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Models for Music Analysis from a Markov Logic
Networks Perspective

H. Papadopoulos and G. Tzanetakis

Abstract—Analyzing and formalizing the intricate mechanisms A. Towards a Unified Musical Analysis

of music is a very challenging goal for Atrtificial Intelligence. . ) . . .
Dealing with real audio recordings requires the ability to handle In the growing field of Music Information Retrieval (MIR),

both uncertainty and complex relational structure at multiple @ fundamental problem is to develop content-based metioods t
levels of representation. Until now, these two aspects havgeen enable or improve multimedia retrieval [3]. The exploratif
generally treated separately, probability being the standrd way g large music corpus can be based on several cues such as the
to represent uncertainty in knowledge, while logical represen- audio signal, the score or textual annotations, depending o

tation being the standard way to represent knowledge and . . ;
complex relational information. Several approaches attemting a  YNat the user is looking for. Metadata and textual annatatio

unification of logic and probability have recently been propsed. Of the audio content allow for searching based on specific
In particular Markov Logic Networks (MLNs) which combine  requests such as the title of the piece or the name of the
first-order logic and probabilistic graphical models have dtracted  composer. When not looking for a specific request, but more
increasing attention in recent years in many domains. . generally for some music pieces that exhibit certain musi-
This paper introduces MLNs as a highly flexible and expressi& ) . .

formalism for the analysis of music that encompasses most dtiie cal propertles, search englnes are based on _annotatlotns tha
commonly used probabilistic and logic-based models. We fits describe the actual music content of the audio, such as the
review and discuss existing approaches for music analysisVe genre, the tempo, the musical key, and the chord progression
then introduce MLNs in the context of music signal processig Manual annotation of the content of musical pieces is a very
by providing a deep understanding of how they specifically it time-consuming and tedious process that reguie

relate to traditional models, specifically Hidden Markov Models f . .
and Conditional Random Fields. We then present a detailed huge amount of effort. It is thus essential to develop tephes

application of MLNs for tonal harmony music analysis that for automatically extracting musical information from amd
illustrates the potential of this framework for music processing. Although there have been considerable advances in music

Index Terms—Statistical Relational Learning, Markov Logic ~Storage, distribution, indexation and many other dirextio
Networks, Hidden Markov Models, Conditional Random Fields in the last decades, there are still some bottlenecks for the
Music Information Retrieval, Tonal Harmony, Chord, Key, Mu -  analysis and extraction of content information. Music audi
sical Structure signals are very complex, both because of the intrinsicreatu

I. INTRODUCTION of audio, and because of the information they convey. Often

HE fascinating task of understanding how human p&egarded as an innate human ability, the automatic esbmati
T ings create and listen to music has attracted attentiBhmusic content information proves to be a highly complex
throughout history. Nowadays, many research fields have céask. for at least two reasons.
verged to the particular goal of analyzing and formalizihngt ©On the one hand, music signals are extremely rich and
complex mechanisms of music. The development of compuf&mplex from a physical point of view, in particular becao$e
hardware technology has made possible the developmentf many modes of sound production, of the wide range of pos-
Artificial Intelligence (Al) techniques for musical resehrin ~ Sible combinations between acoustic events, and also becau
several directions such as composition, performance, anusignal observations are generally incomplete and noisy. On
theory, and digital sound processing. The recent explosiBie other hand, music audio signals are also complex from a
of online audio music collections and the growing demarfg@mantic point of view: they convey multi-faceted and sgtgn
of listening to music in a personalized way have motivatdterrelated information such as harmony, melody, meéin)
the development of advanced techniques for interacting witructure. For instance, chords change more often on strong
these huge digital music libraries at the song level. Usifgats than on other positions of the metrical structure [4].
computers to model human analysis of music and to get insightRecent work has shown that the estimation of musical
into the intellectual process of music is a challenge that #tributes would benefit from a unified musical analysis that
faced by many research communities under various nanf@siders the complex relational structure of music as well
such as Intelligent Audio Analysis [1], Machine Listenirg],[ @S the context[5], [6]. Although there is a number of ap-

or Music Artificial Intelligence. proaches that take into account interrelations betweeerakev
Part of this research was supported by a Marie Curie InfermetOutgoing  dimensions in music (e.g. [7]), most existing computationa
Fellowship within the 7th European Community FrameworkgPam. models for music analysis tend to focus on a single music
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attribute. This is contrary to the human understanding and
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perception of music that is known to process holisticallg thartificial intelligence perspective. We then present MLNs a
global musical context [8]. In practice, most existing MIRa highly flexible and expressive formalism for the analysis
systems have a relatively simple probabilistic structund aof music audio signals that encompasses most currently used
are constrained by limited hypotheses that do not modaiobabilistic and logic-based models. Our research to diate
the underlying complexity of music. Dealing with real audidhe use of MLNs for music analysis has shown that they offer a
recordings requires the ability to handle both uncertaamtgl very interesting alternative to the most commonly used éidd
complex relational structure at multiple levels of reprdae Markov models as a more expressive and flexible, yet concise
tion. Existing approaches for music retrieval tasks tyijica model for content information extraction. We have proposed
fail to capture these two aspects simultaneously. single unified MLN model for the joint estimation of chords
B. Statistical Relational Learning and Markov Logic and global key [22] and we have explored the use of MLNs

Real data such as music signals exhibit both uncertaiﬁ?'”tegrate structural information to enhance chord etion
and rich relational structure. Until recent years, these twW23]- Here, we aim to provide a deeper understanding of the
aspects have been generally treated separately, prapabfiPtential of MLNs for music analysis. Very few papers try
being the standard way to represent uncertainty in knoveledd® €xplain the deep-seated reasons why MLNs work. To be
while logical formalisms are the standard way to represefft real interest to the MIR community, we believe that an
knowledge and complex relational information. Music sl understanding of how they specifically relate to commonly
tasks would benefit from a unification of both representatiort'Sed models is needed. To this purpose, we first focus on the
As reflected by previous works, both aspects are importdhgoretical foundations of Hidden Markov Models (HMMs)
in music, and should be fully considered. However, tradNd Conditional Random Fields (CRFs) and compare the
tional probabilistic graphical models and machine Ieagnir{el‘_"‘t've capabilities of these models in terms of formalls_m
approaches are not able to cope with rich relational stractuThis allows us to show how they can be elegantly and flexibly
while logic-based approaches are not able to cope with tREbedded in a more general multilevel architecture with
uncertainty of audio and need a transcription step to appgf§-NS, which offers new perspectives for music analysis.
logical inference on a symbolic representation. Within the music ana}ly3|s area, we present an application

Appealing approaches towards a unification between logRf tonal harmony music analysis [24]. Here tonal harmony
and probability have emerged within the field of Statistican@lysis is understood as segmenting and labeling an audio
Relational Learning (SRL) [9]-[11]. They combine first ordeSignal according to its underlying harmony [25]. In traciital
logic, relational representations and logical inferensith ~Computational models, it is not easy to express dependencie
concepts of probability theory and machine learning [12Petween different semantic gnd temporal levels. \{Ve. design
Ideas from probability theory and statistics are used toestd N the MLN framework a multi-level harmony description of
uncertainty while tools from logic, databases, and prograffiusic, at the beat (chords), bar/phrase (local key, inoudi
ming languages are introduced to represent structure. MdRgdulations) and global semantic structure time scales, in
representations in which statistical and relational kealge W ich information specific to the various strata interact.
are unified within a single representation formalism have I[l. BACKGROUND
been proposed. They include relational Markov network$,[13  preyious work on music content estimation can be classified
probabilistic relational models [14], probabilistic intive jyto two main categories, probabilistic and logic-basedieis.
logic programming [15] or Bayesian logic programs [16]. Wey the following section, specific emphasis will be given to
ref;frrnt:r?grtehaedsir ;([:));:Eiga]l’c Llezs} fla;?ksurl\_/ce)g'((:)fNSelt:{v;rks (MLNSappIications related to tonal harmony analysis.

: v Logi - : . .

[17]-[19], which combine First-Order Logic (FOL) and prob-A' Probab|l|s-t_|c _VS' Logic for Music Prqcessmg _
abilistic graphical models (Markov networks) have recdive 1) Probabilistic Approaches for Music Content Analysis:
considerable attention in recent years. Their populasitgie Probabilistic graphical models form a large classwiictured
to their expressiveness and simplicity for compactly repne- Prediction modelsand are popular for MIR tasks that involve
ing a wide variety of knowledge and reasoning about data wiiiedicting structured objects. In particular hidden Marko
complex dependencies. Multiple learning and inference-algnodels [26] have been quite successful in modeling various
rithms for MLNs have been proposed, for which open-souré@sks where objects can be represented as sequential phenom
implementations are available (e.g. thiehemy andProbCog €na, such as chord [27] and local key [28] estimation, beat
3 software packages). MLNs have been successfully appliediacking [29], note segmentation [30] and melody transioip
many domains and used for various tasks in Al, such as collé81]- The objects of interest are modeled as hidden varsable

tive classification [20] and natural language processirig.[2 that are inferred from some observations. For instance, in a
C. Goal of the Paper typical chord estimation HMM, the unknown chord progres-

. . . . sion is inferred from the observation of chroma vectors. An
A MLN is a statistical relational learning framework that

. o e : important limitation of HMMs is that it is hard to express
combines probabilistic inference with first-order logicah- L : .
. . : o ependencies in the data. Strong independence assumptions
soning. In this paper, we examine the current existing nsod

. ) X L Petween the observation variables are made (e.g. each ahrom

for music processing and discuss their limitations from arl, .
observation is independent from the other etc.). A relevant

2http://alchemy.cs.washington.edu musical description of audio would ideally consider muéip

Shttp://ias.cs.tum.edu/research/probcog and typically interdependent observations.
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Other formalisms that allow considering more complethe property of discriminative learning with few paramster
dependencies between data have been explored. Variantsvesus generative learning with HMM is exploited. The other
HMMs, such as semi-Markov models can better model thpossibilities of the framework, such as using richer fesgur
duration distributions of the underlying events [32]. Nugrs  or modeling complex dependencies are not considered and the
can model long-range chord sequences without making tineplemented model does not yield to results that outperfarm
simplifying Markovian assumption, as in HMM-based apelassic HMM. Very recently, CRFs have been applied to beat
proaches, that each chord symbol depends only on the precking [38], and to singing voice separation [39].
ceding one [33]. The tree structure presented in Paiement Other audio tasks that can be seen as a labeling sequential
al. [7] allows building a graphical probabilistic model wheredata problem have been modeled in a CRF framework. Audio-
contextual information related to the meter is used to modekscore alignment has been the most extensive application
the chord progression in order to generate chords. DynamicCRFs in MIR [40], [41]. It has been shown that existing
Bayesian networks (DBN) allow the joint modeling of severahodels for this task can be reformulated with CRF of dif-
musical attributes [5]. ferent structures (semi-Markov CRF, Hidden CRF). The use

However, the use of graphical models that allow more comf CRFs allows designing flexible observation functiong tha
plex dependencies than HMMs for music content estimatiamcorporate several features characterizing differepeets of
remains limited in the MIR field. HMMs belong to the classhe musical content. The calculation of each state comnditio
of Bayesian network models [34] that are used to represgmbbability is based on audio frames from an arbitrary past
the joint probability distributionp(y,x) between the hidden or future, improving the matching of a frame with a score
statesy and the observationg, where bothxz and y are position. CRFs have been employed in automatic music tran-
random variables. HMMs argenerative modeli the sense scription [42] in a post-processing step to reduce singlesé
that they describe how the output (the hidden stgjgsroba- errors in a multiple-FO transcription. They have also bessdu
bilistically generates the input (the observatiafisthe outputs in the context of audio-tagging [43], and musical emotion
topologically preceding the inputs. According to Baye’'seru evolution prediction [44]. Finally, the ability of CRFs tse@
the calculation of the conditional distribution(y|z) from multiple dependent features has also been exploited in the
p(y,x) requires to compute the marginal distributip@). symbolic domain, as for symbolic music retrieval [45] and
This requires enumerating all possible observation sexpsgen for the automatic generation of lyrics [46].
which is difficult when using multiple interdependent input 2) Logic-Based Approaches for Music Content Analysis:
features that result in a complex distribution. This geliera A major advantage of the logic framework is that its ex-
leads to intractable models, unless the observation elesmepressiveness allows modeling music rules in a compact and
are considered as independent from each other. But ignorimgman-readable way, thus providing an intuitive desaipti
these dependencies may impair the performances of the modéimusic. For instance, background knowledge, such as music

In fact, in all the previously mentioned applications, théheory, can be introduced to construct rules that reflect the
observation sequenceis already known and visible in bothhuman understanding of music [47]. Another advantage is
training and testing datasets. We are only interested idigtre that logical inference of rules allows taking into accoulit a
ing the values of the hidden variables, given the obsematioevents including those which are rare [48]. Inductive Logic
A discriminative framework that directly models the condiProgramming (ILP) [49] refers to logical inference techreg
tional distributionp(y|z) is thus sufficient. Indiscriminative that are a subset of FOL. These approaches combine logic
models the assumptions of conditional independence betweprogramming with machine learning. They have been widely
the observations and the current state that are posed for tised to model and learn music rules, especially in the contex
HMMs are relaxed and there is no need to model the priof harmony characterization and in the context of expressiv
distribution over the inputp(z). This is in particular the case music performance. Approaches based on logic have focused
of Conditional Random Fields (CRFs) [35]. Many works haven symbolic representations, rather than on audio.
demonstrated that CRFs overcome several of the limitatibns In the context of harmony characterization, pattern-based
HMMs and offer lot of potential for modeling linear sequencérst-order inductive systems capable of learning new cptice
structures. In particular they offer attractive properfieterms from examples and background knowledge [50], or counter-
of designing flexible observation functions, with multiplepoint rules for two-voice musical pieces in symbolic format
interacting features, and modeling complex dependenaies[®1] have been proposed. An inductive approach for learning
long-range dependencies of the observations. generic rules from a set of popular music harmonization ex-

CRFs have been successfully applied in various fields otte@mples to capture common chord patterns is described in [52]
than music audio signal processing, including naturallagg Some ILP-based approaches for the automatic characterizat
processing, bioinformatics, computer vision and speedh piof harmony in symbolic representations [53] and classificat
cessing. There has been recently an increasing interesirig u of musical genres [54] have been extended to audio [55].
CRFs for modeling music-related tasks, and we review hdrfowever, they require a transcription step, the harmony-cha
these works. A tutorial on CRF in the context of MIR researchcterization being induced from the output of an audio chord
can be found in Essid (2013) [36]. transcription algorithm and not directly from audio.

In the context of audio music content estimation, a first In the context of expressive music performance, algorithms
attempt to use CRFs is presented in Burgoghel. (2007) for discovering general rules that can describe fundarhenta
[37] for the purpose of chord progression estimation. Onlyrinciples of expressive music performance, such as rules
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about tempo and expressive timing, dynamics and articulati multiple occurrences (with possible variations) withineth
have also been proposed [47], [56]-[58]. The inductivedogsame musical piece. Previous works have revealed that the
programming approaches are not directly applied to audsemantic structure can be used as a cue to obtain a “strligtura
but on symbolic representations. This generally requirescansistent” mid-level representation of music. In the wofk
transcription step, such as melody transcription [47]. Dannenberg [69], music structure is used to constrain a beat
tracking program based on the idea that similar segments of
music should have corresponding beats and tempo variation.

Since we present an application of MLNs for tonal harmong work more closely related to this article is [70], in which
music analysis, we briefly review in this section existinghe repetitive structure of songs is used to enhance chord
work on chord, key and structure estimation. The automatgtraction. A chromagram [71], [72] is extracted from the
estimation of each of these musical attributes by itselfris &ignal, and segments corresponding to a given type of gectio
important topic of study in the area of content estimation efre replaced by the average of the chromagram over all the
music audio signals. We review below only works that ar@stance of the same segment type over the whole song, so that
directly related to the proposed model. We refer the reawlerdimilar structural segments are labeled with the exact same
[59]-[61] for recent reviews on each of these topics. chord progression. A limitation of this work is that it redie

1) Chord and Local Key EstimationHarmony together on the hypothesis that the chord sequence is the same in all
with rhythm are two of the faces of Western tonal music thgections of the same type. However, repeated segments are
have been investigated for hundreds of years [62]. Harmooften transformed up to a certain extent and present vanmigti
is structured at different time-scales (beat, bar, phtese; between several occurrences. Moreover, in the case that one
sections, etc.). Pitches are governed by structural pi@ei segment of the chromagram is blurred (e.g. because of noise
and music is organized around one or more stable referemeepercussive sounds), this will automatically affect a@he
pitches. Achordis defined as combination of pitches, and theegments, and thus degrade the chord estimation.
system of relationships between pitches correspondskiy.a
A key, as a theoretical concept, implies a tonal center thidia
most stable pitch called the tonic, and a mode (usually major
or minor). A piece of music generally starts and ends in aln this section, we introduce Markov logic networks for
particular key referred to as the mainglobal keyof the piece. music signal processing and clarify the relationship of MLN
However, it is common that the composer moves betweem both HMMs and CRFs. As examined in Set. HMMs
keys. A change between different keys is calleti@dulation are the most common models used for music processing. In a
Western tonal music can be conceived of as a progression déleling context, a HMM can be viewed as a particular case of
sequence of key regions in which pitches are organized drou®RF, which itself is a special case of Markov network. CRFs
one stable tonal center. Such a region is defined herédcamb serve here as a bridge between HMMs and MLNSs.
key, as opposed to the global key. Tonality analysis describesNotations We will use the following notations. We consider
the relationships between the various keys in a piece ofenugirobability distributions over sets of random variablés=
Tonality and key are complex perceptual attributes, whese pX uY’, whereX is a set of input variables that we assume are
ception depends on the listener’s level of music trainingrd observed X is a sequence of observations), drds a set of
over, numerous phenoma in a music piece (ambiguous key, aptput variables that we wish to predict (the “hidden states
parent tonality, no tonality etc.) contribute to make thetpem Every variable takes outcomes from a 3ét= X u ) that
of local key estimation challenging, and little work has beecan be either continuous or discrete. We focus on the discret
conducted on this topic (see [28], [60] for more details). case in this paper. An arbitrary assignmentiois denoted

Chords and (local) keys reflect the pitch content of an audiy a vectorz = (z1,...,z5). Given a variableX,, ¢ X, the
signal at different time-scales. They are intimately mdat notationx,, denotes the value assignedXq by x.When there
specific chords indicating a stable tonal center while argivés no ambiguity, we will use the notationgy, «) andp(y|x)
key implying the use of particular chords. Previous workgehainstead ofp(Y =y, X =z) andp(Y = y|X = z).
explored the idea of using chords to find the main key of a The extraction of music content information can be often
musical excerpt [63]-[66]. But the question of how the chorskeen as a classification problem, in the sense that we wish to
and the key progressions can be jointly modeled and estimagssign a class or a labgl€ Y (e.g. a chord label) that is
remains scarcely addressed. The few existing works on thet directly observed to an observatiore X (e.g. a chroma
topic present serious limitations, as the analysis windia® s vector). Note that ther are generally fixed observations,
for key estimation is empirically set to a fixed value [67]rather than treated as random variables. We can approach
[68] (resulting in undetected key changes for pieces withthis problem by specifying a probability distribution toleset
fast tempo and chord rather than key estimation for piec#®e most likely clasg; € Y we wish to predict for a given
with a slow tempo), or they do not fully exploit the mutuabbservationz ¢ X. In general, the set of variable¥ uY
dependency between chords and keys [28] (the local keyhiave a complex structure. A popular approach is to use a
estimated from a fixed chord progression). (probabilistic) graphical modethat allows representing the

2) A Structurally Consistent Description of Muisdlusic manner in which the variables depend on each other. A graphi-
structure appears at several time scales, from musicakgfirecal model is a family of probability distributions that facize
to longer semantically meaningful sections that genetalye according to an underlying graph. The idea is to represent

B. Tonal and Harmony Music Content Estimation

IIl. MLN S AND THEIR RELATIONSHIP TOPROBABILISTIC
GRAPHICAL MODELS
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a distribution over a large number of random variables bydd labels and a second term corresponding to each observatio
product of potential function$ that each depend on only awith its parent label (see Fig for an example):
smaller subset of variables. N

In a probabilistic graphical model, there is a node for each p(y,@) = [T p(ynlyn-1)p(@nlyn) @

n=1

random variable. The absence of an edge between two Vgjhere we assume an unconditional prior distribution over th
ablesa andb means that they areonditionally independent starting state and for time = 1 we write the initial state

given all other random variables in the mo?deThe_ concept distributionp(y) asp(yilyo).

of congl_ltlon_al !nde_penc_ience allows degomposmg compl@g Conditional Random Fields

probability distributions into a product of independentttas , . .

(see Fig.1 for an example). In many real-word schemes that involve relational data, in
Graphical models include many model families. There afgarticular in music, the entities to be classified are relate

directed and undirectedgraphical models, depending on thd® €ach other in complex ways and their labels are not

way the original probability distribution is factorized.avty ndependent. Moreover, any successful classification avoul

concepts of the theory of graphical models have been devaged .to rely on .multlple .h|ghly interdependent featureg tha

oped independently in different areas and thus have differé©SCribe the objects of interest. CRFs are generally better

names. Directed graphical models are also commonly knogtitéd than HMMs to including rich, overlapping featureslan

a Bayesian networkand undirected models are also referrefflus 0 represent much additional knowledge in the riodel
to asMarkov random fieldsr Markov networks CRF is a probabilistic model for computing the conditional
probability p(y|x) of the outputy given the sequence of

A. Hidden Markov Models observations. A CRF may be viewed as a Markov network

Hidden Markov models [26], belong to the class of diglobally conditioned on the observations.

rected graphs, and are standard models for estimating & Markov networkis a model for the joint distribution of a
sequential phenomenon in music. They make strong inc&t of variabled” = (V1,V5,..., ;) € V [79]. It is composed
pendence assumptions between the observation variable®ft@n undirected graplt: and a set ofpotential functions
reduce complexity. A HMM computes a joint probability?s- The graph has a node for each variable and there is a
p(y,z) between an underlying sequence §fhidden states potential function for each clique in the grdptA potential

y = (y1,92,...,yn) and a sequence af observations: = function is a non-negative real-valued function of theestait
(z1,25. zx). A HMM makes two independence assumpthe corresponding clique. A potential between connectelésio
tions. First, each observation variablg is assumed to dependC@n be viewed as some correlation measure, but it does not
only on the current statg,. Second it makes the Markov as-have a direct probabilistic interpretation and its valueneg
sumption that each state depends only on its immediate preffStricted to be betweehand1. The joint distribution of the

cessof. A HMM is specified using 3 probability distributions: variables represented by a Markov network can be factorized

« The distribution over initial stateg(y;); over the cliques of the network by:

. L. . . 1
« The state transition distributigrn(y.,|y,_1 ) to transit from p(V=v)= = [T ¢k (very) 2
k

a statey,,_; to a statey, ; : . .
« The observation distributiop(z,|y,,) of an observation yvhere,v Is an assignment to the random variabiéanduy,

2, 10 be generated by a staje is the state of the'k clique (i.e., the state of the variables that
" iy appear in that clique)Z, known as thepartition function is

0 @ @ given by Z = ¥y Iy ¢r(viy)-

CRFs can be arbitrarily structured (e.g. skip-chain CRFs
[76],semi-Markov CRFs [77], segmental CRF [78]). Here,

Fig. 1. Graphical model of a@M describing(y, z) for a sequence of W€ focus on the canonical linear-chain model introduced in
three input variables 1, =2, 23 and three output variables , y2, ys. Because Lafferty et al. (2001) [35], that assumes a first-order Markov

of the conditional independence between variables, theefrsichplifies in: dependency between the hidden varialye(see Fig.Z).
p(z1,22,23,91,92,¥3) = P(ysly2) -p(ys|zs) -p(y2ly1) p(yzlz2) -p(y1)-

p(y1]xz1). Both the observations and the hidden state are randombiesia L

and thus represented as unshaded nodes. o @ ° 0
The joint probability of a state sequengeand an obser-

vation sequencer factorizes as the product of conditional

distributions. In this directed graph model, each obsewat Fig. 2. Graphical model view of a linear chain-structuredFCRhe single,

has a “parent label” and the joint probability of the sequengarge shaded node corresponds to the entire fixed obsenssiuence:, and
factorizes into pairs of terms, one term corresponding fcspathe clear nodes correspond to the label variables of theeseay.
For a linear-chain CRF, the cliques consist of an edge

“4Also referred to agactors functionor local functionsin the literature. betweeny,,_; andy, as well as the edges from those two

SFormally, given a third random variablg two random variables and b
are conditionally independenif and only if p(a,blc) = p(alc)p(b|c). Note “For a discussion about the advantages and disadvantag@&FofsCHMM,
that in contrast two random variablesand b are statistically independent  see for instance Murphy (2012) [34], chapter 19. For furteading on CRFs,
and only ifp(a,b) = p(a)p(b). we recommend the tutorials [73] and [74].

6This actually corresponds to the standard case of firstroktdMs. 8In an undirected graph, alique is a set of nodes2 forming a fully
Higher-order HMMs calledk-order HMMs exist where the next state may connected subgraph: for every two nodeSlirthere exists an edge connecting
depend on past states. the two.
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labels to the set of observationgsee Fig.2). The probability

of a particula_r Iabgl sequen(@eg_iven observation sequence 3w S Yn-1, Yns T ) = 10g P(Yn = flyn-1 = 1)
can be factorized into a normalized product of strictly posi 6.jeS
real-valued potential functions, globally normalized ottee  Similar equations are obtained Witb@fff: logp(xy, = olyn =
entire sequence structure: i)%.We can then rewrite Eql) as:
N N
p(ylr) = 5 [1 Falzy) 3) p(y.x) =[] pynlyn-1)p(znlyn)
n=1 n=1
The normalization factoZ () sums over all possible state N
sequences so that the distribution sums 1to F,(z,y) - nl:[leXp(logp(y”w”*l) ”ng(x”w”))
is a set of feature functions designed to capture use- N
ful domain information that have the forn#),(z,y) = [Texp( 2 Wi Lo (Y1, Yo, )
exp(Xr ) Mefx(Yn_1,yn, ), wheref;, are real-valued func- = =l h.jes @)
tions of the state, andl;, is a set of weights. Eq.3] writes: 30w fﬁgs(yn-hyn,xn))
N K €S 0eO
p(ylz) = 1 I1 exp( 3 )\kfk(ynflyy'mx)) (4) We refer to a feature function generically #s, where f;
Z(x) w21 k=1 ranges over both all of thg["®™ and all of the f;f’;s, and

N K similarly refer to a weight generically as;. The previous

where Z (x) = zy: g P ( 1;1 Ak S (Yn-1 Y, I))' equation writes:

In contrast to HMMs, the feature functions of CRFs can N K
not only depend on the current observation but on obsenatio Py, ) = Bl oxp ( k; Wi S (Y1, v, x”))
from an arbitrary past or future for the calculation of eatzttes
probability. Feature functions can belong to any familyexlr
valued functions, but in general they are binary functi@ms] p(yl|z) =
we will focus on this case here.

We also write the model in the case where the observatio'ﬂgnotingz
are restricted to a single frams,, for convenience of future
comparison to HMMs (see Fig):

N K
p(yle) = 75 [Texp (3 Mefun-1,9m,70))
n=1

From the definition of conditional probability, we have:
py,z) __p(y,z)
p(z)  Yp(y,)

Yy

(z) = > p(y,z), we finally obtain:

1y N K
p(ylz) = Z(2) exp(
n=1

Wi - fk(y7L—l7yn7 mn))
k=1

N K
= sty e (2 D wie fi(yas,yn,a))  (10)

= k=1
N K n=1k=1
= ﬁeXP( > )\kfk(yn—uyml’n)) ®) Eq. (10) defines the same family of distributions as Eg). (
etk For a labeling task, a HMM is thus a particular case of linear-
0 e @ chain CRF for a suitable choice of clique potentials, where
each potential feature is either a state feature functioa or
transition feature function. In practice, the main difiece
° between using HMMs and HMM-like CRFs lies in the way

Fig. 3. Graphical model of a HMM-like linear-chain CRF déstig p(y|z).  the model parameters are learnt. In the case of HMMs they
Here, it is an undirected graphical model: compared to thevHM Fig. 1, | db . the ioint bability distrilmrti
the arrowheads of the edges have disappeared. The shadeslinditate that are eame_ y maximizing the joint probability distriiarti .
the corresponding variables are observed and not genemgtene model.  p(x,y), while in the case of CRF they are learned by maxi-
C. HMM vs. CRE mizing the conditional probability distributiop(y|x), which

avoids modeling the observations distributi .
The joint distributionp(y, ) of a HMM can be viewed as g iof)

a CRF with a particular choice of feature functions. We now FOF convenience (see Seu:B3), we also write the condi-

describe how it is possible to translate a HMM into the femtuFionaI probability of the CRF in its direct translation froan
functions and weights of a CRF. HMM from Eq. (7) as a product of factors:

For each state transition paii,j),i,7 ¢ S (where S o
. ) ) ) pPly|x = Z) (I) Yn— 7y7mxn)® b: y”mxn) (11)
represents a set of hidden states) and each state-observati wle) “( )nl:[l e -1 ol
pair (i,0),7 € S,0 € O (where O represents the set of thewhere ®yand(yn-1,yn,zn) and Pops(yn,z,) are exponential
observations), let define a binary feature function of thenfo family potential functions, respectively over state ancerb

Py yns ) = L(ynot = 4) - L(yn = ) vation configurations, that are derived from the transitoiwl
7 observation probabilities of the HMM. Here we have removed
I Y1, Y, n) = L(yn = i) - 1 (xn = 0) the unused variablg,,_; in the state-observation pairs.

wherel(x = i) denotes an indicator function af that takes

. . D. Markov Logic Networks
the valuel whenz = ¢ and 0 otherwise. In other words,
f}rﬁns(ynfl,yn,:rn) returns1 wheny,_; = andy, = j, and 1) MLN Intuitive Idea: MLNs have been introduced by

0 otherwise. Richardson & Domingos [17] and are a combination of

1 H trans _ _
Let also define the set of weights;’;™ = logp(yn = 9For state-observation pairs, the variahlg_; could be removed but we
Jlyn-1 =1). We have: keep it to stay consistent with the definition of linear-ch@RF (Eq. 8)).
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Markov networks and first-order logic (FOL). A MLN is a sef{equivalence)a: “and” (conjunction);v: “or” (disjunction);

of weighted FOL formula¥, that can be seen as a template: (negation)) and quantifiers (the universals“for all”; 3:

for the construction of probabilistic graphical models. W&here exists”).

present in this section a short overview of the main conceptsin general, in Markov logic implementations, formulas are

of Markov logic, with specific examples from the modeling otonverted toclausal form also known agonjunctive normal

musical concepts. We refer the reader to Domingos & Lovwfdrm (CNF) for automated inference. Every KB in FOL can be

(2009) [19] for a thorough review. converted to clausal form [82]. A clausal form is a conjuowti
MLNs are meant to be intuitive representations of reabf clauses, alausebeing a disjunction of literals.

world scenarios. In general, FOL formulas are first used 103) MLN formal definition: A first-order KB can be seen

express knowledge. Then a Markov network is constructgd 3 set of hard constraints on the set of possible worlds: if

from the instantiation of these formulas. The knowledgeebag \world violates even one formula, it has zero probability. |

is transformed into a probabilistic model simply by assigni 5 real world scheme, logic formulas agenerally but not

weights to the formulas, manually or by learning them fromgwaystrue. The basic idea in Markov logic is to soften these

data. Inference is then performed on the Markov network. constraints to handle uncertainty: when a world violates on
2) Definitions and Vocabulary:A Markov network as formula in the KB, it is less probable than one that does not

presented in Sedll-B, is a model for the joint distribution of yjp|ate any formulas, but not impossible. Markov logic alko

a set of variables’ = (V1,V5,...,V,) € V, often represented contradictions between formulas by weighting the evidesce

as a log-linear model with each clique potential replaced i sides. The weight associated with each formula reflects

an exponentiated weighted sum of features of the state: o strong a constraint is, i.e. how unlikely a world is in i

p(V =v) = 1 exp(ijfj(v)) (12) that formula is violated. The more formula a possible world
Z J satisfies, the more likely it is. Tabshows a KB and its conver-
where Z is a normalization factor, and; (v) are features of sion to clausal form, with corresponding weights in the MLN.
the statev. A feature may be any real-valued function of ) )
the state, but here (and in the literature of Markov Ioic) Definition 1 Formally, a Markov logic networkL [17] is
we focus on binary featureg; (v) € {0,1}. The most direct defined as a set of pairl;, w;), where £; is a formula in
translation from the potential function form E) o the log- first-order logic andw; is a real number associated with the

linear form Eq. (2) is obtained with one feature correspondin rmula. Applied to a finite set of constans(to which the
to each possible statg;, of each clique, with its weight being predicates appearing in the formulas can be applied), itroei
log ((v(sy)) a ground Markov network/;, - as follows:

0g | P (Vik}) )-

X . . i ) , 1) M contains one binary node for each possible
In first-order logic, the domain of discourse is defined by Grounding of each predicate (i.e. each atom) appearing;in
set of four types of symbol€onstantge.g.Cchor d ("'C Ma- e yajue of the node is 1 if the ground predicate is true, and
jor chord”), G\t hor d) represent objects in the domain; the s otherwise

of constants is here assumed fitftevariables (e.gx,y) take 2) My, . contains one featurg; for each possible ground-
objects in the domain as valuéxedicategepresent properties . : J

of objects (e.gJ sMaj or (x) . | sHappyMbod(x) ) and rela- ing of each forr_nulaﬂ- in L. The fegture value_is 1 if the
tions between them (e.@rémi ghbor s(x. ) ). Functions ground formula is true, and 0 otherwise. The weightof the

. ; . feature is the weightv; associated with the formul&; in L.
represent mappings from tuples of objects to objects.

A predicate can be grounded by replacing its A MLN can be viewed as aemplatefor constructing
variables  with constants (e.g.1sMaj or (CMchord), Markov networks: given different set of constants, it will
Ar eNei ghbor s(CMchor d, Gvehord) ). A predicate takes produce different networks. Each of these networks is dalle
as outputs either True (synonymous with 1) or Falsground Markov networkA ground Markov networkMp o
(synonymous with 0). Aground predicatds called anatomic specifies a joint probability distribution over the sgt of
formula or anatom A positive literalis an atomic formula possible worlds, i.e. the set of possible assignments dffi tru
and anegative literalis the negation of an atomic formula.values to each of the ground atomslif®. From Def. () and
A world is an assignment of a truth value (0 or 1) to eachq. (12), the joint distribution of a possible world given by
possible ground predicate. My ¢ is:

A first-order knowledge baséKB) is a set of formulas 1
in first-order logic, constructed from predicates usingidaby p(V=v)=7 eXp( Zi:wini(v)) (13)
connectives£-: “if ... then” (implication);<: “if and only if”  \yhere the sum is over indices of MLN formulas angdv) is

10Fjrst-order logic is also known as predicate logic becausaisies _the number of tru_e groun'dlngs of for_mulﬁ_ m_ v (I'e' nl(v)
predicates and quantifiers, as opposed to propositiont thgt deals with 1S the number of times thé" formula is satisfied by possible

simple declarative propositions and is less expressive ddjective "first- vy or|d V), andZ = Z exp ( Zwini(vl))-

order” distinguishes first-order logic, in which quantifioa is applied only ey S

to variables, from higher-order logic in which quantificatican be applied

to predicate and function symbols. For more details, see[£93, [80].
HIAlso as in the case of CRFs presented in Sga . 13The ground Markov network consists of one binary node fohgmssible
2Markov logic have originally been defined only for finite ddmsa[17]  grounding of each predicate. A worldl € V' is a particular assignment of

but have since been extended to infinite domains [81]. In phiser we are truth value (0 or 1) to each of these ground predicate$l/|fis the number

only concerned with finite domains. of nodes in the network, there a2&”! possible worlds.
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TABLE |
EXAMPLE OF A FIRST-ORDERKB AND CORRESPONDING WEIGHTS IN THEMLN.
Knowledge First-order Logic formula Clausal Form Weight
A major chord implies a happy mood. Vx IsMajor(x) = IsHappyMood(x) TlsMajor(x) v IsHappyMood(x) wy =0.5
If 2 chords are neighbors on the circle vx vy AreNeighbors(x, y)= (IsMajor(x) < IsMajor(y))  “AreNeighbors(x, y)v IsMajor(x) v 71 IsMajor(y), wz = 1.1
of fifths, either both are major chords JAreNeighbors(x, y)v 71 IsMajor(x) v IsMajor(y) w2 =1.1

or neither are.

Constans of MLN for
the Domain :

_®_ chord : CM, GM

Assumptions in practical application§io ensure that the
number of possible worlds fof/;,  is finite, and that the
MLN will give a well-defined probability distribution over
those worlds, three assumptions about the logical repres
tation are typically made: different constants refer tdedtént
objects (unique names), the only objects in the domain ¢
those representable using the constant and function sgmt
(domain closure), and the value of each function for eacietulfig-_5- lllustration of the grounding process of the groundrkbv network
of object is always a known constant (known functions). Fd 119 4 Adapted from [83].

more details, see [17]. rs(GM GW)). Some elements iV may correspond to the
Remark: MLNs are usually defined as log-linear modelssame template formuld; with different truth assignments,

However, Eg. {3) can be rewritten as a product of potentiahnd n;(x) only counts the assignments which make

functions: . . F; true. For instance, there are two groundings for

)= = s _ (i (®) formula: V x IsMajor(x) = |sHappyMod(x). For

p(V =v) Zexp(;wlm(v)) ZU¢Z(U{Z}) ) v = (1,1,1,0,1,1,1,1) where 1 is true and O is false,

with ¢;(v(;y) = . This shows that any discrete probabilistié,, (z) = 1 because only sMaj or (CM = | sHappyMbod( CV)

model expressible as products of potentials can be exglesgies true value while sMaj or (GM) = | sHappyMbod( GV

with a MLN. This includes Markov and Bayesian networks.does not. For detailed examples of the computation of joint
4) Example:Fig. 4 shows the graph of the ground Markowlistribution of a possible world” from Eg. (L3) in Markov

network defined by the two formulas in Taland the constants logic, we refer the reader to Cherg al. (2014) [84].

CMchord (CM and Gvehor d (GM). The grounding process is

illustrated in Fig.5. There are 3 pred?cates and 2 cons_tanté.' MLNs vs. HMM and CRE

They result in 8 nodes that are binary random variables

denoted byV/, and that each represent a grounded atom.  |n a labeling task context, we know priori which pred-
The graphical structure af/;, - follows from Def. (L): icates are evidence and which ones will be queried. The

« Each possible grounding of each predicat&jrbecomes ground atoms in the domain can be partitioned into a set of
a node in the Markov network. Each node has a binafy/dence atoms (observationsjand a set of query atoms
value: 1(“True”) or O (“False”). he conditional probability distribution of given x is [18]:

. Each ppssible grounding of each formula becomes a p(ylz) = 1 exp( = wmi(x,y)) (15)
feature in the Markov network. Z(x) iFy

« All nodes whose corresponding predicates appear in tivere Fy- is the set of all MLN clauses with at least one
same formula form a clique in the Markov network. Eacirounding involving a query atom andj(z,y) is the number
clique is associated with a feature. of true groundings of the’" clause involving query atoms.

The Markov network grows as the number of constants andThis can also be written:

Random Variables V Possible Worlds V/ Grounded formulas :
I~M:|_mr(gm) v w, ¥ x IsMajor(CM) = IsHappyMood(CM )
M)

00
bors(CM.CM) =
(IsMajor(CM) < IsMajor(CM))

formula groundings increases, but the number of the forsula (yle) = 1o ( S wigi(a )) (16)
(or the templates) stays the same. Py Z(x) P i GEY
where Gy is the set of ground clauses i}, « involving
AreNeighbors query atoms, ang;(z,y) = 1 if the i** ground clause is true

(GM,CM)

in the data and O otherwise.

Comparing Eq. 16) and Eq. (0), we can see that for a

Neighbors Neighbors
labeling task, a HMM can be expressed in Markov logic by
AeNighbor producing a clause for each state-transition aif), i, j € S
: and each state-observation péiro),i € S,0 € O, and giving

Fig. 4. Ground Markov network obtained by applying the fotasun Tab.l 5 \eij hwi,' =logp(yn = jlyn_1 =) and Wi o = log p(zn, =
to the constant€\Ehor d (CM and GMEhor d (G olyn :gi) rejspecﬁve(lz. qus|fgj(6) and) 6) show thatga(linear-

For the Markov network in Fig.4, a world is an chain CRF can be expressed in Markov logic by producing a
assignment of a truth value to each possible groumthuse corresponding to each feature function of the CRR, wi
predicate inV = (I sMaj or (CM ,l sMaj or (G ,I sHappy- the same weight as the CRF feature. These graphical models

Mood( CM ,| sHappyMbod( GM ,Ar eNei ghbor s(CM CM ,Are- can be specified very compactly in Markov logic using a few
Nei ghbor s(CM GM ,Ar eNei ghbor s( GV CM ,Ar eNei ghbo-  generic formulas (see Sectiow-C1).
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F. MLNSs, First-order Logic & Probabilistic Graphical Modgl corresponds to the foot-tapping rate. Beats are aggregrated

Markov Logic generalizes both first-order logic and modgger time units calledneasurer bars _
commonly-used statistical models. FOL is the special cése o!n the time space, chords and local keys can be viewed
MLNSs obtained when all weights are equal and tend to infinitf@SPectively as local and more global elements of tonal har-
In addition to add flexibility in knowledge bases using weigh Mony- In this paper, the chord and (local) key progressions
Markov logic allows contradictions between formulas. @thé'® €stimated using a restricted chord lexicon composed of
interesting features include building a MLN by merging sevl = 24 major (M) and minor (m) friads (CM, ..., BM, Cm,
eral KBs, even if they are partly incompatible [19]. ..., Bm), and considering 24 possible keys (CM key, ..., BM

From a probabilistic point of view, Markov logic allows veryKeY: Cm key, ..., Bm key) based on the major and harmonic
complex models to be represented very compactly (e.g. o nor scales .and 12 pltches that compose an octave range of
three formulas for a hidden Markov model). Any discrete pro _estern music. We will also reasonably assume t_hat within a
abilistic models expressible as products of potentials lan 91Ven measure, there cannot be any key modulation. _
expressed with a Markov logic network. MLNs thus generalize AS mentioned in Sedl-B, chords, keys and the semantic
most commonly-used probabilistic graphical models, whicHructure are highly interrelated. We propose a model foafto
includes Markov networks and Bayesian netwdfksThey hgrmony analysis .of audio that takes into account (part_of)
also facilitate the incorporation of rich domain knowledgat thiS complex relational structure. Our model allows a joint
can be combined with purely empirical learning, and allowgStimation of local keys and chords. Moreover, following
reasoning with incomplete data [86], [87]. the idea of designing a “structurally consistent” mid-leve

Several implementations of Markov logic exist that comfSPresentation of music, we show that the MLN framework

prise a series of efficient algorithms for inference, as wetllows incorporating prior structural information to enla
chord and key estimation in an elegant and flexible way.

as weight and structure learning. In practical applicajon X .
MLNSs distributions are typically unique in the sense thayth Although a long-term goal is to develop a fully automatic

represent a large number of variables that have impligitieit model th_at integrates an automatic segmentgtion, we _foIIow
dependencies between each other. In this context, algesitht® Previous approach for “structurally consistent” assly
that combine probabilistic methods with ideas from logicdf 0 @nd assume that the metrical and semantic structuees ar
inference have been developed. This is out of the scopef thf!oWN- The segmentation of the song in beats, downbeats and
article, but we refer the reader to Domingos & Lowd (200djt'Ucture is given as prior information.

[19], Chapters 3 and 4 for a detailed description of these2) Signal Processing Front-endThe front-end of all the
algorithms, and also to [88]-[90] for more recent reviews. models described in this section is based on the extracfion o

chroma feature vectors that describe the signal. The chroma
vectors are 12-dimensional vectors that represent thasitye
of the twelve semitones of the Western tonal music scale,
regardless of octave. We perfornbaat synchronouanalysis

In this section, we instantiate Markov logic networks foand compute one chroma vector per beat
music signal processing, within the context of tonal harynon 3) About the Model Parametersin what follows, the
analysis, and show how they compare with probabilistic irapparameters of the models are derived from expert knowledge
ical model commonly used in MIR. Starting from a classion music theory. All considered models allow training but we
HMM for chord progression estimation, we then propose laft this aspect for future work. In Markov logic, the weight
new chord estimation model based on CRF that integratesn be learned either generatively or discriminatively.réfer
richer features. We show how these models can be translatieel reader interested in MLNs learning to [19], [92], [93].
into Markov logic that offers further flexibility in terms of Note that in the more general case, the weights of a MLN
modeling the complex relational structure of music. We finalhave no obvious probabilistic interpretation since theg ar
present a MLN that is able to model complex tonal anihterpreted relative to each other when defining the joint
harmony relational structure at several time scales. probability function. The weight of a clause specifies the
probability of a world in which this clause is satisfieslative
to a world in which it is not satisfied. According to the

1) Music Theory Foundations and Hypothesibusical heuristic discussed in [17], the weight of a formufais the
elements are highly organized. At the highest level, whedg odds between a world whefé is true and a world where
listening to a piece of music, we can feel in general a strectur is false, other things being equal. However,Zf shares
and divide the piece into several segments that are seraliyiticvariables with other formulas (as it is typically the cadw¥t
meaningful, as for instance verse or chorus sections incérrespondence does not hold, as the weight &f influenced
Western popular music song. These segments are in genggalonly by its probability, but also by the other formulaatth

related to the metrical structure, which itself is a hienral share the same variable. We refer the reader to [83], [98], [9
structure. The most salient metrical level, called bieatlevel for more details.

IV. APPLICATION: MLN M ULTI-SCALE TONAL HARMONY
ANALYSIS

A. Generalities

1MLNSs can also be applied to time-changing domains: dynanaigeBian 15This is done by integrating a beat-tracker as a front-enchefsystem
networks can be equivalently modeled with MLNs [85]. Appoes such as [91]. As a matter of fact we consider half-beat and not beaations, as it
[5] for music could thus be modeled by a MLN, then possiblyigred, e.g. was found to give better results because there are chordjebam half beats.
with longer-term dependencies, as in the application ptesein SeclV-C3.  For the sake of simplicity, we will nevertheless use the t&pemat-level”.
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As seen in SedlI-E, when translating a HMM or a linear- current local key:fﬁy(yn_l,yn,qn) =1if g, = k' andy,, = ¢,
chain CRF into a MLN, there is a one-to-one correspondengad 0 otherwise. The key templates valu@*ﬁey(z‘), can be
between probabilities and weights in the MLN. When makingiewed as a correlation measure that indicates the liketiraf
the model more complex by adding new formulas, theegkeyq, is k',1 € [1,24], given that the underlying stais, is
may not be any longer a one-to-one correspondence betweRordc’,i ¢ [1,24], and are used as weighﬂﬁy’i,l € [1,24]
weights and probabilities of formulas. This is why in geterdor the key features in the CRF. '
the weights of a MLN are learned from the data. According 4) Inference in HMM and CRF:For the HMM and the
to [17], a good way to set the weights is to write down thenear-chain CRF, the most likely sequence over time can be
probability with which each formula should hold, treat thesestimated in a maximum likelihood sense by decoding the
as empirical frequencies, and learn the weights from them.underlying sequence of hidden staie§om the sequence of

B. HMMs vs. CRFs for Tonal Harmony observations: using the Viterbi decoding algorithm [28]
1) Baseline HMM for Chord Estimation (HMMChord)Ve = argmax p(ylz) (18)
consider here a model for chord estimation that will serve as TZBLE I

a baseline for comparison with CFR and MLNs. We utiliz
the baseline model for chord estimation proposed in [96] tha

we brleﬂy describe here. MLN FOR JOINT CHORDS LOCAL KEYS AND STRUCTURE

. i > & g DESCRIPTION THE “X" ON THE LEFT INDICATE THE
Letc’,i € [1,24] denote the 24 chords of the chord lexicon g [EEG G| PREDICATES AND RULES THAT ARE USED FOR EACH MODEL
We observe a succession of, = o,,n € [0,N - 1] 12- [2E gé
: H : . . SEE
dlmenIS|onaI chroma vectors;, being the time index, and T e
N being the total number of beat-synchronous frames of I/ Observed predicates:
. . X X [X [x GObservation(chroma!, tinme)
the ar_1alyzed song. The <_:h0rd progression is modeled_as anj ) Lockey (key! . ti )
ergodic 24-state HMM with a hidden variable and a singlex |x |x x |x |x Succpeaf ti me, time)
. . . A X X Samepg(tine, tine)
observable var|ab!e at each time step. Each hldd_en state |" |, |, |, SucCar (ti e, ti me)
yn,n € [0,N — 1] is a chordc’,i € [1,24] of the lexicon W Uncbserved predates (e -
. . . . . t at It
and is observed through a chroma observation, with emission’” [, [ | oot i)
probability p%23, ,, (. |y, ). A state-transition matrix based on Veeight Formula
H '™ H CHORD RULES
musical knowledge that reflects chord transition rules &dus [ 17 Prior observation chord probabiiies:
to model the transition probabiliti@sens,  (yy.|yn-1)*°. g State(CM 0)
2) Baseline CRF for Chord Estimation (CRFChordjrom s State (BmO0)
SeC. I”'C, we equivalently mOdel the preViOUS HMM fOI" X |x [x [x |x |x ; Probabilitythalthechrom.aobservalion has been emittec lmnord:
chord estimation by a linear-chain CRF where the obsef- e Sof’jj,'v”;‘i'é’n”(ﬁ‘!ﬁn”;“'é‘fﬁi‘if{&“&"n))
- - . . “CfM chroma, ’
vations consist of a unique chroma feature, by using a sgt
it i tran H : o heomay Qoservati on( Chromay_y;, n) A St at e( Bm n)
Of tranSItlon blnary featuregiyj S(ynfl’yn’xn) Wlth Welght XX |X X [x|X e Probability of transition between two successive chords:
of wtirye}ns = 1og(p";R4SM(yn = Cj|yn—1 = cl)), and a set u;g:’\i‘:CM SState(CM D) /\SSUCCbea{ng,nl)/\S;a[e(cé\/l n,)
of observation featurett"°™y,,_1,y,,2,) with weights weic | State(Qn) A SucChealna m) A State(GMn.)
w;_:fz)roma: 1Og(p%k()]SWM(I" = 0n|yn = Cl)) wians Stat e(Bm ny) A SUCChga( N2, N1) A Stat e( Bm ny)
p . i . . ) LOCAL KEY RULES
3) EanChed CRF for Chord EStImatlon (CRFPrlorKey) X [x X |X Probability that the key observation has been emitted byarcch
Some chords are heard as more stable within an established uké,xw LocKey(CM,, n) A Stat e(CM n)

. . wee X A
tonal context [98]. Varioukey templateswhich represent the M ity LocKey(GM.. m) ~State(CM n)
key

importance of each of the 24 triads within a given key hav Wi B
been proposed in the literature, as the set of 24 24-dimealsio |- Prior observation key probabilties.

LocKey(Bm,, n) AState(Bmn)

D

; ] wgey LocKey( CM,, 0)
WMCRkey templatesl,, ! € [1,24] proposed in [28]. Such
. . . . . key
prior information about keys and chords relationship can & _ __LooKey(Bm.0)
) i L. . X X Probability of transition between two successive keys:
be incorporated in the CRF through additional observation Wl T LocKey( CM,, Ny) A SUCCpgg{ Nz, N1) A LocKey (M, n2)
. . . . . transKe)
features. At each time instant an observation is written v cpw, |LOPKEY(OM M) SUCCheq{ M i) » Lockey(GM,, na)
Zn = (on,qn), Whereo,, is a chroma feature ang, is a key X X Minimum local key length:
feature. For the key features, we assume that, at each time wieypwr | LOCKey(CM,, 1) A Samepa(nz, ni) aLocKey (G, n2)
stepn, the current local key,, = k',1 € [1,24] is known. We wigow | LocKey(Bm, n,) A Samep. (N, ny) ALocKey(Bm,, ny)
factorize the observation function of Ed.1j in two terms: RSEMANTICISTROCTOREIROLES) v
X X [x Probability that similar segments have the same chord @ssgjon:
(I)obs(yn, ;pn) = ‘I)obs(?/n, On) . (I)obs(yqu Qn) (17) wstruct State(CM ny) ASUCCstrucf N2, N1) A Stat e(CM ny)
Dops(yn,0n) IS computed as in the previous section. Fo wstruct Stat e(Bm n) Succsirycf Nz, N1) A Stat e(Bm ny)

Pobs(yn, ¢n ), We add an observation feature that reflects the. MLN for Tonal Harmony Analysis
correlation measure between the chord being played and ther* . . . .
n this section, we start with a basic model for chord

16This transition matrix was originally proposed in the comtef key €cognition that we progressively enrich with additionalsic

estimation [97], but has been used for chords in our previvask [28],
[96]. Chords and key are musical attributes related to thenbmic structure 17For HMM, we use the HMM Matlab toolbox [99]; for CRF, we use the
and can be modeled in a similar way. UGM Matlab toolbox [100].
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TABLE Il

MLNLocalKey
MLNMustiScale-PriorKe

MLNChord
MLNPriorKey
MLNStruct

MLNMustiScale

EVIDENCE FOR JOINT CHORD LOCAL KEY AND
STRUCTURE DESCRIPTIONTHE “X” ON THE LEFT
INDICATE THE EVIDENCE PREDICATES THAT ARE
GIVEN TO EACH MODEL.

OBSERVATIONS

/I A chroma vector is observed at each time frame:
oser vat i on( Chr ongy, 0)

oservati on( Chr omay.g, N- 1)
/I The temporal order of the frames is known:

SuccCpeaf 1, 0)

Succbeaﬁ N1, N-2)

X X

ADDITIONAL PRIOR (LOCAL) KEY INFORMATION

/I Prior information about the key at each time instant isegiv
LocKey( CM,, 0) (if the key is CM at time instant 0)

LocKey( GV, N- 1) (if the key is GM at time instant N-1)
S i Minimum local key length
(/1 Beats [0:3] belong to the same bar and are likely to be ia game key)
Sanep,( 1, 0)
Sanep,( 2, 1)
Sanep,( 3, 2)
(/l Beats [4:7] belong to the same bar and are likely to be ia #ame key)
Sanep,( 5, 4)
Sanep,( 6, 5)
Sanep,( 7, 6)

X X

X

ADDITIONAL SEMANTIC STRUCTURE PRIOR INFORMATION

/I Prior information about similar segments in the strueur
Succgtrycf 1, 10)
SuccCstrycf 2, 11)

dimensions and relational structure links. The structdrthe

11

sectiondV-B1 andIV-B2, can be equivalently modeled in the
MLN framework considering three generic formulas, given in
Egs. (19), (20), and @1), which reflect the constraints given
by the three distributions defining the generative stodhast
process of the HMM. The three generic formulas are described
in Tab. Il in the section “Chord rules”.

Description of the predicatesTo model the chord pro-
gression at the beat-synchronous frame level, we use an
unobservable predicat at e(c?, n), meaning that chord’
(that is hidden) is played at frame, and two observable
ones, the predicatébser vati on(o,, n), meaning that we
observe chroma,, at framen, and the temporal predicate
SucCpegf N2, N1), Meaning thatn, and n; are successive
frames. They are also used for evidence, see in [Tab.

Choice of the logical formulasAs detailed in [83], condi-
tional probability distribution®(bla) (“if « holds therb holds
with some probability”) are well represented using conjunc
tions of the formlog(p) a A b that are mutually exclusive (in
any possible world, at most one of the formulas is true). In
practice, in MLN implementations, the set of formulas must
also be exhaustive (exactly one of the formulas should ke tru
for every given world and every binding of the variabiés)

For each of the three distributions of the HMM, we use
mutually exclusive and exhaustive sets of formulas. This is
achieved in Tab.ll using the symbol. When the predi-
cateSt ate(chord!, ti ne) is declared, this means there is
one and only one possible chord per time instant. In the
same way, because the observation prediCateer vati on
is declared as functional, ifObservati on(Chromay, n)
is true at time instantn, Observation(Chrongg, n),

domain is represented by a set of weighted logical formulassser vat i on( Chr omag, n), etc. is automatically false.
In addition to this set of rules, a set of evidence literalge prior observation probabilities are described using:

represents the observations and prior information. Givén t
set of rules with attached weights and the set of evidence _ _
literals, MaximumA Posteriori (MAP) inference is used to for each chord',i € [1,24], and withwg

infer the most likely state of the world.
We first describe how the two structureMChord and The conditional observation probabilities are described
CRFPriorKeycan be expressed in a straightforward way usingsing a set of conjunctions of the form:

a MLN. We then build a more complex model that incorporates
structural information at various time scales. For this, we
propose the use of sontame predicateghat indicate links ) )
between time instants and thus that have time as argument. g With the weightsu;

wi™ State(c’, 0) (19)

=logp(yo = ')
denoting a uniform prior distribution of chord symbols.

chord

chroma
i,0

Observation(o,, n) AState(c’, n) (20)

for each combination of chroma observatignand chord?,
chroma defined in SeclV-B2.

consider three time scales related to the semantic andaaletriThe transition probabilities are described using:
structures of a music signal:

e The micro-scale corresponds to the beat-level and is

i5° State(c',n) ASuccpeafna, ni) AState(c’, ny)

(21)

w

related to the chord progression. It is associated to tha all pairs of chords(c’,c?),i,j € [1,24], and with the

Succpeafti me, ti me) time predicate that indicates two sucweightsw3™ defined in SeclV-B2.

cessive beat positions;
 The meso-scalecorresponds to the bar level and igpservations corresponding to each frame, and the temporal

related to local key progression. It is associated to th@ccession of frames over time using the beat-level temhpora

Sanmepa(time, time) time predicate that indicates framegyredicateSuccpag Evidence is described in Tabl .

belonging to a same bar;
» Themacro-scalecorresponds to the global structure levelyrkey): Prior key information can be incorporated in the

It is associated to thBuccstryc((t i e, time) time predicate MmN model, equivalently than in the case of the model

that indexes structurally similar segments.

1) Beat-Synchronous Level: Chord Estimation:

a) Chord Recognition (MLNChord)The chord progres-
sion modeled bHMMChord, and consequentigRFChordof

Evidence consists of a set of ground atoms that give chroma

b) Incorporating Prior Information About Key (MLNPri-

18Indeed cases not mentioned in the set of formulas (e.g. ribhgvdown
the formula Observation(Chroma,n) A State(CM,n) with weight wéhh;fm
obtain by default an implicit weight of 0. As a result grourmtrulas not

mentioned have a higher probability, since fgre [0,1], 0 > logp;.
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CRFPriorKeydescribed in SedV-B3 by simply adding a new  Prior structural information at the global semantic leval i
template formula that reflects the impact of key features. incorporated using the time predicaeccstryct The position
Assuming that, at each time instant, the current local k&f segments of same type in the song is given as evidence (see
k! k € [1,24] is known,LocKey is added as a functional pred-Fig. 6 for an example). Letx” denote the number of distinct
icate in Tabll (LocKey(key!, tine)) and given as evidence segments. Each segment & € [1, K] may be characterized
in the MLN by adding in Tablll the evidence predicates: by its beginning position (in frames), € [1, N], and its length
LocKey (K, 0) ,LocKey(k', 1) - LocKey(K', N-1)  (22) in b_e_atslk. For ea_tch pair of same segment ty(ma_, sk), the
. i . position of matching beat-synchronous frames (likely taHee
An additional rule about key and chord relationship

: ; L 'Same chord type) is given as evidetice
incorporated in the model. For each pdik’,c¢*) of key

k!,1€[1,24] and chordc?, i € [1,24], we add the rule: Succstrucf Sk(bx) . 8" k(br)) - (26)
p S (bp+l 1x-1),s" (bt -1
w?iy LocKey(k', n) AState(c’, n) (23) UCCStrUCl(Sk(S k 5113)) s kbl p-1))
with values of the Weightﬁuﬁy,z‘,l € [1,24] defined in Sec. v \

1 1 1 1 1 1 1 1 1 1 1 1 1
beat number | 1!2!3!4 | 5!6!718[910!1112 13:14:15:16|17:18:19:20

I\V-B3. This rule “translates” the CRF key observation features.
segment type VERSE CHORUS VERSE

2) Bar level: Joint Estimation of Chords and Local Key ig. 6. Position of similar frames within a pair of same segtae
(MLNLocalkey): Using MLNs, the key can be estimated” The following set of formulas is added to the Markov logic

joiptly with the_ chord progressipn bY simply removing th%etwork to express the constraint that two same segments
evidence predicates about key listed in E2R)( and by con- should have a similar chord progression:
sidering the predicateocKey as a query along with the pred-

icateSt at e. LocKey(key! , ti me) becomes an unobservablgvstruct State(c’, ny) ASuccstryc{ Nz, 1) AState(c’, ny)
predicate and local keys are estimated from the chords,runétg all chordc?,i € [1,24], and with weightwstrycy reflecting
the assumption that a chord implies a tonal context. how strong the constraint is, manually set. In practicgyyct
In addition to the template formula reflecting rules abowtill be a small positive value (in Se¥. wstryct= —1og(0.95))
chords and key relationships, we add rules to model ké&y favor similar chord progressions in same segment types.
modulations in the same way that we add chord transitiorsrule 4) A Multi-scale Tonal Harmony Analysis (MLNMulti-
(see Eq. 21)). For this, we use the following set of generiScale): The two modelsMLNLocalKeyand MLNStruct can
formulas, see Tall, Sec. “Local key rules”: be unified by simply combining all the formulas into the same
Wl | ocKey (k’, Ny) ASUCCpeqf N2, N1) ALOCKey (K7, no) MLN. In this .model, thg chord and Ioc_al key progres:sions
(24) are jointly estimated relying on the metrical and the seinant
for all pairs of keys(k*, k7),4, j € [1,24]. Key modulations are structure. In SeclV-A3, we mentioned that when adding
modeled similarly to chord transitions and we us%ans'(ey: formulas that share variables with others, this has an infee
ngans (see footnotel 6). on the weights in the MLN, and it may be needed to modify
em (in general by training). However, in our case, we

We also add a rule to capture our hypothesis from sd ined d its b bining th | bout local k
IV-A1 that key changes inside a measure are very unlike tained goo resu ts by com ning ¢ € ruies a out local key
structure without changing the weights.

We add evidence indicating frames belonging to a same ; ) ) )
5) Inference in MLN: The inference step consists in

using the temporal predicatanmepgd n2, n1) (see Tablll). ) o ,
We include in the model the template formula: computing the answer to a query. Finding the most likely
state of the worldy consistent with some evidence

LocKey (k' S LocKey (k' . : : .
Wkeyour LOCKey (e, n1) ASammepa{ nz, ny) Alockey( ?22%) is generally known in Bayesian networks ddaximum

for each keyk!, 1 € [1,24], and with weightuye,pur, reflecting Probability_ Explanation(MPE) inference, whilg i|j Markov

how strong the constraint is, manually set. In practice,pur networks it is known as MaximumA Posteriori (MAP)

is a positive value (in our experimentsye,our = —1og(0.95)) inference. In MarkO\_/ logic, the problem of flndlr_1g the most

to avoid key changes inside a measure. probable_ configuration of a set of query varla_lbles given
3) Global Semantic Structure Level (MLNStrucBollow- SOM€ evidence reduces to finding the truth assignment that

ing the idea of designing a “structurally consistent” mése| maximizes the sum of Welghlts of satisfied clauses:
representation of music [69], we show that prior structural argmax p(y|z) :argmaxm exp(Zwini(x,y)) (28)

information can be used to enhance chord and key estimation = ¥ ) Y .
in an elegant and flexible way within the framework of 1his problemis generally NP-hard. Both exact and approxi-
MLNs. As opposed to [70], we do not constrain the modépate weighted s_at|sf|ab|llty s_olvers exist [19], [88], [10We
to have the exact same chord progression in all sections4§€ here exact inference with the toulbar2 branch & bound
the same type, but we onlfavor same chord progressionsMPE inference [102] implemented in thg ProbCog toofSox
for all instances of the same segment type, so that VarmtiqnlgNOte. that the valuesy, (b ), .. . , s}, (bgs +1x = 1) in Eq. (26) correspond
L . 0 beat time-instants. Note also that hége = lj.

between similar segments can be taken into account. Here, Wepjihough manageable on a standard laptop, the MLN inferesep has
focus on popular music where pieces can be segmented iatdgh computational cost compared to the Viterbi algorittior HMM and
specific repetitive segments with labels suctthsrus verse CRF (m_ 2min for MLNChord against6s for HMMChord for_ processing 60s

. . Lo of audio on a MacBook Pro 2.4GHz Intel Core 2 Duo with 2GB RAMJe
or refrain. Segments are considered as similar if they repres%ﬁﬁl to explore the use of approximate algorithms and altake advantage
the same musical content, regardless of their instrunientat of the current developments on scalable inference [88]-[90
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TABLE IV
CHORDS LABE;QS?;?’;;YEE e To illustrate the flexibility of MLNs, we also tested a
HMMChord | 720221461 | 52802 6.04 scenario where some partial evidence about chordsG¥vas added
CRFChord | 741421450 | 52.9425.69 by adding evidence predicates of the forfitate(c;',0),
CRFPriorkey | 75.42+ 14.10 | 53.595.62 State(c$T,9), State(cT,19), -, State(c$T, N-1), as prior
MLNChord | 74.02+14.61 | 52.80+6.04 information 0f10% of the ground-truth chords®™,i € [1,24].
MLNPriorKey | 75.31+13.48 | 53.41+5.76 We tested this scenario on tikall out boysongThis ain't a
| MLNLocalkey | 72.59+14.68 | 52.62+6.44 | scene its an arms rac®r which the ChordMLN estimation

results are poor. They were increased frétn5% to 76.2%,

_ i showing how additional evidence can easily be added and have
In this section, we analyze and compare the performan%ggmﬁcam impact.

of the various models on two test-sets of different musitesty
. - o ; C. Bar level -
annotated by trained musicians originally proposed in.[28]

V. EVALUATION AND DISCUSSION

Key as Prior Information or Query

A. Test-sets and Evaluation measures LOCAL KEYS EEEXACT AII?DBI\I;E\I\?HREX ESTIMATION RATE.

The Mozart test-setconsists of 5 movements of Mozart Pop test-set Mozart test-se
piano sonatas corresponding to 30 minutes of audio music. | minLocakey | EE | 2412%34.69 | 83.06+19.38
The Pop test-setcontains 16 songs from various artists and ME | 71.80+3508 | 90.61+16.36

styles that include pop, rock, electro and salsa. Detaitsbea (28] best  |..oc..[..61:81£36.:50 | 80.21£13.56

found in [28] and annotation are available on demand. As in ME | 791842750 | 8481+1186
[103], we map the complex chords in the annotation (such as | MLNMuliscale | = | 59:90%31.50
major and minoi6*", 7t", 9t") to their root triads. . ME | 7628+ 2819 —
Tonal analysis at the micro- and meso-scale rules (impact ofl) Prior Key Information: The MLN formalism incorpo-
chords and local key rules) is evaluated on both test-seils wHates prior information about key in a simple way with minlma
the incorporation of macro-scale rules (impact of semantiaodel changes._lt improves in general th_e Chor_d estimagen r
structure rules) is only evaluated on tRep test-sesince the Sults (compare lineSILNChordandMLNPriorKeyin Tab.V).
considered scenario of incorporating semantic structutesr Fig. 7 shows an excerpt of th@ink Floyd song Breathe
is not relevant for classical musgic in E minor key. In the first instance of the Verse, at [1:15-
For chord and key evaluation, we considaiel accuracy 1:20]min (dashed grey circle on measiret), the underlying
which measures how the estimated chord/key is consistént wim harmony is disturbed by passing notes in the voice and
the ground truth EE (Exact Estimatio results correspond estimated as EM witMLNChord Prior key information favors
to the mean and standard deviation of correctly identifiggm chords and removes this errorMLNPriorKey.
chords/keys per song. Parts of the pieces where no key caflote that the overall improvement is not statistically sign
be labeled (e.g. when a chromatic scale is played) ha¢g@nt for thePop test-setbecause the WMCR key templates
been ignored in the evaluation, and “Non-existing chord§€ not adapted model chord/key relationships for someeof th
(noise, silent parts or non-harmonic sounds) are uncon&RNgs- A detailed discussion on the choice of relevant key
tionally counted as errors. For local key label accuracy, wemplates according to the music genre (out of the scope of
also consider th&E score, which gives the estimation ratdhis article) can be found in [28].
according to the MIREX 2007 key estimation ta&k 2) Local Key Estimation:By considering the key as a
Paired samples t-testt the5% significance level are used toduery (i.e. by simply removing the evidence predicates abou
measure whether the difference in the results from one rdettgY). the model can jointly estimate chords and keys. For our
to another is statistically significant or not. dataisetts, this does nh(')t hhelp imprO\éing tzedcponz%;s'ﬂmaﬂon
. : results in average, which are even degraded fo test-
B. Beat level - Equivalence With HMM, CRF and HMM set(see the last line in TabV). This is due to some special
The main interest of the proposed model lies in its simpliCityysical cases. For instance, tink Floyd song Breathe
and expressivity for compactly encoding physical content a mainly consists of successive AM and Em chords. The correct
semantic information in a unified formalism. As an illusioat key should be E dorian key, but modal keys are not modeled
of the theory, results show that the HMM and linear-chaiRere. The algorithm estimates A Major key almost all the time
CRF structures can be concisely and elegantly embedded inga result, in the jointly estimated chord progression, tods
MLN. Although the inference algorithms used for each modghe Em chords are labeled as EM chord (that are more likely
are different, a song by song analysis shows that chord ptaan Em chords in A Major key).

gressions estimated by the two models are quasi identichl an Nevertheless, the key progression can be fairly inferretl wi
the difference in the results betweBiMMChord CRFChord  oyr algorithm. In Taby/, we report the local key estimation
andMLNChordin Tab. IV is not statistically significant. results obtained with our algorithm and with a state-of e
2IThis would require a much more complex model since in claissicalgo.mhm tested (?h the same dataset [28].' In [28]’ the local
music, parts structurally similar often present strongatins such as key K€Y iS modeled with a HMM that takes as input either chord
modulations that would need to be taken into account. or chroma observations. From a modeling prospective, it is

22The score is obtained using the following weights: 1 for eorrkey difficult to make a fair comparison with [28] because the ob-
estimation, 0.5 for perfect fifth relationship between rasted and ground-

truth key, 0.3 if detection of relative major/minor key, Gf2detection of S_ervations' the key templates_ and the mo_deling _hypOthESiS a
parallel major/minor key. Fore more details, see http:Anmirex.org. different from our MLN algorithm. In particular, in [28], th
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metrical structure is explicitly taken into account in thedel measured-6:D-7 and D-18:D-19 of the two verses of Fig.
to infer the key progression. But to get an idea of the perfor-(see the two dashed black rectangles), the position obthe
mances of the proposed model against the state-of-the art, 19:D-20 chord change is more accurate wiRtLNStructthan
report the best results of all configurations tested in [28]. with MLNChord presumably because of the similarity with
Local key estimation results are especially high for thihe D-7:D-8 chord change. Also it can be seen that the two
Mozart test-seand significantly better than in [28]. Results foMLNStructchord progressions are not exactly the same (com-
thePop test-sehre not as satisfying, again because the WMCPare measureB-6 and its counterparD-18 in MLNStruc),
templates do not always reflect accurately the tonal comtentwhich illustrates the flexibility of the proposed model (dke
pieces in this test-s&t However, thanks to its flexibility, the four plain grey rectangles for another example). We expett t
MLN allows room for improvement. Indeed, when incorpomusic styles such as jazz music, where repetitions of segmen
rating information about the structure (se.NMultiScalein result in more complex variations due to improvisation vaoul
Tab.V), key estimation results are comparable to the state-dfrther benefit from the flexibility of the proposed model.
the-art results in [28], and even better for the MIREX score. TABLE VII

Note that local key estimation results without the rule op ke~ CHORDEERESULTS OBTAINED FOR THEPOD LeSt-StWITH A
MULTI-SCALE TONAL HARMONY DESCRIPTION

transitions (see Eq2¢) in Sec.IV-C2) turned out to be poor. MLNChord MLNPriorKey MLNLocalKey
AlSO, with the chosen parameter Settings, the rule thaadiss 74.02 + 14.61 75.31 + 13.48 79.59 + 14.68
key changes inside a measure_ using the prec_jl,Sataebar MLNStruct MLNMultiScale-Priorkey | MLNMultiScale
(see the rule expressed by Eg5)in Sec.IV-C2) did not have 7531 % 15.62 76.31213.58 74341 14.32

a significant impact on the results probably because in A4l ( 2) Multi-scale Tonal Harmony AnalysisThe combination
the weight in the clauses corresponding to transitions ®etw of gJ| the previously described rules results in a tonal heryn
two same keys is already high enough compared to thoggalysis at multiple temporal and semantic levels. Thisvel
corresponding to transition from a key to a different ¥ne improving the analysis at both the micro and meso time scales
D. Global Semantic Structure Level The chord progression estimated wiMLNChord is signifi-

c EE TABLE VI stat cantly improved with théLNMultiScale-PriorKey Moreover,

LOROEERESLLTO W SEWANTIC STRUCIURE IFOTMATIONSEEL e results ofMLNMUIiScale-PriorKeyare also better than

EE Stat, Sig. both those obtained withLNStructandMLNPriorKey, which

MLNChord | 74.02 = 14.61 illustrates the benefit of using multiple cues for the analys
MINStuct | 7531 15,62 | )V Also, as seen in Sev-C2, incorporating structure information

[70] 74.44 £ 15.13 }no allows significantly improving local key estimation result

1) Structurally Consistent Chord Progression Estimation:Moreover, some of the errors in the chord progression esti-
In Tab. VI, we compare the results of the modéLNStruct mated bLNLocalKeyare removed when incorporating rules
with the baselineMLNChord modified to account for the on structure information iMLNMultiScale(see TabVIl).
structure in a similar way to [70], by replacing chromagram The two grey dashed rectangles in Fig.(measureD-3
portions of same segments types by their average. The baid D-15) illustrate the effect of the combined rules. With
signal features (chroma) are the same for both methods. MLNChordthe position of the right boundary is not accurate

The proposed approach compactly encodes physical sigftaichordD-3 but it is correct for chord-15. Local key infor-
content and higher-level semantic information in a unifieghation with MLNPriorKey is not sufficient to correct the-3
formalism. Global semantic information can be conciselgoundary. When similar chord progression in same segment
and elegantly combined with information at the beat-lev&ypes is enforced wittMLNStruct the model relies on chord
time-scale so that chord estimation results are signifiganD-3 and the position change is incorrect for both instances. But
improved, and more consistent with the global structure, agen combining the two rules ilMlLNMultiscale the position
illustrated in Fig.7. For instance (see the plain black rectanglef chord change is correct for both instances.
measured-1 and p-13), the ground-truth chord_of the first VI. CONCLUSION AND FUTURE WORK
bar of the verse is EmMLNChord correctly estimates the ) ) ) ]
second instance of this chord, but makes an error for the first this article, we have introduced Markov logic as a
instance (EM instead of Em). This is correctedMyNStruct formalism that enables intuitive, effective, and expressi
that favors same chord progression in same segment type&€asoning about complex relational structure and unceytai

The results obtained with the proposed model fairly con@f Mmusic data. We have shown how MLNs relate to hidden
pare with the previous approach [70]. The difference is nMarkov mod.els and con.dmonal random f|eld§, two quels
statistically significant, but the proposed model allows f¢hat are typically used in the MIR community, especially
taking into account variations between segments by fagorifP’ Seduence labeling tasks. MLNs encompass both HMM
instead of exactly constraining the chord progression to B84 CRF, while being much more flexible and offering new

the same for segments of the same type. For instance,NMEresting prospects for music processing.
To illustrate the potential for music processing of Markov
Zn fact the results in [28] we report here for tRep test-setre obtained logic networks, we have progressively designed a model for
with other key templates (the Krumhansl key templates [98]) tonal harmony analysis, starting from a simple HMM. The
24However, in our experiments, we saw that, as it could be erdec final d del bi h lated inf .
decreasing the value of thexeypyr Weight would have the impact of favoring Ina p_ropose_ model com 'nes_ armony-related information
key changes inside a measure. at various time-scales (analysis frame, phrase and global
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Fig. 7. Pink Floyd songBreathe The first 4 lines (beats, downbeats, chords, structurgespond to the ground truth annotations. The others irelittat
results obtained with the various proposed models. Amalysthe text: i) Dashed grey circle (comparison betwdtirNChord and MLNPriorKey), ii) plain
black rectangles (comparison betwelh NChord and MLNStruc), iii) dashed black rectangles and plain grey rectanglesnfrarison of the flexibility of
MLNStructversus [70]), iv) dashed grey rectangles (combinationldhalrules inMLNMultiScale-PriorKey structure and local key given as prior information).

structure) in a single unified formalism, resulting in a more [6]
elegant and flexible model, compared to existing more ad-
hoc approaches. This work is a new step towards a unifie
multi-scale description of audio, and toward the modelifig o i8]
complex tasks such as music functional analysis.

The proposed model has a great potential of improvement in9
the future. Context information (metrical structure, insten-
tation, chord patterns, etc.) could be compactly and flgxibl
embedded in the model moving toward a unified analysikll]
of music content. Here, relational structure has been éériv [12]
from background musical knowledge. Learning from labelled
examples might overcome some of the shortcomings of thes;
proposed model. The possibility of combining training with[14]
expert knowledge [86] may help leverage music complexity.

An appealing property of MLNs is their ability of construct- [15]
ing new formulas by learning from the data and creating newg;
predicates by composing base predicatgedicate invention
[104]). This should be of particular interest to the MIR[17
community in the incoming years, considering the current
expansion of annotated databases. As more and more comﬁl’é’]
mentary heterogeneous sources of music-related infoomati[19]
are becoming available (e.g. video, music sheets, metadaf ]
social tags, etc.), the development of multimodal appreach
for music analysis is becoming essential. This aspect shoul21]
strongly benefit from the use of statistical relational mede 55,

MLNs are currently becoming more and more attractive
to many research fields, leading to an increasing number
compelling developments, including interesting conmetwi [24]
with deep learning [105] and deep transfer [106]. We believ
that MLNs open new interesting perspectives for the field o%

7]

[10

music content processing. [26]
(27]
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