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Genetic characterization of a French cohort of GNE-mutation negative 

inclusion body myopathy patients using exome sequencing 

(Abstract) 

 

INTRODUCTION: Hereditary inclusion body myopathy (hIBM) refers to a group of 

clinically and genetically heterogeneous diseases. The overlapping histochemical features of 

hIBM with other genetic disorders lead to low diagnostic rates with targeted single-gene 

sequencing. This is true for the most prevalent form of hIBM, GNEpathy. Thus, we used 

whole exome sequencing (WES) to evaluate whether a cohort of clinically suspected 

GNEpathy patients undiagnosed by targeted GNE analysis could be genetically characterized. 

METHODS: 20 patients with hIBM but undiagnosed by targeted GNE sequencing were 

analyzed using WES before data filtering on 306 genes associated with neuromuscular 

disorders. 

RESULTS: 7 patients out of 20 were found to have disease-causing mutations in genes 

associated with hIBM, or genes allowing for hIBM in the differential diagnosis, or associated 

with unexpected diagnosis. 

DISCUSSION: NGS is an efficient strategy in the context of hIBM, resulting in a molecular 

diagnosis for 35% of the patients initially undiagnosed by targeted GNE analysis.  
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INTRODUCTION 

Hereditary inclusion body myopathies (hIBM) represent a heterogeneous group of muscular 

disorders defined by the relatively nonspecific criterion of rimmed vacuoles on muscle 

biopsy
1
.  

GNEpathy
2
, caused by mutations in GNE (UDP-N-acetylglucosamine-2-epimerase/N-

acetylmannosamine kinase, MIM*603824)
3
 is the most common form of hIBM, with many 

clinical features overlapping with other forms of hIBM, implicating other genes or forms with 

yet unknown underlying genetic defects. Targeted analysis of GNE in a large recently-

described French cohort with suspected GNEpathy provides only a 20% diagnostic yield (32 

of 164 patients)
4
.  

In the present study, we evaluated the extent to which a cohort of clinically suspected 

GNEpathy patients undiagnosed by GNE targeted analysis may be genetically characterized, 

by implicating other genes previously known to cause neuromuscular disorders using whole 

exome sequencing (WES) associated with data filtering for 306 genes of interest. 

 

METHODS 

We selected 20 unrelated index cases (IC) with clinically suspected GNEpathy associated 

with rimmed vacuoles on muscle biopsy samples, but for which no GNE disease-causing 

mutation had been identified by direct targeted sequencing. Samples had been prepared and 

stored by the Center of Biological Resources, Department of Medical Genetics, La Timone 

Hospital, Marseille, and were used following the ethical recommendations of our institution 

and according to the Declaration of Helsinki. All included patients gave their written consent 

prior to the genetic study, in accordance with French law. 

WES was performed using the SureSelect Human All Exon Kit version 5 (Agilent 

Technologies, Santa Clara, California) and the HiSeq 2000 (Illumina, San Diego, California).  
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Sequencing data were processed on the Illumina pipeline (CASAVA1.8.2) before using 

GATK
5
 variant calling and ANNOVAR

6
 annotation using the GRCh37/hg19 Human genome 

version, coverage statistics were computed using VarAFT (Variant Analysis and Filtration 

Tool ; http://varaft.eu, 2016), which uses BedTools
7
.VarAFT was also used to sort and filter 

the obtained variants. 

 

Our initial analysis strategy focused on 306 genes previously reported to cause neuromuscular 

disorders, and selected from the Gene Table of Neuromuscular Disorders
8
 (including groups 1 

to 5 and the main differential diagnosis genes) as previously described
9,10

.  A mean overall 

sequencing depth of 106X and a mean coverage of the coding exons of 95% (at 20X depth) 

and 91% (at 30X depth) was obtained for these 306 genes.  Predicted pathogenicity of 

identified variants was determined using UMD-predictor
11
, SIFT (Sort Intolerant From 

Tolerant human Protein)
12
, PolyPhen-2 (Polymorphism Phenotyping v2)

13
 and HSF (Human 

Splicing Finder)
14 
softwares.   

 

Regarding HSF
14 

in silico
 
results, we defined four types of predicted splicing effects:   1) 

Probably damaging: associated with predicted strong splicing effect due to broken donor site 

(DS) or acceptor site (AS) and/or new DS/AS creation and/or strong possibility of broken 

Exonic Splicing Enhancer (ESE) site; 2) Possibly damaging: associated with predicted 

medium splicing effect relating to newly created DS/AS and/or medium possibility of broken 

ESE site; 3) Uncertain: associated with predicted mild splicing effect due to newly created 

DS/AS and/or low possibility of broken ESE site; and 4) Not affected: predicted weak or no 

splicing effect. 
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The overall pathogenicity score for each variant was determined according to the American 

College of Medical Genetics (ACMG) guidelines
15
. We established four groups of patients 

based on the degree of certainty of molecular diagnosis using the ACMG guidelines.  The 

group with “definite diagnosis” consisted of the following patients: 1) Those carrying a 

homozygous variant classified as “pathogenic” using ACMG guidelines in a gene known to 

cause an autosomal recessive form of disease; 2) Compound heterozygotes carrying two 

variants classified as pathogenic; 3) Patients carrying one variant classified as pathogenic in a 

gene known to cause an autosomal dominant form of disease.  The group with “probable 

diagnosis” was composed of patients carrying variants that were classified as “likely 

pathogenic” by ACMG guidelines. Patients carrying variants found to be pathogenic by 

certain prediction tools, but classified as “variants of uncertain significance” by ACMG 

guidelines were placed in the group with “possible diagnosis”. For those patients in the “no 

established diagnosis” group, no variant compatible with the patient’s phenotype was found. 

 

All disease-causing variants identified by WES were confirmed using direct targeted 

sequencing (Genetic analyzer 3500XL; Thermo Fisher Scientific, Waltham, Massachusetts) 

and the following gene sequence references: ACTA1 (NM_001100), CAPN3 (NM_000070), 

DES (NM_001927), FLNC (NM_001458), GYG1 (NM_004130), MYH2 (NM_017534), 

TARDBP (NM_007375), TTN (NM_001267550) and VCP (NM_007126). 

 

RESULTS 

All phenotypic and mutational data are detailed in Table 1.  A definite diagnosis was obtained 

for seven index cases (ICs). Patient P1 harbored a previously reported mutation in TTN (Titin, 

MIM*188840) associated with hereditary myopathy with early respiratory failure 

(HMERF)
16
. The homozygous status of this mutation is consistent with the parental 
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consanguinity. For Patients P2 and P5, the same heterozygous mutation in VCP (Valosin-

Containing Protein, MIM *601023), previously described in the literature
17
, was discovered 

and associated with similar onset and clinical features (distal myopathy of upper and lower 

limbs). Compound heterozygous known mutations in TTN
18,19

 were found in patient P3, 

whereas patient P4 harbored a previously described heterozygous variant in DES (Desmin, 

MIM*125660)
20 

leading to cardiomyopathy and myofibrillar abnormalities on the muscle 

biopsy, features that were retrieved in patient P4. For patient P6, a known FLNC (Filamin C, 

MIM *102565) mutation was found
21
. Surprisingly, we identified compound heterozygous 

mutations for the GYG1 (Glycogenin 1, MIM*603942) gene in patient P7, associated with 

polyglucosan body myopathy type 2. In this patient, we found a previously described GYG1 

variant with a proven deleterious effect on splicing
22
, associated with a novel GYG1 mutation 

leading to a frameshift of the reading frame and the introduction of a premature translation 

termination codon. Further investigations allowed additional clinical and histo-immunological 

features thus suggesting a polyglucosan body myopathy (data not shown). A probable 

diagnosis was obtained for patients P8 and P9, with novel compound heterozygous TTN 

mutations and a heterozygous TARDBP (Tar DNA-Binding Protein, MIM *605078) variant 

respectively while two novel heterozygous variants in the FLNC and the ACTA1 (Actin, 

Alpha, skeletal muscle 1, MIM *102610) genes fulfilled the possible diagnosis overall 

pathogenicity score in patients P10 and P11 respectively.  

Finally, 9 ICs remained without a molecular diagnosis following mutational analysis of the 

306 genes of interest.  

 

Considering only the first (definite) group of patients, the yield of diagnosed patients was 

35% in this cohort (7/20).  
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DISCUSSION 

Next-Generation Sequencing (NGS) is already used by many genetics laboratories and is 

being used with increasing frequency as the standard initial analysis for myopathies and other 

heterogeneous genetic disorders.  The molecular diagnosis yield of 35% obtained in this study 

is consistent with other reports showing a range of 25 to 50 percent for rare genetic disorders 

diagnosis by WES
23,24

.  

 

Our study illustrates that a NGS approach is more efficient than the gene-by-gene strategy for 

several reasons. First, it allowed us to explore genes responsible for disorders within the 

differential diagnosis of hIBM, including VCP and DES. Second, our strategy permitted 

sequencing of large-sized genes, such as TTN and FLNC, which is not routinely performed, 

leading to the identification of variants in five index cases. Third, this approach allowed us to 

modify the incorrect diagnosis of hIBM in one patient, initially based on the presence of 

rimmed vacuoles on muscle biopsy, to a different muscle disorder caused by variants in the 

gene GYG1. Thus, NGS has the potential to alter a misdiagnosis due to a misleading muscle 

biopsy. Although using WES to explore a subset of genes might not provide as much target 

sequence coverage as a sequencing strategy specifically designed for these genes
10
, there are 

several advantages of using this approach. The sequencing results for samples where no 

pathogenic variants were identified in the initially explored genes can be reanalyzed to 

explore additional genes or all genes in the whole exome. In this way, further analyses are 

ongoing for the cases among our cohort that remain without genetic characterization. Another 

advantage of WES over targeted exome sequencing is its versatility and ability to be applied 

to many different diseases, as different sets of genes can be assessed without the need to 

develop and test a specific sequencing strategy
25,26

.  
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In conclusion, the exome-based sequencing strategy described here is an efficient way to 

diagnose such genetically heterogeneous disorders as hIBMs.  

Page 9 of 13

John Wiley & Sons, Inc.

Muscle & Nerve

This article is protected by copyright. All rights reserved.



ABBREVIATIONS 

ACMG: American College of Medical Genetics  

AS: Acceptor Site 

DS: Donor Site 

ESE: Exonic Splicing Enhancer 

hIBM: hereditary Inclusion Body Myopathies 

HSF: Human Splicing Finder 

IC: Index Case 

NGS: Next-Generation Sequencing 

PolyPhen-2: Polymorphism Phenotyping v2 

SIFT: Sort Intolerant From Tolerant (amino acid substitutions) 

VarAFT: Variant Analysis and Filtration Tool 

WES: Whole Exome Sequencing 
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Table 1: Pathogenicity assessment for the identified variants in patients with definite, 

probable and possible diagnoses 

 

Patient Gender Phenotype 

/ Genetic inheritance 
Muscle biopsy Genes/Variants Status UMD-

predictor11 SIFT
12 PolyPhen-213 ACMG 

Guidelines
15 

Splicing 

prediction 

(HSF14) 

Pathogenic 

variants 

described in 

literature 

Patients with definite diagnosis  

P1 F 
PM of lower limbs at onset 

(40yo) evolving towards 

HMREF / AR 

Rimmed vacuoles  
Cytoplasmic inclusions 

Disruption of the 

intermyofibrillar  

network 

TTN: c. 95195C>T 

(p.Pro31732Leu) HOZ Pathogenic Damaging Probably 

damaging Pathogenic NP YES
16 

P2 F 

DM of upper and lower 

limbs (tibialis 

anterior muscle) 

 No axial muscle weakness 

/ AD 

Rimmed vacuoles 

Disruption of the 

intermyofibrillar  

network 

VCP: c.410C>T 

(p.Pro137Leu) HTZ Pathogenic Damaging Probably 

damaging Pathogenic Not 

affected YES
17 

P3 F 

Early onset (childhood) 

DM of lower limbs (tibial 

muscular dystrophy) 

slowly evolving 

 / AR  

Rimmed vacuoles 

Dystrophic muscle 

biopsy 

TTN: c.102271C>T 

(p.Arg34091Trp) HTZ Pathogenic Damaging Probably 

damaging Pathogenic NP YES
18 

TTN: c.107647delT 

(p.Ser35883Glnfs*10) HTZ NP NP NP Pathogenic NP YES
19 

P4 M 
Late onset (45yo) DM of 

upper and lower limbs 

with cardiac involvement / 

AD 

Rimmed vacuoles 

Atrophic fibers 

Disorganized 

myofibrillar network 

DES: c.1360C>T 

(p.Arg454Trp) HTZ Pathogenic Damaging Probably 

damaging Pathogenic Not 

affected YES
20 

P5 M DM of upper and lower 

limbs. Onset at 30yo / AD 
Rare rimmed vacuoles 

(<5) 
VCP: c.410C>T 

(p.Pro137Leu) HTZ Pathogenic Damaging Probably 

damaging Pathogenic Not 

affected YES
17 

P6 F 
Late onset (45yo) DM of 

lower limbs and pelvic 

girdle myopathy  

/ AD 
Rimmed vacuoles 

FLNC: c.8130G>A 

(p.Trp2710*) HTZ NP NP NP Pathogenic NP YES
21 

P7 F 
Late onset (45yo) DM of 

upper and lower limbs 

with slow evolution 

/ AR 

Rimmed vacuoles  

(on the initial biopsy) 

recharacterized as 

polyglucosan bodies  

(on the second biopsy) 

GYG1: c.143+3G>C 
(p.Asp3Glufs*4) 

Comp. 

HTZ 

NP NP NP Pathogenic Probably 
damaging 

YES
22 

GYG1: c.996_1005del10 
(p.Tyr332fs*1) NP NP NP Pathogenic NP NO 

Patients with probable diagnosis 

P8 M 

Early onset (14yo) DM of 

lower limbs (tibial 

muscular dystrophy) 

evolving towards 

hamstring muscle with 

quadriceps sparing 

/ AR 

Rimmed vacuoles 

TTN: c.15346C>T 

(p.Arg5116*)  HTZ NP NP NP Pathogenic NP NO 

TTN: c. 107680G>A 

(p.Gly35894Arg)  HTZ Pathogenic Damaging Probably 

damaging 
Likely 

pathogenic NP NO 

P9
*
 M 

Late onset (50yo) DM of 

upper and lower limbs 

/ AD 

Rimmed vacuoles 

No inflammation 

Atrophic fibers 

TARDBP: c.1127G>T 

(p.Gly376Val) HTZ Pathogenic Tolerated Benign Likely 

pathogenic 
Possibly 
damaging NO

†

 

Patients with possible diagnosis 

P10 M Limb girdle muscular 

dystrophy / AD 

Rare rimmed vacuoles 

(<5) 
FLNC: c.6526C>T 

(p.Arg2176Cys)  HTZ Pathogenic Tolerated Probably 

damaging 
Uncertain 

significance 
Not 

affected 
NO 

P11 M 
DM of lower limbs with 

very slow evolution  

/ AD 
Rimmed vacuoles 

ACTA1: c.437C>T 

(p.Ala146Val) HTZ Pathogenic Tolerated Probably 

damaging 
Uncertain 

significance Uncertain NO 

 

In bold: pathogenicity prediction strong and moderate; NP: not performed (UMD-predictor, SIFT and PolyPhen-2 algorithms do not provide 

a pathogenicity score for variants creating a stop or a frameshift); UMD-predictor11: Universal Mutation Database predictor; SIFT12: Sort 

Intolerant From Tolerant; PolyPhen-213: Polymorphism Phenotyping v2; HSF14: Human Splicing Finder; ACMG15: American College of 

Medical Genetics; AD: Autosomal Dominant; AR: Autosomal Recessive; HMREF: Hereditary Myopathy with early REspiratory Failure; 

DM: Distal Myopathy; PM: Proximal Myopathy; yo: years old. HOZ: homozygous; HTZ: heterozygous; Comp. HTZ: compound 

heterozygous (with confirmed segregation analysis). 

 

Frequency in 1000G, ESP and ExAC databases of all the variants described in Table 1 is lower than 0.2%. 

 

* Additional variant with uncertain significance found for patient P9: MYH2: c.2090A>G (p.His697Arg). 

 

† Variant affecting the same nucleic and amino acid positions as another variant, c.1127G>A (p.Gly376Asp), previously described in 

the literature27,28,29 in two different familial amyotrophic lateral sclerosis cases with a similar phenotype presentation as patient P9 

(upper and lower limb weakness with no cognitive impairment).  
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