoding algorithm D that simply takes advantage of the
decryption procedure. Encoding schemes that only need the public parameters pk to perform
quadratic root detection and image verification lead to a SNARK that is publicly verifiable. En-
coding schemes that rely on the secret state sk - as those we focus on in this work - lead instead
to designated-verifier proofs. More specifically, since we study encoding schemes derived from en-
cryption functions, quadratic root detection for designated-verifiers is trivially obtained by using
the decoding algorithm D.

Remark 10. Our specific instantiation of the encoding scheme presents some slight differences with
[GGPR13]. First, we allow only for a limited number of homomorphic operations because of the
error growth in lattice-based encoding schemes. Furthermore, these operations are affine rather than
linear. The main reason for this adaptation is that the description is more apt for our proposed
lattice-based encoding (in which a careful analysis of the noise growth needs to be made), and that
at the same time it does not exclude previous constructions.

The reason for allowing affine operations rather limiting ourselves to only linear is a mere
technicality. The inhomogeneous part can always be constructed for linear-only schemes by adding
E(1) to the public information pk, which, as a matter of fact, happens to be already present in all
previous encoding schemes. For example, in pairing-based encodings this is just the group generator,
and it is usually included already in the pairing group description. The converse cannot be said
about Regev encryption where, given E(m), it is always possible to compute a valid encoding of
m+1 without any additional information. Furthermore, the bounds on the number of allowed linear
operations, those can simply be considered oo for the encodings provided in the past [GGPR13].

In order to guarantee a security reduction of our construction of Section 4, we will have to
guarantee that some encoding provided by the adversary is not “too noisy” and that it is still
possible to perform homomorphic operations on it. Let us consider a function test-error which,
given as input the secret state sk together with some encoding ct, returns true or false depending

on whether it is still possible to compute a certain linear operation known in advance. Since the
function takes as input the secret key itself, it is easy to build such a function relying just on the
Eval and € - image verification - algorithms.

Example 11. We present the classical example of encoding scheme using symmetric pairings on
elliptic curves. The asymmetric variant of this encoding scheme is the most classical example of
zk-SNARKSs. Consider the cyclic groups G, G of the same prime order p equipped with the bilinear
non-degenerate map e : G x G — Gp. The groups G, Gt are generated respectively by G € G
and by e(G, G) € Gr. For instance, the family of elliptic curves G := E(F,). described in [BF01]
satisfies the above description. The encoding scheme simply computes E : x — xG. The public
information pk consists of the pairing group description I" := (p, G, G, e, G); the secret state sk is
set to L. This encoding satisfies the three requirements as follows:

— d-affine homomorphic evaluations between a vector of encodings (E(a;))¢ with the coefficients
(c;)4 and constant term b is done as follows:

d
Eval((E(a:))?, ()¢, b) := 2 E(aic;) + b E(1),

In other words, the Eval algorithm simply outputs the group element (Zf a;c; + b) G.

— The efficiently-computable quadratic root detection algorithm @ simply consists of the pairing
e: G x G — Gr and the quadratic test takes place in the target group Gr. More concretely,
given encodings (E(a;))¢, use the bilinear map to compute e(G, G)PP(91:+%) where pp is a
quadratic polynomial, and check whether it equals the identity element in G .

— Image verification is straightforward. A group element P is an encoding of an element s in G
iff P = sG = E(s).

A more concrete encoding scheme will be discussed in Section 3. In particular, we conjecture
that it satisfies the assumptions of the following section.

2.4 Assumptions

Throughout this paper we rely on a number of computational assumptions. All of them have been
introduced in the past (e.g., [GGPR13]): we report them here for completeness and in order to
explore the relations between them.

The g-power knowledge of exponent assumption (¢-PKE) is a generalization of the knowledge of
exponent assumption (KEA) introduced by Damgard [Dam92]. It says that given E(s),...,E(s?)
and E(as),...,E(as?) for some coefficient «, it is difficult to generate ct,ct encodings of ¢, ac
without knowing the linear combination of the powers of s that produces ct.

Assumption 1 (¢-PKE). The g-Power Knowledge of Exponent (q-PKE) assumption holds rel-
ative to an encoding scheme Enc and for the class Z of auxiliary input generators if, for every
non-uniform polynomial time auziliary input generator z € Z and non-uniform PPT adversary A,
there exists a non-uniform extractor Ext such that:

ke
AdVEnC,A,ExtA ()‘) = Pr [q_PKEEnc,A,ExtA ()‘)] = negl ()‘) 9
where q-PKEg,c 4 gx (N) 45 the game depicted in Figure 2.
The ¢-PDH assumption has been a long-standing, standard g-type assumption [Gro10, BBG05],

Basically it states that given (E(s), ..., E(s9), E(s9%2),...,E(s24), it is hard to compute an encoding
of the missing power E(s?771).

Game Q-PKEEnc.A,ExtA,z(/\)

(pk,sk) — K(1%)

a,s —sF*

o« (pk,E(s),...,E(s?),E(a),E(as),...,E(as?))
z «— Z(pk, o)

(ct,Ctsar, ..., aq) < (A[Exta)(o, 2)

return ct € {E(ZZ aksk)} A Cte {E(a EZ aksk)}

Game ¢-PKEQgnc 4,6, ()

Game g-PDHg,. 4(\)

(pk, s;) <K1Y (pk, sk) — K(1%)

s«—sF
crs (pk,E(S),.‘,7E(Sq),E(8q+2),...,E(qu)) +2 2,
o — (E(s),...,E(s7),E(s7*?),... E(s*
(E(c), e:b) «— (AlExta)(crs) , (,(f)) (R EE e B

if b =0 return e € {E(c)}

a+1
else return e ¢ {E(c)} return y € {E(s"") }

Fig. 2. Games for ¢-PKE, ¢-PKEQ, ¢-PDH assumptions.

Assumption 2 (¢-PDH). The g-Power Diffie-Hellman (q-PDH) assumption holds for encoding
Enc if for all PPT adversaries A we have:

Advg PR (N) := Pr[q-PDHg,. 4(\)] — 1/2 = negl()\),
where q-PDHg,. 4()\) is defined as in Figure 2.

Finally, we need another assumption to be able to “compare” encoded messages. The ¢-PKEQ
assumption boils down to the question of whether A can output (E(c), e) without Ext 4 being able
to tell whether e is also an encoding of c.

Assumption 3 (¢-PKEQ). The g-Power Knowledge of Equality (¢-PKEQ) assumption holds for
the encoding scheme Enc if for every PPT adversary A there exists an extractor Ext 4 such that:

Advg;\?(j\(?ExtA()\) = Pr [q_PKEQEnc,A,ExtA (A)] = negl ()‘) ’
where q-PKEQg,c 4 gxt (A) 45 the game depicted in Figure 2.

This last assumption is needed solely in the case where the attacker has access to a verification
oracle (see Remark 7). Since the encoding could be non-deterministic, the simulator in the security
reduction ofSection 5.2 needs to rely on ¢-PKEQ to simulate the verification oracle. Pragmatically,
this assumption allows us to test for equality of two encoded messages even without having access
to the secret key.

3 Lattice-based encodings

In this section we give a brief introduction to lattices and we describe a possible encoding scheme
based on lattice assumptions.

Lattices. A m-dimensional lattice A is a discrete additive subgroup of R™. For an integer k < m
and a rank k matrix B € R™** A (B) = {Bf€ R™ | Z€ Z"} is the lattice generated by the
columns of B.

Game dLWEp, 4()) Oracle ENCODE

I':=(p,q,n,a) = Pg(1") a<—sZy

§esZy € < Xqa

b s {0,1} ifb=1c=58-d+e
b AP else c s Z,

return (b =1b) return (d,c)

Fig. 3. The decisional LWE problem for parameters I

Gaussian distribution. For any o € R, let p, (%) = e~mI&1°/o* he the Gaussian function over
R" with mean 0 and parameter o. For any discrete subset D € R" we define p, (D) := > -, po (%),
the discrete integral of p, over D. We then define x,, the discrete Gaussian distribution over D
with mean 0 and parameter o as:

- po(y)
Xo:D—- R :§— .
(D)

We denote by x7 the discrete Gaussian distribution over R™ where each entry is independently
sampled from x,.

B

Lattice-based Encoding Scheme. We propose an encoding scheme Enc that consists in three
algorithms as depicted in Figure 4. This is a slight variation of the classical LWE cryptosystem
initially presented by Regev [Reg05], described by parameters I' := (¢, n,p,«), with ¢,n,p € N
and 0 < a < 1. This construction is an extension of the one presented in [BV11].

We assume the existence of a deterministic algorithm Pg that, given as input the security
parameter in unary 1%, outputs a LWE encoding description I'. Similar assumptions have been
used in the past by Bellare et al. [BFS16] for bilinear group descriptions. The main advantage in
choosing Pg to be deterministic is that every entity can (re)compute the description for the security
parameter, and that no single party needs to be trusted with generating the encoding parameters.
Moreover, real-world encodings have fixed parameters for some well-known values of \. For the
sake of simplicity, we define our encoding scheme with a LWE encoding description I" and assume
that the security parameter A can be derived from I

Roughly speaking, the public information is constituted by the LWE parameters I' and an
encoding of m is simply an LWE encryption of m. The LWE secret key constitutes the secret
state of the encoding scheme. We say that the encoding scheme is (statistically) correct if all valid
encodings are decoded successfully (with overwhelming probability).

Assumption 4 (dLWE). The decisional Learning With Errors (ALWE) assumption holds for the
parameter generation algorithm Pg if for any PPT adversary A:

Advpl™S (N) == Pr[dLWEp, 4(A)] —1/2 = negl()),
where ALWEp, 4(A) is defined as in Figure 3.

In [Reg05], Regev showed that solving the decisional LWE problem is as hard as solving some
lattice problems in the worst case. We recall here this result:

Theorem 12 (Hardness of dLWE [Reg05]). For any parameter generation algorithm Pg out-
putting p = poly (\), a modulus ¢ < 2P°Y™) and a (discretized) Gaussian error distribution pa-
rameter 0 = aq = 2/n with 0 < a < 1, solving dLWEp, ,(\) is at least as hard as solving
GapSVPO(n/a).

10

Definition 13. An encoding scheme Enc is correct if, for any §« G(1*) and m € Z,:
Pr[D(5,E(5,m)) # m] = negl(\).

We say that an encoding ct of a message m under secret key § is valid if D (§,ct) = m. We say
that an encoding is fresh if it is generated through the E algorithm. We say that an encoding is
stale if it is not fresh.

Lemma 14 (Correctness). Let ct = (—d,d -5+ pe+m) be an encoding. Then ct is a valid
encoding of a message m e Z, if e < %.

Image verification and quadratic root detection can be implemented using D, providing the
secret key as input. The algorithm € for image verification proceeds as follows: decrypts the encoded
element and tests for equality between the two messages. The algorithm @ for quadratic root
detection is straightforward: decrypt the message and evaluate the polynomial, testing if it is equal

to 0. Given a vector of d encodings ct € ng("ﬂ), a vector of coefficients ¢ € Zg and a constant
b € Z,, the homomorphic evaluation algorithm is defined as follows: Eval (c_’E,E',b) = &-ct +b.

As previously mentioned, whenever b is omitted from the arguments of Eval, we implicitly mean
b = 0. During the homomorphic evaluation the noise grows as a result of the operations which are
performed on the encodings. Consequently, in order to ensure that the output of Eval is still a valid
encoding, we need to start with a sufficiently small noise in each of the initial encodings.

In order to bound the size of the noise, we first need a basic theorem on the tail bound of
discrete Gaussian distributions due to Banaszczyk [Ban95]:

Lemma 15 ([Ban95, Lemma 2.4]). For any o, T € R™ and @€ R":
Pr[Z « X" : |#-d| = Told|] < 2exp(—nT?). (1)
At this point, this corollary follows:

Corollary 16. Let 5<sZy be a secret key and m = (my,...,mq) € Zg be a vector of messages.
Let ct be a vector of d fresh encodings so that ct; < E (5,m;), and ¢ e Zg be a vector of coefficients.

If ¢ > 2p204/"7d, then Eval (8, c_‘E) outputs a wvalid encoding of m - ¢ under the secret key § with
probability overwhelming in k.

Proof. The fact that the message part is m - € is trivially true by simple homomorphic linear

operations on the encodings. Then the final encoding is valid if the error does not grow too much
during these operations. Let €€ Zg be the vector of all the error terms in the d encodings, and let

T = 4/k/7. Then by Lemma 15 we have:

Pr[é‘<— XZ 2 el = \/;05|] < 2exp(—k).
T

For correctness we need the absolute value of the final noise to be less than ¢/2p (cf. Lemma 14).
Since it holds that Vc'e Zg, |Z| < pV/d, we can state that correctness holds if

\/Eap\/g <L
T 2p
. . 5 |kd
which gives ¢ > 2p“o4 [—. O
T

11

K(1%) E(5,m) D(3, (o, c1))

I':= (p,g,n,) = Pg(1*) I= (p,g,n,) = Pg(1") I'=(p,q,n,a) = Pg(1*)
§esZy a<—sZy return (¢ - §+c1) (mod p)
return (I, 5) 0=qa; €< Xo

return (—d, @-§+ pe+m)

Fig. 4. An encoding scheme based on LWE.

Smudging. When computing a linear combination of encodings, the distribution of the error
term in the final encoding depends on the coefficients of the combination, and it could therefore
potentially leak information to whoever holds the secret key. We can solve this problem with the
well known technique of noise smudging (or flooding): roughly speaking, adding a term large enough
to the noise cancels out any dependency on the coefficients we want to hide.

Lemma 17 (Noise Smudging, [BGGK17]). Let By = By (k) and By = Bs (k) be positive
integers. Let x € [—Bi, B1] be a fixed integer and y «<—s [—Ba, B2]. Then the distribution of y is
statistically indistinguishable from that of y + x, as long as B1/Bs = negl (k).

Proof. Let A denote the statistical distance between the two distributions. By its definition:

1 B1+B> 1 —Ba> 1 B1+Bs 1 B,
Azi Z |Pr[y:v]—Pr[y:v—x]|:§ Z B—2—|— Z BB
’U=7(B1+Bg) ’U=7(Bl+Bg) v=DB>
The result follows immediately. O

In order to preserve the correctness of the encoding scheme, we need once again ¢ to be large enough
to accommodate for the flooding noise. In particular, ¢ will have to be at least superpolynomial in
the statistical security parameter x.

Corollary 18. Let 5 € Zj be a secret key and m = (my,...,mq) € Zg be a vector of messages.
Let ct be a vector of d encodings so that ct; is a valid encoding of m;, and € € Zg be a vector of
coefficients. Let egya be the noise in the encoding output by Eval (c_f, E) and Bgya a bound on its
absolute value. Finally, let Bsy, = 2" Bgyal, and €gm <s [—Bsm, Bsm]. Then the statistical distance
between the distribution of esy and that of esy, + egval 18 27, Moreover, if ¢ > 2p Bgya (27 + 1)

then the result of Eval (c_’E, E’) + (6, esm) is a valid encoding of m - € under the secret key §.

Proof. The claim on the statistical distance follows immediately from Lemma 17 and the fact that
the message part is m - € is true by simple homomorphic linear operations on the encodings. In
order to ensure that the final result is a valid encoding, we need to make sure that the error in this
output encoding remains smaller than ¢/2p. The final error is upper bounded by Bgyal + Bsm, SO
we have q

Beval + Bsm < % = Begval + 2" Beyal < % = q > 2p Bgyal (2K + 1) .

Error testing. By making non-blackbox use of our LWE encoding scheme, it is possible to
define an implementation of the function test-error (cf. Section 2) that will be used later in our
construction in order to guarantee the existence of a security reduction. In fact, for LWE encodings,
it is sufficient to use the secret key, recover the error, and enforce an upper bound on its norm
(namely, the norm of the error must still allow for some homomorphic operations while holding
correctness). A possible implementation of test-error is displayed in Figure 5.

12

Procedure test-error(3, (o, c1))
I':=(p,q,n, @) == Pg(1*)

= (G- F+ec1)//p
return (Equation (2))

Fig. 5. The error testing procedure.

Now we give a lemma that will be useful later during the security proof. It essentially defines
the conditions under which we can take an encoding, add a smudging