S. D. Knight and J. Bouckaert, Structure, function, and assembly of type-1 fimbriae, Top. Curr. Chem, vol.288, pp.67-107, 2009.
DOI : 10.1007/128_2008_13

C. H. Jones, J. S. Pinkner, R. Roth, J. Heuser, A. V. Nicholoes et al., FimH adhesin of type-1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae, Proc. Natl. Acad. Sci, vol.92, pp.2081-2085, 1995.

E. V. Sokurenko, V. Chesnokova, D. E. Dykhuizen, I. Ofek, X. R. Wu et al., Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin, Proc. Natl. Acad. Sci, vol.95, pp.8922-8926, 1998.

L. Trong, I. Aprikian, P. Kidd, B. A. Forero-shelton, M. Tchesnokova et al., Structural basis for mechanical force regulation of the adhesin FimH via finger trap-like beta sheet twisting, Cell, vol.141, pp.645-655, 2010.

P. Aprikian, V. Tchesnokova, B. Kidd, O. Yakovenko, V. Yarov-yarovoy et al., Interdomain interaction in the FimH adhesin of Escherichia coli regulates the affinity to mannose, J. Biol. Chem, vol.282, pp.23437-23446, 2007.

J. Bouckaert, J. Berglund, M. Schembri, E. De-genst, L. Cools et al., Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin, Mol. Microbiol, vol.55, pp.441-455, 2005.

D. Choudhury, A. Thompson, V. Stojanoff, S. Langermann, J. Pinkner et al., X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli, Science, vol.285, pp.1061-1066, 1999.
DOI : 10.1126/science.285.5430.1061

C. S. Hung, J. Bouckaert, D. Hung, J. Pinkner, C. Widberg et al., Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection, Mol. Microbiol, vol.44, pp.903-915, 2002.

P. Aprikian, G. Interlandi, B. A. Kidd, I. Le-trong, V. Tchesnokova et al., The bacterial fimbrial tip acts as a mechanical force sensor, PLoS. Biol, vol.9, 2011.
DOI : 10.1371/journal.pbio.1000617

URL : https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.1000617&type=printable

W. E. Thomas, E. Trintchina, M. Forero, V. Vogel, and E. V. Sokurenko, Bacterial adhesion to target cells enhanced by shear force, Cell, vol.109, pp.913-923, 2002.
DOI : 10.1016/s0092-8674(02)00796-1

URL : https://doi.org/10.1016/s0092-8674(02)00796-1

W. Thomas, M. Forero, O. Yakovenko, L. Nilsson, P. Vicini et al., Catch-bond model derived from allostery explains force-activated bacterial adhesion, Biophys. J, vol.90, pp.753-764, 2006.
DOI : 10.1529/biophysj.105.066548

URL : https://doi.org/10.1529/biophysj.105.066548

W. Thomas, For catch bonds, it all hinges on the interdomain region, J. Cell Biol, vol.174, pp.911-913, 2006.
DOI : 10.1083/jcb.200609029

URL : http://jcb.rupress.org/content/174/7/911.full.pdf

O. Yakovenko, S. Sharma, M. Forero, V. Tchesnokova, P. Aprikian et al., Fimh forms catch bonds that are enhanced by mechanical force due to allosteric regulation, J. Biol. Chem, vol.283, pp.11596-11605, 2008.
DOI : 10.1074/jbc.m707815200

URL : http://www.jbc.org/content/283/17/11596.full.pdf

L. M. Nilsson, W. E. Thomas, E. V. Sokurenko, and V. Vogel, Beyond induced-fit receptor-ligand interactions: Structural changes that can significantly extend bond lifetimes, Structure, vol.16, pp.1047-1058, 2008.
DOI : 10.1016/j.str.2008.03.012

URL : https://doi.org/10.1016/j.str.2008.03.012

M. M. Sauer, R. P. Jakob, J. Eras, S. Baday, D. Eris et al., Catch-bond mechanism of the bacterial adhesin FimH, Nat. Commun, 2016.

E. V. Sokurenko, V. Vogel, and W. E. Thomas, Catch bond mechanism of force-enhanced adhesion: Counter-intuitive, elusive but, Cell Host Microbe, vol.16, pp.314-323, 2008.
DOI : 10.1016/j.chom.2008.09.005

URL : https://doi.org/10.1016/j.chom.2008.09.005

W. E. Thomas, L. M. Nilsson, M. Forero, E. V. Sokurenko, and V. Vogel, Shear-dependent 'stick-and-roll' adhesion of type-1 fimbriated Escherichia coli, Mol. Microbiol, vol.53, pp.1545-1557, 2004.
DOI : 10.1111/j.1365-2958.2004.04226.x

H. J. Busscher and H. C. Van-der-mei, Microbial adhesion in flow displacement systems, Clin. Microbiol. Rev, vol.19, pp.127-141, 2006.
DOI : 10.1128/cmr.19.1.127-141.2006

URL : https://cmr.asm.org/content/19/1/127.full.pdf

S. Lecuyer, R. Rusconi, Y. R. Shen, A. Forsyth, H. Vlamakis et al., Shear stress increases the residence time of adhesion of Pseudomonas aeruginosa, Biophys. J, vol.100, pp.341-350, 2011.

J. E. Klinth, M. Castelain, B. E. Uhlin, and O. Axner, The influence of ph on the specific adhesion of p piliated Escherichia coli, PLoS ONE, vol.7, 2012.

V. Tchesnokova, P. Aprikian, O. Yakovenko, C. Larock, B. A. Kidd et al., Integrin-like allosteric properties of the catch bond-forming fimh adhesin of Escherichia coli, J. Biol. Chem, vol.283, pp.7823-7833, 2008.

E. Bulard, A. Bouchet-spinelli, P. Chaud, A. Roget, R. Calemczuk et al., Carbohydrates as new probes for the identification of closely related Escherichia coli strains using surface plasmon resonance imaging, Anal. Chem, vol.87, pp.1804-1811, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01587601

O. Zagorodko, J. Bouckaert, T. Dumych, R. Bilyy, I. Larroulet et al., Surface plasmon resonance (SPR) for the evaluation of shear-force-dependent bacterial adhesion, Biosensors, vol.5, pp.276-287, 2015.

P. Subramanian, F. Barka-bouaifel, J. Bouckaert, N. Yamakawa, R. Boukerroub et al., Graphene-coated surface plasmon resonance interfaces for studying the interactions between bacteria and surfaces, ACS Appl. Mater. Interfaces, vol.6, pp.5422-5431, 2014.
DOI : 10.1021/am405541z

Y. Zhang, T. R. Nayak, H. Hong, and W. Cai, Graphene: A versatile nanoplatform for biomedical applications, Nanoscale, vol.4, pp.3833-3842, 2012.
DOI : 10.1039/c2nr31040f

URL : http://europepmc.org/articles/pmc3376191?pdf=render

A. Penezic, G. Deokar, D. Vignaud, E. Pichonat, H. Happy et al., Carbohydrate-lectin interaction on graphene-coated surface plasmon resonance (SPR) interfaces, Plasmonics, vol.9, pp.677-683, 2014.
DOI : 10.1007/s11468-014-9686-3

URL : https://hal.archives-ouvertes.fr/hal-00994787

O. Zagorodko, J. Spadavecchia, A. Serrano, I. Larroulet, A. Pesquera et al., Highly sensitive detection of DNA hybridization on commercialized graphene coated surface plasmon resonance interfaces, Anal. Chem, vol.86, pp.11211-11216, 2014.
DOI : 10.1021/ac502705n

P. Subramanian, A. Lesniewski, I. Kaminska, A. Vlandas, A. Vasilescu et al., Lysozyme detection on aptamer functionalized graphene-coated SPR interfaces, Biosens. Bioelectron, vol.50, pp.239-243, 2013.
DOI : 10.1016/j.bios.2013.06.026

URL : https://hal.archives-ouvertes.fr/hal-00877645

T. R. Nayak, H. Andersen, V. S. Makam, C. Khaw, S. Bae et al., Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells, ACS Nano, vol.5, pp.4670-4678, 2011.

O. N. Ruiz, K. A. Fernando, B. Wang, N. A. Brown, P. G. Luo et al., Graphene oxide: A nonspecific enhancer of cellular growth, ACS Nano, vol.5, pp.8100-8107, 2011.

S. Ryoo, Y. Kim, M. Kim, and D. Min, Behaviors of nih-3t3 fibroblasts on graphene/carbon nanotubes: Proliferation, focal adhesion, and gene transfection studies, ACS Nano, vol.4, pp.6587-6598, 2010.

N. Dreux, J. Denizot, M. Martinez-medina, A. Mellmann, M. Billig et al., Point mutations in FimH adhesin of Crohn's disease-associated adherent-invasive Escherichia coli enhance intestinal inflammatory response, PLoS Pathog, vol.9, 2013.

X. Yan, A. Sivignon, N. Yamakawa, A. Crepet, C. Travelet et al., Glycopolymers as antiadhesives of E. coli strains inducing inflammatory bowel diseases, vol.16, pp.1827-1836, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01174249

D. R. Jayasundara, Carbohydrate coatings via aryldiazonium chemistry for surface biomimicry, Chem. Mater, vol.25, pp.4122-4128, 2013.

A. Barras, F. A. Martin, O. Bande, J. S. Baumann, J. M. Ghigo et al., Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives, Nanoscale, vol.5, pp.2307-2316, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01385429

S. L. Chen, C. S. Hung, J. S. Pinkner, W. J. Cusumano, C. K. Li et al., Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding, Proc. Natl. Acad. Sci, vol.109, pp.22439-22444, 2009.

Z. Zhang, S. Schwartz, L. Wagner, and W. Miller, A greedy algorithm for aligning DNA sequences, J. Comput. Biol, vol.7, pp.203-214, 2000.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of COOT, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.486-501, 2010.

W. L. Delano, The PyMOL Molecular Graphics System; Version 1.8

M. N. Liang, S. P. Smith, S. J. Metallo, I. S. Choi, M. Prentiss et al., Measuring the forces involved in polyvalent adhesion of uropathogenic Escherichia coli to mannose-presenting surfaces, Proc. Natl. Acad. Sci, vol.97, pp.13092-13096, 2000.

M. Touaibia, A. Wellens, T. C. Shiao, Q. Wang, S. Sirois et al., Mannosylated G(0) dendrimers with nanomolar affinities to Escherichia coli FimH, Chem. Med. Chem, vol.2, pp.1190-1201, 2007.

H. Li, K. Fierens, Z. Zhang, N. Vanparijs, M. Schuijs et al., Spontaneous protein adsorption on graphene oxide nanosheets allows efficient intracellular vaccine protein delivery, ACS Appl. Mater. Interfaces, vol.8, pp.1147-1155, 2016.

I. Kaminska, A. Barras, Y. Coffinier, W. Lisowski, J. Niedziolka-jonsson et al., Preparation of a responsive carbohydrate-coated biointerface based on graphene/azido-terminated tetrathiafulvalene nanohybrid material, ACS Appl. Mater. Interfaces, vol.4, pp.5386-5393, 2012.

J. Björk, F. Hanke, C. Palma, P. Samori, M. Cecchini et al., Adsorption of aromatic and anti-aromatic systems on graphene through ?´? stacking, J. Phys. Chem. Lett, vol.1, pp.3407-3412, 2010.

A. Rochefort and J. D. Wuest, Interaction of substituted aromatic compounds with graphene, Langmuir, vol.25, pp.210-215, 2008.

D. P. Bakker, H. J. Busccher, and H. C. Van-der-mei, Bacterial deposition in a parallel plate and a stagnation point flow chamber: Microbial adhesion mechanisms depend on the mass transport conditions, Microbiology, vol.148, pp.597-603, 2002.

N. P. Boks, W. Norde, H. C. Van-der-mei, and H. J. Busscher, Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces, Microbiology, vol.154, pp.3122-3133, 2008.

E. Lonardi, K. Moonens, L. Buts, A. R. De-boer, J. D. Olsson et al., Structural sampling of glycan interaction profiles reveals mucosal receptors for fimbrial adhesins of enterotoxigenic Escherichia coli, Biology, vol.2, pp.894-917, 2013.

R. L. Rich, M. J. Cannon, J. Jenkins, P. Pandian, S. Sundaram et al., Extracting kinetic rate constants from surface plasmon resonance array systems, Anal. Biochem, vol.373, pp.112-120, 2008.

S. J. Hultgren, W. R. Schwan, A. J. Schaeffer, and J. L. Duncan, Regulation of production of type-1 pili among urinary tract isolates of Escherichia coli, Infect. Immun, vol.54, pp.613-620, 1986.

S. Brument, A. Sivignon, T. I. Dumych, N. Moreau, G. Roos et al., Thiazolylaminomannosides as potent anti-adhesives of type-1 piliated Escherichia coli isolated from Crohn's disease patients, J. Med. Chem, vol.56, pp.5395-5406, 2013.

T. Chalopin, Y. Brissonnet, A. Sivignon, D. Deniaud, L. Cremet et al., Inhibition profiles of mono-and polyvalent FimH antagonists against 10 different Escherichia coli strains, Org. Biomol. Chem, vol.13, pp.11369-11375, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01931394

A. Sivignon, X. Yan, D. Alvarez-dorta, R. Bonnet, J. Bouckaert et al., Development of heptylmannoside-based glycoconjugate antiadhesive compounds against adherent-invasive Escherichia coli bacteria associated with Crohn's disease. MBio, 2015.

L. M. Nilsson, W. E. Thomas, E. Trintchina, V. Vogel, and E. V. Sokurenko, Catch bond-mediated adhesion without a shear threshold-Trimannose versus monomannose interactions with the fimh adhesin of Escherichia coli, J. Biol. Chem, vol.281, pp.16656-16663, 2006.

S. J. Weissman, S. Chattopadhyay, P. Aprikian, M. Obata-yasuoka, Y. Yarova-yarovaya et al., Clonal analysis reveals high rate of structural mutations in fimbrial adhesins of extraintestinal pathogenic Escherichia coli, Mol. Microbiol, vol.59, pp.975-988, 2006.

J. Zakrisson, K. Wiklund, O. Axner, and M. Andersson, The shaft of the type-1 fimbriae regulates an external force to match the FimH catch bond, Biophys. J, vol.104, pp.2137-2148, 2013.

E. Cota, C. Jones, P. Simpson, H. Altroff, K. L. Anderson et al., The solution structure of the invasive tip complex from afa/dr fibrils, Mol. Microbiol, vol.62, pp.356-366, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00203948

E. Miller, T. Garcia, S. Hultgren, and A. F. Oberhauser, The mechanical properties of E. coli type-1 pili measured by atomic force microscopy techniques, Biophys. J, vol.91, pp.3848-3856, 2006.

D. J. Schwartz, V. Kalas, J. S. Pinkner, S. L. Chen, C. N. Spaulding et al., Positively selected FimH residues enhance virulence during urinary tract infection by altering FimH conformation, Proc. Natl. Acad. Sci, vol.110, pp.15530-15537, 2013.

V. Tchesnokova, P. Aprikian, D. Kisiela, S. Gowey, N. Korotkova et al., Type-1 fimbrial adhesin FimH elicits an immune response that enhances cell adhesion of Escherichia coli, Infect. Immun, vol.79, pp.3895-3904, 2011.

D. I. Kisiela, H. Avagyan, D. Friend, A. Jalan, S. Gupta et al., Inhibition and reversal of microbial attachment by an antibody with parasteric activity against the FimH adhesin of uropathogenic E. coli, PLoS Pathog, vol.11, 2015.

J. Bouckaert, J. Mackenzie, J. L. De-paz, B. Chipwaza, D. Choudhury et al., The affinity of the FimH fimbrial adhesin is receptor-driven and quasi-independent of escherichia coli pathotypes, Mol. Microbiol, vol.61, pp.1556-1568, 2006.

A. Wellens, C. Garofalo, H. Nguyen, N. Van-gerven, R. Slattegard et al., Intervening with urinary tract infections using anti-adhesives based on the crystal structure of the FimH-oligomannose-3 complex, PLoS ONE, vol.3, 2008.

J. Taganna, A. R. De-boer, M. Wuhrer, and J. Bouckaert, Glycosylation changes as important factors for the susceptibility to urinary tract infection, Biochem. Soc. Trans, vol.39, pp.349-354, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00641767

L. M. Nilsson, W. E. Thornas, E. V. Sokurenko, and V. Vogel, Elevated shear stress protects Escherichia coli cells adhering to surfaces via catch bonds from detachment by soluble inhibitors, Appl. Environ. Microbiol, vol.72, pp.3005-3010, 2006.