M. Diagne, M. David, P. Lauret, J. Boland, and N. Schmutz, Review of solar irradiance forecasting methods and a proposition for small-scale insular grids, Renewable and Sustainable Energy Reviews, vol.27, pp.65-76, 2013.
DOI : 10.1016/j.rser.2013.06.042

URL : https://hal.archives-ouvertes.fr/hal-01090087

M. H. Agha, R. Thery, G. Hetreux, A. Hait, and J. M. Le-lann, Integrated production and utility system approach for optimizing industrial unit operations, Energy, vol.35, issue.2, pp.35-611, 2010.
DOI : 10.1016/j.energy.2009.10.032

URL : https://hal.archives-ouvertes.fr/hal-00627731

P. Lauret, C. Voyant, T. Soubdhan, M. David, and P. Poggi, A benchmarking of machine learning techniques for solar radiation forecasting in an insular context, Solar Energy, vol.112, pp.446-457, 2015.
DOI : 10.1016/j.solener.2014.12.014

URL : https://hal.archives-ouvertes.fr/hal-01101564

G. Notton, Problematic Integration of Fatal Renewable Energy Systems in Island Grids, Renew. Energy Serv. Mank, vol.10, pp.245-255978, 1007.
DOI : 10.1007/978-3-319-18215-5_22

URL : https://hal.archives-ouvertes.fr/hal-01062397

M. Diagne, M. David, P. Lauret, J. Boland, and N. Schmutz, Review of solar irradiance forecasting methods and a proposition for small-scale insular grids, Renewable and Sustainable Energy Reviews, vol.27, pp.65-76, 2013.
DOI : 10.1016/j.rser.2013.06.042

URL : https://hal.archives-ouvertes.fr/hal-01090087

T. M. Lai, W. M. To, W. C. Lo, and Y. S. Choy, Modeling of electricity consumption in the Asian gaming and tourism center???Macao SAR, People's Republic of China, Energy, vol.33, issue.5, 2008.
DOI : 10.1016/j.energy.2007.12.007

C. Voyant, F. Motte, A. Fouilloy, G. Notton, C. Paoli et al., Forecasting method for global radiation time series without training phase: Comparison with other well-known prediction methodologies, Energy, vol.120, pp.120-199, 2017.
DOI : 10.1016/j.energy.2016.12.118

URL : https://hal.archives-ouvertes.fr/hal-01591375

C. Voyant, G. Notton, S. Kalogirou, M. Nivet, C. Paoli et al., Machine learning methods for solar radiation forecasting: A review, Renewable Energy, vol.105, pp.569-582, 2017.
DOI : 10.1016/j.renene.2016.12.095

URL : https://hal.archives-ouvertes.fr/hal-01591391

R. Bubnová, G. Hello, P. Bénard, and J. F. Geleyn, Integration of the Fully Elastic Equations Cast in the Hydrostatic Pressure Terrain-Following Coordinate in the Framework of the ARPEGE/Aladin NWP System, Monthly Weather Review, vol.123, issue.2, pp.515-535, 1995.
DOI : 10.1175/1520-0493(1995)123<0515:IOTFEE>2.0.CO;2

P. Lauret, M. Diagne, and M. David, A Neural Network Post-processing Approach to Improving NWP Solar Radiation Forecasts, Energy Procedia, 2014.
DOI : 10.1016/j.egypro.2014.10.089

URL : https://doi.org/10.1016/j.egypro.2014.10.089

C. Voyant, M. Muselli, C. Paoli, and M. Nivet, Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation, Energy, vol.39, issue.1
DOI : 10.1016/j.energy.2012.01.006

URL : https://hal.archives-ouvertes.fr/hal-00657635

S. Ener-ru?en, A. Hammer, and B. Akinoglu, Estimation of daily global solar irradiation by coupling ground measurements of bright sunshine hours to satellite imagery, Energy, vol.58, 2013.
DOI : 10.1016/j.energy.2013.05.062

T. Schmidt, J. Kalisch, E. Lorenz, and D. Heinemann, Evaluating the spatio-temporal performance of sky-imager-based solar irradiance analysis and forecasts, Atmospheric Chemistry and Physics, vol.16, issue.5, pp.3399-3412, 2016.
DOI : 10.5194/acp-16-3399-2016

H. A. Nielsen, H. Madsen, and T. S. Nielsen, Using quantile regression to extend an existing wind power forecasting system with probabilistic forecasts, Wind Energy, pp.95-108, 2006.
DOI : 10.1002/we.180

URL : http://orbit.dtu.dk/en/publications/using-quantile-regression-to-extend-an-existing-wind-power-forecasting-system-with-probabilistic-forecasts(31731d8f-02ed-4687-a7c7-c32399e314ce).html

A. M. Alonso, D. Peña, and J. Romo, Forecasting time series with sieve bootstrap, Journal of Statistical Planning and Inference, vol.100, issue.1, pp.1-1110, 2002.
DOI : 10.1016/S0378-3758(01)00092-1

URL : https://e-archivo.uc3m.es/bitstream/10016/14838/1/forecasting_JSPI_2002_ps.pdf

A. Grantham, Y. R. Gel, and J. Boland, Nonparametric short-term probabilistic forecasting for solar radiation, Solar Energy, vol.133, pp.465-475, 2016.
DOI : 10.1016/j.solener.2016.04.011

M. Benghanem, A. Mellit, and S. N. Alamri, ANN-based modelling and estimation of daily global solar radiation data: A case study, Energy Conversion and Management, vol.50, issue.7, 2009.
DOI : 10.1016/j.enconman.2009.03.035

S. Daniel and . Wilks, Statistical methods in the atmospheric sciences, 2, 2009.

D. S. Wilks and D. S. Wilks, Statistical Methods in the Atmospheric Sciences An Introduction, 2014.

M. David, F. Ramahatana, P. Trombe, and P. Lauret, Probabilistic forecasting of the solar irradiance with recursive ARMA and GARCH models, Solar Energy, vol.133, pp.55-72, 2016.
DOI : 10.1016/j.solener.2016.03.064

URL : https://hal.archives-ouvertes.fr/hal-01310208

M. Korany, M. Boraiy, Y. Eissa, Y. Aoun, M. M. Wahab et al., A database of multi-year (2004???2010) quality-assured surface solar hourly irradiation measurements for the Egyptian territory, Earth System Science Data, vol.8, issue.1, pp.105-113, 2016.
DOI : 10.5194/essd-8-105-2016

URL : https://hal.archives-ouvertes.fr/hal-01280702

M. Sugiyama and M. Kawanabe, Machine Learning in Non-Stationary Environments: Introduction to Covariate Shift Adaptation, 2012.
DOI : 10.7551/mitpress/9780262017091.001.0001

C. Paoli, C. Voyant, M. Muselli, and M. Nivet, Solar Radiation Forecasting Using Ad-Hoc Time Series Preprocessing and Neural Networks, Emerg. Intell. Comput. Technol. Appl, pp.898-907978, 2009.
DOI : 10.1007/978-3-642-04070-2_95

URL : https://hal.archives-ouvertes.fr/hal-00438781

C. Paoli, C. Voyant, M. Muselli, and M. Nivet, Use of exogenous data to improve an Artificial Neural Networks dedicated to daily global radiation forecasting, 2010 9th International Conference on Environment and Electrical Engineering, pp.2-3, 2010.
DOI : 10.1109/EEEIC.2010.5490018

P. Ineichen, A broadband simplified version of the Solis clear sky model, Solar Energy, vol.82, issue.8, pp.758-762, 2008.
DOI : 10.1016/j.solener.2008.02.009

R. W. Mueller, K. F. Dagestad, P. Ineichen, M. Schroedter-homscheidt, S. Cros et al., Rethinking satellitebased solar irradiance modelling: The SOLIS clear-sky module, Remote Sens, Environ, pp.91-160, 2004.

C. Voyant, M. Muselli, C. Paoli, and M. Nivet, Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation, Energy, vol.36, issue.1, pp.348-359, 2011.
DOI : 10.1016/j.energy.2010.10.032

URL : https://hal.archives-ouvertes.fr/hal-00556471

K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators, Multilayer feedforward networks are universal approximators, pp.359-366, 1989.
DOI : 10.1016/0893-6080(89)90020-8

G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals, and Systems, vol.27, issue.4, pp.303-314, 1989.
DOI : 10.1090/pspum/028.2/0507425

C. Voyant, M. Muselli, C. Paoli, M. Nivet, P. Poggi et al., Predictability of PV power grid performance on insular sites without weather stations : use of artificial neural networks, pp.3-86, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00442312

C. Voyant, M. Muselli, C. Paoli, and M. Nivet, Hybrid methodology for hourly global radiation forecasting in Mediterranean area, Renewable Energy, vol.53, pp.53-54, 2013.
DOI : 10.1016/j.renene.2012.10.049

URL : https://hal.archives-ouvertes.fr/hal-00750486

M. Abuella and B. Chowdhury, Random forest ensemble of support vector regression models for solar power forecasting, 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), 2017.
DOI : 10.1109/ISGT.2017.8086027

H. Cheng, Hybrid solar irradiance now-casting by fusing Kalman filter and regressor, Renewable Energy, vol.91, pp.434-441, 2016.
DOI : 10.1016/j.renene.2016.01.077

J. Davis, Gradient Boosted Regression Trees for Forecasting Daily Solar Irradiance from a Numerical Weather Prediction Grid Interpolated with Ordinary Kriging, Gradient_Boosted_Regression_Trees_for_Forecasting_Daily _Solar_Irradiance_from_a_Numerical_Weather_Prediction_Grid_Interpolated_with_Ordinary_ Kriging, 2018.

D. Gagne, A. Mcgovern, S. Haupt, and J. Williams, Evaluation of statistical learning configurations for gridded solar irradiance forecasting, Solar Energy, vol.150, 2017.
DOI : 10.1016/j.solener.2017.04.031

C. Voyant, T. Soubdhan, P. Lauret, M. David, and M. Muselli, Statistical parameters as a means to a priori assess the accuracy of solar forecasting models, Energy, pp.90-671, 2015.

S. K. Aggarwal and L. M. Saini, Solar energy prediction using linear and non-linear regularization models: A study on AMS, Solar Energy Prediction Contest, pp.2013-2027

M. P. Almeida, O. Perpiñán, and L. Narvarte, PV power forecast using a nonparametric PV model, Solar Energy, vol.115, 2015.
DOI : 10.1016/j.solener.2015.03.006

URL : http://oscarperpinan.github.io/papers/Pinho.Perpinan.ea2014.pdf

A. Lahouar, J. Ben-hadj, and . Slama, Day-ahead load forecast using random forest and expert input selection, Energy Convers, Manag, vol.103, pp.1040-1051, 2015.
DOI : 10.1016/j.enconman.2015.07.041

G. K. Tso and K. K. Yau, Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks, Energy, vol.32, issue.9, 2007.
DOI : 10.1016/j.energy.2006.11.010

T. Hastie and R. Tibshirani, Generalized additive models, 44] L. Breiman, Bagging Predictors, pp.297-318, 1986.

L. Breiman, Random Forests, Machine Learning, vol.45, issue.1, pp.5-321010933404324, 2001.
DOI : 10.1023/A:1010933404324

S. B. Taieb, G. Bontempi, A. F. Atiya, and A. Sorjamaa, A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition, Expert Systems with Applications, vol.39, issue.8, pp.7067-7083, 2012.
DOI : 10.1016/j.eswa.2012.01.039

G. De, Boosted Trees for Ecological Modeling and Prediction, Ecology, vol.88882432, issue.2, pp.243-251, 2007.

L. Breiman, Bagging predictors, Machine Learning, vol.10, issue.2, pp.123-140, 1996.
DOI : 10.2307/1403680

C. Voyant, G. Notton, C. Paoli, M. L. Nivet, M. Muselli et al., Numerical weather prediction or stochastic modeling: an objective criterion of choice for the global radiation forecasting, Int. J. Energy Technol. Policy, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00934872

J. D. Rodriguez, A. Perez, and J. A. Lozano, Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.3, pp.569-575, 2010.
DOI : 10.1109/TPAMI.2009.187

T. Wong, Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation, Pattern Recognition, vol.48, issue.9, pp.2839-2846, 2015.
DOI : 10.1016/j.patcog.2015.03.009

T. S. Wiens, B. C. Dale, M. S. Boyce, and G. P. Kershaw, Three way k-fold cross-validation of resource selection functions, Ecological Modelling, vol.212, issue.3-4, pp.212-244, 2008.
DOI : 10.1016/j.ecolmodel.2007.10.005

A. H. Murphy, Skill Scores Based on the Mean Square Error and Their Relationships to the Correlation Coefficient, 116<2417:SSBOTM>2.0.CO, pp.2417-2424, 1988.
DOI : 10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2

C. Voyant, G. Notton, C. Paoli, A. Fouilloy, F. Motte et al., Uncertainties in global radiation time series forecasting using machine learning: The multilayer perceptron case, Energy, vol.125, pp.125-248, 2017.
DOI : 10.1016/j.energy.2017.02.098

URL : https://hal.archives-ouvertes.fr/hal-01591402

B. Chen, Y. R. Gel, N. Balakrishna, and B. Abraham, Computationally efficient bootstrap prediction intervals for returns and volatilities in ARCH and GARCH processes, Journal of Forecasting, vol.69, issue.2, pp.51-71, 2011.
DOI : 10.1007/978-1-4757-3803-2

B. Efron, Bootstrap Methods: Another Look at the Jackknife, Ann. Stat, vol.7, 1979.

P. Bühlmann, Bootstraps for Time Series, Statistical Science, vol.17, issue.1, pp.52-72, 2002.
DOI : 10.1214/ss/1023798998

R. R. Wilcox, Introduction to Robust Estimation and Hypothesis Testing, 2016.

P. Givord and X. D. Haultfoeuille, La régression quantile en pratique, 2013.

J. R. Trapero, Calculation of solar irradiation prediction intervals combining volatility and kernel density estimates, Energy, pp.266-274, 2016.

R. M. , K. I. , and A. Vg, 2D-interval forecasts for solar power production, Sol. Energy, vol.122, pp.191-203, 2015.

C. Voyant, P. Haurant, M. Muselli, C. Paoli, and M. Nivet, Time series modeling and large scale global solar radiation forecasting from geostationary satellites data, Solar Energy, vol.102, pp.131-142, 2014.
DOI : 10.1016/j.solener.2014.01.017

URL : https://hal.archives-ouvertes.fr/hal-00932955

P. Haurant, C. Voyant, M. Muselli, M. L. Nivet, and C. Paoli, Hourly global radiation prediction from geostationary satellite data, p.2013
URL : https://hal.archives-ouvertes.fr/hal-00865919