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In a same way that most of the robots and advance mobile machines nowa-
days are designed so that they are either optimized on their energy consump-
tion or on their greatest smoothness of motion, it has been demonstrated that
competitive runners tend to exhibit smoother strides than recreational run-
ners during both running and fast walking by minimizing the end-point Jerk
cost at the heel Hreljac (2000). Here we describe the statistical mechanics
setting out to explain the behaviour of Humans trying to self-pace a con-
stant acceleration by studying the statistical properties of acceleration of the
runner’s center of mass. Furthermore, it has been checked that this could be
even achieved in a state of fatigue during exhaustive 3 self-pace ramp runs.
For that purpose, 3 male and 2 female middle-aged, recreational runners
ran, in random order, three exhaustive self-paced acceleration trials (SAT)
perceived to be ”soft”, ”medium” or ”hard”. A statistical analysis shows
that Humans can self-pace constant acceleration in some exhaustive runs,
by continuously adjusting the instantaneous accelerations.The variations of
accelerations around the mean are an ARMA stationary process, which are
similar, whichever acceleration levels and runners. The range of constant ac-
celeration is very similar between runners and within the acceleration level.
This work is the first step for understanding the Human optimisation of
self-pace processes in exhaustive tasks as running until exhaustion.
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1 Introduction

Endurance running is considered to have played a key role in human evolution and
Humans have developed the ability to fine-tune their running speed variations to run for
several days and still catch their fastest prey Bramble and Lieberman (2004). Indeed, it
has been reported that speed variation is the optimal way to optimise pace and achieving
a given distance in a minimal time Foster et al. (1993, 1994, 2004); Billat et al. (2001);
Crouter et al. (2001); Sandals et al. (2006); Tucker et al. (2006); Tucker and Noakes
(2009).

However, there is a direct relationship between force impulse, running acceleration
Hunter et al. (2005) and the minimum-jerk model Flash and Hogan (1985) that predicts
that running must be as smooth as possible and variations in acceleration must be close
to 0 m.s−3 in order to save energy and optimize performance. It has been demonstrated
that competitive runners tend to exhibit smoother strides than recreational runners
during both running and fast walking Hreljac (2000); Hreljac and Martin (1993). Given
that, it has been experimentally reported that speed variation is the optimal way of
achieving the best running performance i.e. a given distance in a minimal time.

Our claim is that speed variations seems to be a general strategy chosen by runners
for reaching specific race objectives, even simple “tasks” such as running at a constant
acceleration. In this paper, we test the hypothesis that recreational runners are able to
self-pace the acceleration of their center of mass in order to realise a constant acceleration
race pattern globally.Furthermore, it has been checked that this could be even achieved
in a state of fatigue during exhaustive 3 self-pace ramp runs.

Therefore, the present study tests the hypothesis whereby Humans can maintain a
constant acceleration in a self-paced trial, regardless of the magnitude of acceleration
and that this global constant acceleration is composed by stochastic accelerations that
follow a stationary pattern until exhaustion.

2 Materials and Methods

We describe the exercise protocols and experimental data used in our study.

2.1 Subjects

The study population comprised three male and two female recreational runners (age
38 ± 3 yrs., total running distance per week: 36.1 ± 4.3 km; body weight: 66.9 ±
12.4 kg and height 171.1 ± 6.7 cm). All subjects were first informed of the risks and
constraints associated with the protocol and gave their written, informed consent to
participation. The present study conformed to the precepts of the Declaration of Helsinki
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and all procedures were approved by the local investigational review board (Saint Louis
Hospital, Paris, France).

2.2 Experimental design

Subjects ran alone and performed four exhaustive runs (track tests) until exhaustion
with a one-week interval between sessions: (i) the first track test was the Université de
Montréal Track Test Uger and Boucher (1980) to estimate the velocity associated with
peak oxygen uptake (vVO2max) Billat and Koralsztein (1996), (ii) the second, third and
fourth track tests were self-paced acceleration trials (SATs) at respectively soft, medium
and hard accelerations (in random order).

2.3 Exercise tests

2.3.1 The Université de Montréal Track Test

The Université de Montréal Track Test is a simple, indirect, continuous, multistage
running field test for determining vVO2max Berthoin et al. (1999). The subjects first
ran for 2 minutes at 8 km.h−1 and speed was increased by 1km.h−1 increments every 2
minutes until exhaustion. The velocity corresponding to the last, fully completed stage
was recorded as the vVO2max.

2.3.2 Acceleration trials

In the Self-pace Acceleration Trials (SAT), the runners also started at a speed of 8
km.h−1 and then increased their velocity at three different, constant accelerations (in
random order). There was a two-hours interval between acceleration trials. The runners
performed three freely paced acceleration sets in which they were asked to maintain
constant acceleration by progressively increasing their speed until exhaustion, validated
by the attainment of their maximal heart rate. The trials were run at three constant
acceleration values, based on ratings of perceived acceleration (“soft”, “medium” and
“hard”). In the SAT set, no external information was provided to the runnner, except the
distance covered. All tests were performed between 2 pm and 6 pm on wind-free, spring
days ( < 2m.s−1 according to the Windwatch anemometer from ALBA, Silva, Sweden)
with a temperature of 20°C, as in a previous study of the energetics of middle-distance
running Billat et al. (2004).

2.4 Data collected

Speed and acceleration were measured by the GPS-enabled Minimax accelerometer from
Catapult Sports (Pty Ltd, Victoria, Australia). The difference between the true (track)
and recorded (GPS) distance was less than 1% and 0.92% over 800 m and 1500 m,
respectively. The heart rate was measured beat by beat with a Polar V800 monitor
(Polar Electro Oy, Kempele, Finland). This result agrees with previous GPS studies
for maximal efforts run by Humans or horses Larsson (2003); Larsson and Henriksson-
Larsén (2005). The limit time at the maximum heart rate i.e. the time to the plateau at
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Soft Medium Hard

Subject min max tlim min max tlim min max tlim

1 126 182 97 102 175 22 118 179 46

2 114 175 10 110 175 10 92 171 10

3 99 175 5 117 180 26 100 175 10

4 119 199 5 105 199 10 138 199 5

5 107 199 10 112 192 0 109 186 0

Mean 113 186 25.4 109.2 184.2 13.6 111.4 182 14.2

SD 10.4 12.2 40.1 5.9 10.8 10.4 17.8 11 18.2

Table 1: The minimal and maximal values of Heart Rate (in bpm) and delay of exhaus-
tion (in seconds) at the maximal Heart Rate, denoted tlim, in SAT.

the maximal heart rate was significantly different between the low and high acceleration
(p = 0.004). The percentage of heart rate reserve which is known to be in accordance
with the % of VO2max of the acceleration catch-up Poole et al. (2008) (which was at 58
± 14% vs. 72± 9% of time limit, p = 0.04) was not significantly different at this time
(84 ± 7% vs. 79± 7% of time limit, p = 0.15).

The speed and acceleration of the center of mass are denoted respectively (Vt)0≤t≤T
and (At)0≤t≤T where T is the total duration of each self-pace trial. When it is needed, we

denote V i,j
t , Ai,jt and T i,jt the corresponding signals at time t, for individual i = 1, . . . 5

and pace j = S,M,H (for Soft, Medium and Hard pace respectively). We use a constant
sampling time δ, and the objective is to characterise the mathematical properties of the
acceleration signal (At)t≥0 and of the associated discrete-time dynamical system{

Vt+δ = Vt + δAt

Dt+δ = Dt + δVt
(1)

where Dt is the distance ran at time t, starting at D0 = 0. The initial values V0 > 0 and
A0 > 0 are fixed (known) positive values. We consider in the rest of the paper a sampling
time δ = 1 second. The GPS and accelerometer signals are respectively sampled at 5
Hz and 50 Hz and are finally averaged per second: our data, denoted V̂t and Ât have a
1Hz frequency and are, respectively, direct estimates of the signals Vt and At appearing
in our discrete time model (1).

Because of the measurement process and data averaging, the relationship Vt+1 =
Vt + δAt is not exactly satisfied by the empirical estimates V̂t and Ât. Nevertheless, the

computed acceleration
ˆ̂
At ,

V̂t+1−V̂t
δ is highly correlated to the measured accelerations

Ât, as shown in table 2, see also figure 1. Conversely, the measured speed V̂t and the
integrated acceleration Ṽt , V̂0 +δ

∑t
i=1 Âi are very highly correlated (between 0.97 and

0.99 for all the runners and intensities). In our analysis, the run distance at time t is
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Soft Medium Hard

1 0.70 0.65 0.74

2 0.64 0.63 0.64

3 0.70 0.72 0.84

4 0.69 0.71 0.66

5 0.73 0.78 0.72

Table 2: Correlations between (Ât) and (
ˆ̂
At) processes for the 5 runners and 3 intensities.

All the p-values are < 10−10.

Figure 1: Plot of computed accelerations (
ˆ̂
At) in m.s−2 versus measured accelerations

(Ât) m.s
−2 for runner 2, intensity Medium (Left) and for runner 5, intensity

Hard (Right).

directly computed from the measured speed with the relationship D̂t = D̂t−1 + δV̂t for
t ≥ 1 and D̂0 = 0.

We now discuss the main patterns of the data
(
V̂t

)
t≥0

that strongly support the fact

that humans are able to freely sustain a constant acceleration. The plots of (V̂t)t≥0 and
(D̂t)t≥0 are shown in figures 3 and 4 respectively. We compare the speed data (V̂t) with
a linear trend fitted with Ordinary Least Squares (OLS), i.e we solve

min
V0,A

T∑
t=0

(
V̂t − V0 −At

)2
.
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Âols (m.s−2) Soft Medium Hard

1 0.0028 0.0034 0.0040

2 0.0032 0.0051 0.0119

3 0.0030 0.0086 0.0188

4 0.0033 0.0068 0.0070

5 0.0015 0.0035 0.0128

Table 3: Estimates Âols of mean acceleration A from the quadratic fit “Distance-Time”
with Ordinary Least Squares (D̂t = V̂0t+ Â t(t+1)

2 + et).

¯̂
A (m.s−2) Soft Medium Hard

1 0.0033 0.0053 0.0076

2 0.0054 0.0045 0.0193

3 0.0046 0.0107 0.0541

4 0.0038 0.0063 0.0093

5 0.0030 0.0050 0.0158

Table 4: Mean accelerations
¯̂
Ai,j .

The distance data is compared with the quadratic trend computed by OLS i.e

min
V0,A

T∑
t=0

(
D̂t − V0t−A

t2

2

)2

.

These two trends correspond to the same assumption of a constant acceleration during
a trial. While the speed seems to fluctuate randomly and significantly around the lin-
ear trend, we can consider that the estimated trend is globally correct, but stochastic
variations are noticeable during the trial. Quite surprisingly, the quadratic trend for the
run distance D̂t seems to fit perfectly the data (indeed R2 is between 0.98 and 1). The
estimates for the parameter Âols are reported in table 3 and can be considered to be
close to the constant deterministic acceleration Ai,j . An alternative way of determining

the constant acceleration Ai,j from the data can be done by the mean
¯̂
A = 1

T

∑T
t=1 Ât,

computed in table 4. The estimates Âols and
̂̂
A can be different as a the distance data

are much more smoother than the rough acceleration signal.

The remarkable perfect quadratic relationship between distance and time shows that
the random variations observed in the speed (V̂t)t≥0 does not accumulate accross time;
in fact, these variations seem to compensate each other, so that the distance run D̂t

becomes a deterministic quadratic function of time. A rapid analysis of the linear fit for
the speed shows that the residuals V̂t − V0 − At are correlated, meaning that the basic
linear model assumptions are not satisfied: the Durbin-Watson test reject the absence of
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autocorrelation of the residuals for all the trials. This suggests that there is a structure
(and information) in the speed variations (and divergence from the linear trend). In the
next section, we derive a proper setting for analysing the variations of the speed. In
order to do that, we identify the stochastic structure of the acceleration processes At
and the one of Vt by integration.

2.5 Stochastic models

Our analysis of the speed and acceleration signals collected during the self-paced pro-
tocols shows that the speed (V̂t)t≥0 and (Ât)t≥0 are realizations of stochastic processes
that varies significantly during the Self-Pace Acceleration Trials, as shown in the previ-
ous section For this reason, we introduce a stochastic model for describing the dynamics
of (Vt)t≥0 and (At)t≥0. Indeed, if a runner i runs at a constant acceleration A during
trial j, then we have for all t = 1, 2, 3, . . .

Ai,jt = Ai,j

V i,j
t = V i,j

0 + Ai,jt

Di,j
t = V i,j

0 t+ Ai,j t(t+1)
2

(2)

As seen in the previous section, this deterministic relationship is nearly satisfied for
the distance D̂t, while there are significant deviation of V̂t from a linear trend. In this
section, we consider a general stochastic dynamical model with the same structure for
all runners and intensities. For this reason, we remove the dependency on i and j.

2.5.1 A stochastic stationary acceleration model

A possible starting point for modelling the acceleration (At)t≥0 is Newton’s law, stating
that for all t = 1, 2, . . . , the acceleration At is the sum of the forces applied to the
center of mass of the runner. A well-studied family of such mechanistic models are
bouncing ball models, where the human gait is decomposed in a series of “flight” and
“contact” periods where leg stiffness, cadence,. . . play a prominent role, see Blickhan
(1989); McMahon and Cheng (1990); Farley et al. (1991); Bencsik and Zelei (2017). From
kinematics, it is possible to derive continuous time speed profiles, but such mechanistic
models remain complex to analyze and depend on numerous assumptions about body’s
movement and phenomenological parameters that are individual dependent, and difficult
to get. Additionally, the available data are sampled and then averaged, such that such
continuous time and detailed models might be hard to assess experimentally.

We use a coarser-grain stochastic model: we assume that a runner cannot maintain a
constant deterministic acceleration A, but he/she is able to realize a stochastic acceler-
ation that varies around a given mean A (at each time t), as it is suggested by the plots

of
(
Ât

)
t≥0

in figure 2. This is our first assumption.

Claim 2.1. Let (Zt) be the process of variations around the mean such that At = A+Zt,
where by definition the expectations E [Zt] = 0 for all t ≥ 0. Our model describes the
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Soft

Medium

Hard

Figure 2: Acceleration (Ât)t≥0 versus Time (t in s) for Runner 4. Blue line: Measured
acceleration, Red dashed Line: mean acceleration (in m.s−2).
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Soft

Medium

Hard

Figure 3: Measured speeds V̂t (m.s−1) versus Time (s) for Runner 4
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Soft

Medium

Hard

Figure 4: Distance (in km) versus Time (t in s) for Runner 4. Blue points: Computed

Distance D̂t. Red Line : Quadratic Fit Dt = Vt+ A t2

2 (with A,V computed
by OLS).
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acceleration of the center of gravity of the runner, its speed and run distance by the
stochastic model 

At = A + Zt

Vt = V0 + At+ Yt

Dt = V0t+ A t(t+1)
2 +Xt

(3)

for t ≥ 0, with Y0 = X0 = 0.

The processes (Zt)t≥0, (Yt)t≥0 and (Xt)t≥0 are the discrepancies between the deter-
ministic constant acceleration pattern (2) and the true observed processes. Because of
the relationship (1), these 3 processes are related such that{

Yt = Yt−1 + Zt

Xt = Xt−1 + Yt

This means that Yt =
∑t

i=1 Zi and Xt =
∑t

i=1 (t+ 1− i)Zi (we recall that the time
lag is δ = 1s). Our model helps to consider two accelerations: a long term acceleration
A and a short-term acceleration (At)t≥0. The long term acceleration can be tuned and
maintained by a runner, but it is obtained by real-time and stochastic accelerations.
Our model describes how the instantaneous variations Zt helps in getting a long term
pattern V0 + At for the speed, or the trend V0t+ A t(t+1)

2 for the distance.
We assume that (Zt)t≥0 is a weak stationary process with mean E [Zt] = 0, variance

V (Zt) = σ2Z < ∞ and a covariance function cov(Zt, Zs) = E [ZtZs] = γ(t − s) that
is time-translation invariant, see Hamilton (1994). More precisely, our fundamental
assumption is the following

Claim 2.2. (Zt)t≥0 is an ARMA(p, q) process (AutoRegressive and Moving Average):
there exists two integers p, q ≥ 1 and real parameters φ1, . . . , φp and θ1, . . . , θq such that
Zt satisfies the evolution equation

Zt = φ1Zt−1 + · · ·+ φpZt−p + et + θ1et−1 + . . . θqet−q (4)

where (et)t≥0 is a white noise process (i.e V (et) = σ2e , cov(et, es) = 0 if t 6= s), and is
independent of the previous variations Zs, s < t. We can write the corresponding model
for the acceleration process (At)t≥0 that satisfies the slightly modified evolution equation

At = f + φ1At−1 + · · ·+ φpAt−p + et + θ1et−1 + . . . θqet−q. (5)

The constant f and the mean acceleration A are related by the following equation(
1−

p∑
i=1

φi

)
A = f ,

obtained by exploiting the fact that E [At] = A, for all t ≥ 0.

Equation (5) permits a mechanistic interpretation of our model in the spirit of New-
ton’s law: the intercept f is the mean force applied to the center of gravity of the
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runner, while the AutoRegressive part φ1At−1 + · · · + φpAt−p accounts for the iner-
tial effect of the body mass, p is the size of the memory. The Moving Average part
et + θ1et−1 + . . . θqet−q corresponds to the forces applied by the runner between times
t − 1 and t. If θ1 = · · · = θq = 0, this part reduces to et, that is independent from
the previous accelerations At and of the previous forces et−1, et−2, . . . . In some way,
the variable et corresponds to the bouncing forces applied during the “contact period”.
This latter situation might be unrealistic, as the gait mouvement due to successive
bounces might imply that the bouncing forces applied at each time t depends on the
previous bounces. For this reason, the bouncing forces are modelled by a Moving Av-
erage et + θ1et−1 + . . . θqet−q that can take into account the correlation between bounc-
ing forces (q is the corresponding size of the memory in seconds). The parameters
φ = (φi)1≤i≤p and θ = (θj)1≤j≤q are a condensed way of describing globally the dynam-
ics of a runner (and somehow the gait, strength, stiffness, cadence,...) in a way that we
can be easily estimated from the acceleration data Ât, typically by Maximum Likelihood.
These parameters are univoquely related to the autocovariance function of the process
γZ(h) = cov(Zt, Zt−h) = γZ(h;θ,φ, σ2Z), and control its shape and patterns (and of the

autocorrelation function ρZ(h;θ,φ) , γZ(h;θ,φ)
σ2
Z

). An interesting feature, among others,

is the geometric decay of the covariance, for h greater that q.
Finally, we assume that the process (At)t≥0 is a Gaussian process, meaning that we

assume that the random vector Z = (Z1 Z2 . . . ZT )>in RT is a Gaussian vector with zero
mean and covariance matrix ΓZ in RT×T with elements γZ(i−j;θ,φ, σ2Z) for 1 ≤ i, j ≤ T .
For estimating the parameters, we use the Gaussian conditional log-likelihood of the data
Ât (f is the joint density of the data):

L
(
Â1, . . . , ÂT ;θ,φ, σ2Z

)
= log f

(
Â1, . . . , ÂT |Â0Â1, . . . , Âp;θ,φ, σ

2
Z

)
(6)

= −T
2

log(2π)− T

2
log σ2Z −

T∑
t=1

êt
2σ2Z

where êt = Ât−A−
∑p

i=1 φiÂt−i−
∑q

j=1 θj êt−j are the innovations, that are computed
recursively for t > q − 1.

2.5.2 Speed and Distance models: linear regression with correlated errors

Speed and distance are obtained by successive integrations as it is shown in equation
(3). The deterministic part V0 + At is the “long-term” trend achieved by continuous
variations of the speed Yt, that are correlated as they depend on the current speed, and
the previous corrections Yt−1, Yt−2, ... The statistical model Vt = V0 + At + Yt cannot
be interpreted as a standard linear regression, as Yt is not a white noise, i.e it does
not satisfy the assumption cov(Yt, Ys) 6= 0. Indeed, the process (Yt)t≥0 is an integrated
ARMA process (denoted ARIMA process, see Chapter 17 in Hamilton (1994)). This
means that although E [Yt] = 0 for all t, the covariances E(YtYt−h) change with t.

A direct consequence of our acceleration model is that speed model is a linear re-
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gression with correlated errors (Yt)t≥0 that can be written in matrix form. We denote

V = (Vt)t=1..T in RT , M =

[
1 1 · · · 1

1 2 · · · T

]>
and Y = (Yt)t=1..T . The linear regres-

sion model is

V = M ×

(
V0

A

)
+ Y (7)

From our model assumptions, the vector Y satisfies E [Y ] = 0 and has a covariance
matrix ΣY (θ,φ, σ2Z) = cov(Y ) ∈ RT×T that depends on the parameters of the pro-
cess (Zt)t≥0, in particular the covariance matrix ΣY is not diagonal. The parameters

V0,A,ΣY can be estimated from the speed data (V̂t) by Maximum Likelihood estimation,
without the need to observe the process Yt (nor Zt).

In the same way, the distance model is a linear regression with ARIMA errors

D = N

(
V0

A

)
+X (8)

where D = (Dt)t=1..T denotes the vector of run distances in RT ,

N =

[
1 2 · · · t · · · T

1 3 · · · t(t+1)
2 · · · T (T+1)

2

]>

is the design matrix in RT×2 and X = (Xt)t=1..T is the vector of correlated errors in RT .

3 Results

In this section, we present the statistical inference of our models from the available data(
Âi,jt

)
t=1...T

and
(
V̂ i,j
t

)
t=1...T

described in section 2.4. Our analysis is two-fold: we

analyze in a first stage only the accceleration data, and we check that the assumption
2.2 of a stationary ARMA model for acceleration is correct in all cases. In a second

stage, we analyze the speed data
(
V̂ i,j
t

)
t=1...T

based on the regression models discussed

in section 2.5.2.

3.1 Acceleration data and models

3.1.1 Stationarity test

The first property to test from the data is the stationarity assumption. We use the
Augmented Dickey-Fuller test (ADF test) in order to test the existence of a unit-root in

the observed process
(
Ât

)
t=1...T

by estimating the model At = α+ϕAt−1 + δ1∆At−1 +

· · · + δp∆At−p + et based on an OLS regression (and test the assumption ϕ = 1). The
results are given in table 5. For all trials, the alternative assumption of ϕ = 1 (i.e unit
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Runner / Intensities S M H

1 −10.79 (< 0.01) −12.32 (< 0.01) −10.61 (< 0.01)

2 −18.00 (< 0.01) −13.78 (< 0.01) −9.40 (< 0.01)

3 −11.47 (< 0.01) −9.31 (< 0.01) −9.31 (< 0.01)

4 −14.06 (< 0.01) −15.41 (< 0.01) −9.83 (< 0.01)

5 −18.29 (< 0.01) −12.88 (< 0.01) −7.30 (< 0.01)

Table 5: Augmented Dickey-Fuller Test Statistics and p-value for stationarity of accel-
eration data (Âi,jt )

root) is rejected: the standard ADF test is performed after selection of the best time
lags p between 1 and 10 based on AIC.

The Unit-Root assumption for acceleration is strongly rejected (with p-value lower
than 1.10−2) for very trial. We have considered the existence of a constant α, as well
as of a deterministic time trend α + γt in the ADF test. In this latter situation, the
Unit-Root assumption is also always rejected with a p-value lower than 1.10−2.

3.1.2 Selection of p and q

The standard approach for the estimation of ARMA(p, q) model consists in selecting
first the autoregressive and moving average orders p and q respectively from the data,
and then to compute the parameters for the selected parameters (p̂, q̂). We estimate first
the parameters Ai,j with the mean of the acceleration Âi,jt , and we use the estimated
variations Ẑi,jt = Âi,jt −Ai,j . We have restricted the search to q = 1, 2 and p = 1, . . . , 10:
we select p, q by minimizing the BIC defined as BIC(p, q) = −2L(θ̂, φ̂, σ2Z)−(p+q) log T
where L is the log-likehood of the ARMA(p, q) model as defined in eq. (6). We give the
values of the couple (p̂1, BIC(p̂, 1)) in table 6 and (p̂2, BIC(p̂, 2)) in table 7: The values
of the BIC are similar in both cases for all trials. We choose finally the sparser model
by selecting q̂ = 1 for all i, j. Indeed, the partial autocorrelograms in figure 5 suggest
that the second partial correlation is significantly different from 0, while the first partial
autocorrelation vanishes, which might suggest that p = 2 is more appropriate.

Finally, regarding the BIC values reported in table 6, the choice (p̂, q̂) = (2, 1) seems
more appropriate as the choice p̂1 = 2 is more stable across trials than the choice p̂2 in
table 7. Anyway, it is clear from the fast decays in the autocorrelograms and partial
autocorrelograms that the orders p, q should be quite small.

3.1.3 Parameter estimates and autocorrelations

We fit in this section an ARMA(2, 1) to all the trials meaning that our model for
acceleration is

Ai,jt −Ai,j = φ1

(
Ai,jt−1 −A

i,j
)

+ φ2

(
Ai,jt−2 −A

i,j
)

+ et + θ1et−1
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Hard

Figure 5: Partial Autocorrelations of the accelerations (Ât) for Lag = 1, . . . , 10 seconds,
with robust confidence bands for Runner 4.
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BIC (×103) ; p̂ S M H

1 −1.81 ; 2 −1.34 ; 2 −0.60 ; 2

2 −1.02 ; 2 −0.80 ; 2 −0.31 ; 2

3 −1.63; 2 −0.65; 2 −0.12; 3

4 −2.18; 1 −1.25; 3 −0.89; 1

5 −3.45; 2 −1.62; 2 −0.41; 2

Table 6: BIC criterion for the selection of p ∈ [1 . . . 10] when q = 1

BIC (×103) ; p̂ S M H

1 −1.82 ; 1 −1.35 ; 2 −0.60 ; 3

2 −1.02 ; 1 −0.80 ; 1 −0.31 ; 1

3 −1.63; 1 −0.65; 1 −0.12; 3

4 −2.18; 1 −1.25; 1 −0.89; 2

5 −3.45; 1 −1.62; 2 −0.41; 1

Table 7: BIC criterion for the selection of p ∈ [1 . . . 10] when q = 2

and V (et) = σ2i,j . The parameter estimates are obtained by maximum likelihood, and
are collected in table 8. The estimates have a similar profile (mean parameters are
φ̄1 = 0.70, φ̄2 = −0.24 and θ̄1 = −0.65), that corresponds to empirical and fitted

correlation functions h 7→ ρ
(
h, φ̂

i,j
θ̂
i,j
)

, as shown in figure 6. A remarkable feature of

the estimated autocorrelations functions (and empirical counterparts) is that
ρ
(

1, φ̂
i,j
θ̂
i,j
)
≈ 0

ρ
(
h, φ̂

i,j
θ̂
i,j
)
≈ −0.2, h = 2, 3

ρ
(
h, φ̂

i,j
θ̂
i,j
)
≈ −0, h ≥ 4

for all i, j. This is a neat pattern shared by all runners for all trial intensities, that
indicates a negative correlation in the accelerations between 2 and 3 seconds. At a
larger time scale, the accelerations are uncorrelated. A surprising outcome, respected by
the models is that the acceleration changes Ai,jt −Ai,j are not correlated within a time
period less than 2 seconds.

Finally, we have analysed the estimated residuals êi,jt of the ARMA model, in order
to detect a possible lack-of-fit. The plots are given in the Supplementary Information
1, and reveal that any case, there is no information left in the correlation structure
of the residuals: all the correlations and partial autocorrelations are not significantly
different from 0. The QQ-plots show that in most of the trials, the acceleration can be
considered Gaussian, except for runner 3 and the Soft trials for runners 2 and 5 where
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Soft

Medium

Hard

Figure 6: Autocorrelogram of the accelerations (Ât) for Lag = 1, . . . , 10 seconds for Run-
ner 4. Horizontal blue lines are significance bands (correlations within these
lines are not significantly different of 0 with a 5% risk). The dotted lines are

estimated autocorrelograms ρ
(
h, θ̂, φ̂

)
for the selected ARMA(2, 1) model.
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Runner Intensity φ1 φ2 θ1

1

S 0.82 −0.18 −0.82

M 0.85 −0.26 −0.85

H 0.96 −0.14 −0.92

2

S −0.05 −0.21 0.04

M 0.57 −0.24 −0.60

H 0.89 −0.31 −0.71

3

S 0.79 −0.14 −0.80

M 0.47 −0.33 −0.51

H 1.20 −0.48 −0.69

4

S 0.80 −0.12 −0.85

M 0.12 −0.20 −0.11

H 0.82 −0.16 −0.76

5

S 0.86 −0.23 −0.84

M 0.86 −0.30 −0.75

H 0.61 −0.34 −0.57

Table 8: Acceleration data: parameters estimates for ARMA(2, 1)

few important variations (negative or positive) are more observed with respect to the
Gaussian case. Such heavier tails could be considered by using a Student distribution
instead of a Gaussian distribution, but the covariance structure of the data is correctly
reproduced in all the cases.

3.2 Models from speed data

We estimate the regression model Vt = V0 + At + Yt from the speed data
(
V̂t

)
t=1...T

.

Following section 3 and statistical results of the previous section, we assume that the
errors Yt are correlated, with ARIMA(2, 1, 1) structure. The estimation procedure uses

the differenced data
ˆ̂
At = V̂t − V̂t−1 and the fact that

Vt − Vt−1 = A + (Yt − Yt−1)

is an ARMA(2, 1) process with a constant, as Yt−Yt−1 = Zt. The estimates are provided
in table 9 and give a correct fit to the data. Indeed, we compute the Q statistics of the
Ljung-Box test for the presence of autocorrelations in the residuals. We accept the
assumption of “uncorrelation” of the residuals in 10 trials out of 15, which means that
the estimated ARIMA(2, 1) takes into account the correlation structure of the speed
data V̂t. The 5 cases having a p-value lower than 5% corresponds to cases where 1 or 2
autocorrelations |ρ(h)| for h > 2 are between 0.1 and 0.2. In these latter case, we can
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Runner Trial A (×10−3) φ1 φ2 θ1 σe Q (p-value)

1

S 2.7 (1.5) 0.28 (0.17) -0.31 (0.04) -0.08 (0.18) 0.04 6.8 (0.34)

M 4.2 (0.9) 0.82 (0.1) -0.33 (0.05) -0.75 (0.1) 0.04 15.1 (0.02)

H 6.8 (3.7) 0.31 (0.17) -0.31 (0.09) 0.10 (0.18) 0.05 2.6 (0.85)

2

S 3.5 (2.7) 0.05 (0.18) -0.33 (0.05) 0.09 (0.2) 0.06 7.5 (0.27)

M 6.5 (1.8) 0.61 (0.13) -0.38 (0.05) -0.51 (0.14) 0.05 14 (0.02)

H 18.6 (5.9) -0.15 (0.22) -0.28 (0.09) 0.29 (0.22) 0.08 11.1 (0.08)

3

S 4.7 (1.9) 0.57 (0.25) -0.3 (0.04) -0.36 (0.26) 0.05 13.6 (0.03)

M 10.7 (3.2) 0.21 (0.18) -0.39 (0.06) -0.02 (0.2) 0.06 8.5 (0.19)

H 22.5 (12.9) 0.47 (0.26) -0.41 (0.15) 0.19 (0.30) 0.10 4.6 (0.58)

4

S 3.6 (1.1) 0.56 (0.19) -0.31 (0.04) -0.37 (0.21) 0.03 10.7 (0.10)

M 6.3 (1.6) 0.27 (0.34) -0.21 (0.07) -0.10 (0.35) 0.03 1.84 (0.93)

H 8.8 (1.5) 1.01 (0.18) -0.33 (0.06) -0.71 (0.18) 0.02 2.8 (0.83)

5

S 2.7 (0.8) 0.98 (0.05) -0.4 (0.03) -0.75 (0.05) 0.05 32.2 (10−5)

M 4.6 (2.4) 0.11 (0.22) -0.25 (0.09) 0.29 (0.23) 0.05 26.5 (10−4)

H 15.5 (3.4) 0.57 (0.23) -0.40 (0.07) -0.40 (0.26) 0.06 4.9 (0.54)

Table 9: Estimated Parameters for Speed Regression with ARIMA errors

estimate ARIMA(p, 1, q) models with p, q adaptively selected (but lower than 3), that
gives uncorrelated residuals with Ljung-Box test.

4 Discussion

To the best of our knowledge, a human’s ability to maintain constant acceleration in
a conscious way until exhaustion has not yet been investigated, and in no case with a
statistical approach. We therefore decided to test the hypothesis whereby humans are
able to maintain a constant acceleration, regardless of the speed and the magnitude of
acceleration. Despite the large published body of work on pacing strategy and speed
control (especially concerning feedback vs. feed forward power output control and central
vs. peripheral mechanisms, Ariyoshi et al. (1979); Zamparo et al. (2001); Lambert et al.
(2004); Abbiss and Laursen (2008); De Koning et al. (2011); Ansley et al. (2004)), this is
the first study to have examined acceleration control during running. Our results show
that runners are able to control their acceleration until exhaustion at three significantly
different accelerations values perceived to be “soft, medium and hard”. We determined
that humans can precisely regulate their acceleration (regardless of its intensity) in a
run leading to exhaustion in 3 to 14 minutes. Indeed, our data showed that runners
can (i) apply distinct, subjective acceleration values when so instructed, (ii) maintain
constant acceleration until exhaustion, regardless of the acceleration value and that
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the maximal heart rates plateau for each different level of perceived acceleration (soft,
medium, hard). The range of these perceived acceleration values is in accordance with
accelerations measured in corresponding to those observed in middle-distance running
Billat et al. (2009).

We support these claims thanks to the use of a stochastic model for the accelerations of
a runner. We have checked that the runner’s acceleration are stationary process during
all the trials: quite remarkably there is no deterministic drift, nor stochastic drift within
any trial. Moreover, we have identified that the correlation function ρ is very similar for
every runner and every intensity. This underlying and common structure is simple and
well-described by an ARMA(2, 1). This implies that the constant acceleration ability
has to be understood as a long-term trend, that is achieved through constant stochastic
corrections of the short-term accelerations. Additionally, this control of the accelerations
is maintained until exhaustion.

The autocovariance functions shows that the accelerations between times t and t+ 1
are uncorrelated, whereas the correlations between times t and t + 2 and t + 3 are
significantly negative. This suggests a control mechanism that have a 1 second delay,
followed by a 2 seconds period for small corrections towards the mean A. Higher order
correlations are then null. The mechanism is a mean reverting process but is more
elaborated than a standard Ornstein-Ulhenbeck (OU) process dAt = − 1

τ (At − A)dt +
σdWt, with discrete counter-part implying that (At)t=1,...T is an AR(1) process such that

At+1 = φAt + (1− φ)A + et (and φ = exp(− 1
τ )). In this latter case, the autocorrelation

functions is geometric ρ(h) = φh > 0 and is not able to reproduce this specific 3 seconds
pattern identified in section 3.1.3. While in the OU process the correction is directly
proportional to the instantaneous difference (At −A), the runner’s feedback seems to
use a buffer that is compared to an expected objective to be delineated.

A possible direction to investigate is the remarkable deterministic relationship between
run distance and time Dt = V0t +A t(t+1)

2 + Xt, as plotted in figure 4. Paradoxically,
(Xt)t≥0 is a unit-root process which implies that the variance V (Xt) should diverge as

its definition Xt =
∑t

i=1 (t+ 1− i)Zi suggests (indeed it is a random walk). Instead,
the variance V (Xt) is significantly reduced thanks to the correlation structure of the
variations (Zt)t≥0 as we have

V (Xt) = σ2Z


t∑
i=1

(t+ 1− i)2 + 2
∑
i<j

(t+ 1− i) (t+ 1− j) ρZ(i− j,θ,φ)

 .

If we consider that ρZ(h) = ρZ(h,θ,φ) vanish for all h but h = 2, 3 , we have

V (Xt)

σ2Z
=

t∑
i=1

(t+ 1− i)2 + 2 (t+ 1− i) {(t+ 1− i+ 2) ρZ(2) + (t+ 1− i+ 3) ρZ(3)}

=

t∑
i=1

(t+ 1− i) (t+ 3− i) (1 + 2ρZ(2) + 2ρZ(3)) + 2 (ρZ(3)− 1)

t∑
i=1

(t+ 1− i)



Electronic Journal of Applied Statistical Analysis 21

The variance function V (Xt) can be made quite small on a time range [0, T ] for appro-
priate choice of correlations ρZ(2), ρZ(3): the leading term 1 + 2 (ρZ(2) + ρZ(3)) nearly
vanishes for ρZ(2), ρZ(3) between −0.2 and −0.3. This suggests that the run distance
could be part of a feedback loop for controlling the acceleration based on expected time
laps, in the same way as the influence of the remaining distance in 800m and 1500m races
has already been pointed out Billat et al. (2009). Obviously, such strategies remain hard
to characterize, and the mechanisms used to avoid the divergence of the speed during
these self-pace trials still need to be estimated.

We remark that the speed data
(
V̂t

)
t=1...T

still can be analysed directly, within our

framework of a (stationary) ARMA model. Nevertheless, the stochastic structure is less
easy to characterise, or at least, the common features are less easy to extract. Indeed,

the hyperparameters p, q, as the estimates θ̂
i,j

and φ̂
i,j

may vary between trials and
runners, and the features of the autocovariance functions are faded. This indicates that
the standard speed data are less informative about the structure of the movement and
strategy of the runners, because they are observed with some noise, and because the
speed signal is an integrated acceleration signal, which causes fading of the information
provided by the acceleration. As the use and analysis of real acceleration data in running
is relatively new, this might explain why such a domain has been poorly addressed until
now.

Furthermore, these freely chosen accelerations also corresponded to the imposed ac-
celeration values frequently used in treadmill ramp protocols for determining VO2max
Myers and Bellin (2000); Porszasz et al. (2003). In ramp protocols, the work rate is
ramped up as a continuous increase and then a continuous acceleration. Given that the
linearity of the oxygen uptake response is a major discriminating cardiovascular feature
for assessing exercise intolerance, it is important to be sure that the work rate profile is
linear and then the acceleration is constant. That is, why the tests are currently per-
formed on a treadmill. Ramp testing on a treadmill was first described in 1991 by Myers
et al. Even though manufacturers have developed a range of technologies for enabling
ramp tests (e.g. controlled cycle ergometer), some subjects have difficulty walking and
running on a treadmill and then reaching their maximum VO2 and speed at VO2max.
It has been argued that the treadmill useful induces a higher maximum metabolic rate
(compared with a cycle ergometer) and uses a mode of exercise that more closely approx-
imates some activities of daily living Balke and Ware (1959); Ellestad (1996); Froelicher
et al. (2000). In a much easier protocol, the present study shows that male and female
middle-aged, recreational runners were able to self-monitor acceleration and thus repro-
duced an outdoor ramp protocol. Indeed, the present results showed that it is possible
to apply a self-paced, ramp-like running protocol on the track. Regardless of the ac-
celeration level (soft, medium or high), the SAT protocol uses a continuous change in
speed and brings the subjects to exhaustion in approximately 3 to 12 minutes; this meets
the criteria for clinical exercise testing issues by the relevant international organizations
of Sports Medicine et al. (2013); Society et al. (2003); Casaburi et al. (1997); Myers
et al. (1992); Gibbons et al. (1997); Will and Walter (1999). Given that, it has been
proved that the environmental setting influences physiological, perceptual and affective
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responses during exercise at a self-selected pace Dasilva et al. (2011), we did not measure
oxygen uptake because of the mask wearing which could have hamper the runners, the
present results at least indicate that the maximum heart rate was achieved at all three
acceleration levels and that the plateau at the maximal heart rate was only significantly
different between the low and high acceleration trials (p = 0.004).

5 Conclusion

We show that humans can precisely regulate their acceleration (regardless of its intensity)
in a run leading to exhaustion in 3 to 14 minutes. This paper shows that the acceler-
ation is stochastic, and constant acceleration is achieved by short-term, delayed, local
corrections of the instantaneous acceleration. As a consequence, the speed and distance
run are driven by a deterministic constant acceleration trend. This shows that Humans
have the feeling of their proper body acceleration. Question remains of the mechanism
of this acceleration control. Neurophysiologists have demonstrated that Human brain
imposes in a top-down fashion its rules of interpretation of sensory data. It transforms
the perceived world according to the rules of symmetry, stability and kinematic laws
derived from principles of maximum smoothness Berthoz (2008). It has been shown
that Humans have the perception of distance Mossio et al. (2008), hence a possibility to
explore is that Humans have also the feeling of run distance, as it is now assessed that
the vestibular system plays a fundamental role in spatial orientation and is also involved
in the memory of travelled paths Israel and Berthoz (1989); Berthoz et al. (1995).

The mathematical model proposed to assess these claims is interesting on its own.
It is a simple stochastic model of the acceleration, that is remarkably stable across
the different intensities and the runners. Our model is a stationary ARMA process for
acceleration, whose mean is controlled by the runner. An ongoing work is to validate such
a model on a wider population, and also in the case where more elaborate acceleration
patterns are to be reached. This work is ongoing in runners of different levels, for
comparing this control process according to the runner’s experiences. This preliminary
work might give the possibility for a runner to control his acceleration when running,
which is promising for the exercise and energy resources self-management in the context
of exercise health and performance. Such future works might help in identifying the
mechanism of controls used by a runner during a trial or a race. The use and analysis
of acceleration data from reliable accelerometer seems crucial for this step.

Indeed, our analysis of acceleration, speed and distance data indicates that we should
focus on acceleration and distance data, as they are more insightful and precise than
speed, and becomes easier to measure thanks to the important development of accelerom-
eters.

Supporting information

Supplementary Information 1 Statistical Analysis of all runners. We gather the
description and statistical analysis of all the runners, for all trial intensities.
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