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Abstract: In this article, we are interested in solving numerically backward doubly stochas-

tic differential equations (BDSDEs) with random terminal time τ . The main motivations

are giving a probabilistic representation of the Sobolev’s solution of Dirichlet problem for

semilinear SPDEs and providing the numerical scheme for such SPDEs. Thus, we study the

strong approximation of this class of BDSDEs when τ is the first exit time of a forward SDE

from a cylindrical domain. Euler schemes and bounds for the discrete-time approximation

error are provided.
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1. Introduction

Backward stochastic differential equations (BSDEs in short) are natural tools to give a proba-

bilistic interpretation for the solution of a class of semilinear PDEs (see [40], [18]). By introducing

in standard BSDEs a second nonlinear term driven by an external noise, we obtain Backward

Doubly SDEs (BDSDEs) [39], namely,

Yt = ξ +

∫ T

t
f(s, Ys, Zs) ds +

∫ T

t
g(s, Ys, Zs) d

←−
W s −

∫ T

t
Zs dBs, 0 ≤ t ≤ T . (1.1)
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where (Wt)t≥0 and (Bt)t≥0 are two finite-dimensional independent Brownian motions. We note

that the integral with respect to B is a "backward Itô integral". In the Markovian setting, these

equations can be seen as Feynman-Kac’s representation of Stochastic PDEs and form a powerful

tool for numerical schemes [6, 4]. These SPDEs appear in various applications as, for instance,

Zakai equations in filtering, pathwise stochastic control theory and stochastic control with partial

observations.

Several generalizations to investigate more general nonlinear SPDEs have been developed follow-

ing different approaches of the notion of weak solutions: the technique of stochastic flow (Bally

and Matoussi [8], Matoussi et al. [38]); the approach based on Dirichlet forms and their asso-

ciated Markov processes (Denis and Stoica [21], Bally, Pardoux and Stoica [9], Denis, Matoussi

and Stoica [19, 20]); stochastic viscosity solution for SPDEs (Buckdahn and Ma [16, 15], Lions

and Souganidis [35, 36, 34]). Above approaches have allowed the study of numerical schemes

for the Sobolev solution of semilinear SPDEs via Monte-Carlo methods (time discretization and

regression schemes [6, 5, 4]).

In the case when we consider the whole space O = R
d, the numerical approximation of the

BSDE has already been studied in the literature by Bally [7], Zhang [43], Bouchard and Touzi

[13], Gobet, Lemor and Warin[25]. Bouchard and Touzi [13] and Zhang [43] proposed a discrete-

time numerical approximation, by step processes, for a class of decoupled FBSDEs with possible

path-dependent terminal values. Zhang [43] proved a regularity result on Z, which allows the use

of a regular deterministic time mesh. In Bouchard and Touzi [13], the conditional expectations

involved in their discretization scheme were computed by using the kernel regression estimation.

Therefore, they used the Malliavin approach and the Monte carlo method for its computation.

Crisan, Manolarakis and Touzi [17] proposed an improvement on the Malliavin weights. Gobet,

Lemor and Warin in [25] proposed an explicit numerical scheme based on Monte Carlo regression

on a finite basis of functions. Their approach is more efficient, because it requires only one set

of paths to approximate all regression operators. These Monte Carlo type numerical schemes

are investigated to solve numerically the solution of semilinear PDEs. These latter methods are

tractable especially when the dimension of the state process is very large unlike the finite dif-

ference method. For BDSDEs where the coefficient g does not depend on the control variable

z, Aman [2] proposed a numerical scheme following the idea used by Bouchard and Touzi [13]

and obtained a convergence of order h of the square of the L2- error (h is the discretization

step in time). Aboura [1] studied the same numerical scheme under the same kind of hypothesis,

but following Gobet et al. [26]. He obtained a convergence of order h in time and he attempted

for a Monte Carlo solver. Bachouch et al [6] have studied the rate of convergence of the time

discretization error for BDSDEs in the case when the coefficient g depending on (y, z). They

presented an implementation and numerical tests for such Euler scheme. Bachouch, Gobet and

Matoussi [5] have recently analyzed the regression error arising from an algorithm approximating

the solution of a discrete- time BDSDEs. They have studied the rate of converge of such error in
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the case when the coefficients of the BDSDEs depend only on the variable y.

For BSDEs with finite random time horizon, namely, the first exit time of a forward SDEs from a

domain O, Bouchard and Menozzi [12] studied the Euler scheme of these equations and provided

the upper bounds for the discrete time approximations error which is at most of order h1/2−ε

where ε is any positive parameter. This rate of convergence is due to the approximation error of

the exit time. These results are obtained when the domain O is piecewise smooth and under a

non-charateristic boundary condition (without uniform ellipticity condition). Bouchard, Gobet

and Geiss [11] have improved this error which is now at most of order h1/2 even if the time

horizon is unbounded.

In this paper, we are concerned with numerical scheme for backward doubly SDEs with random

terminal time. These latter equations give the probabilistic interpretation for the weak-Sobolev’s

solutions of a class of semilinear stochastic partial differential equations (SPDEs in short) with

Dirichlet null condition on the boundary of some smooth domain O ⊂ R
d . An alternative method

to solve numerically nonlinear SPDEs is an analytic one, based on time- space discretization of

the SPDEs. The discretization in space can be achieved either by finite differences, or finite

elements [42] and spectral Galerkin methods [29]. But most numerical works on SPDEs have

concentrated on the Euler finite-difference scheme. Very interesting results have been obtained

by Gyongy and Krylov [28]. The authors consider a symmetric finite difference scheme for a class

of linear SPDE driven by an infinite dimensional Brownian motion.

Our contributions in this paper are as following: first of all, BDSDEs with random terminal

time are introduced and results of existence and uniqueness of such BDSDEs are established by

means of some transformation to classical BSDEs studied by Peng [40], Darling and Pardoux [18]

and Briand et al [14]. Next, Euler numerical scheme for a Forward-BDSDEs is developed where

we provide upper bounds for the discrete time approximations error which is at most of order

h1/2. Then probabilistic representation for the weak solution of semilinear SPDEs with Dirichlet

null condition on the boundary of the domain O is given by means of solution of BDSDEs with

random terminal time. This is done by using localization procedure and stochastic flow technics

(see e.g. [8], [38], [32, 31] for these flow technics).

This paper is organized as follows: in Section 2, first the basic assumptions and the definitions

of the solutions for BDSDEs with random terminal time are presented. Then, existence and

uniqueness results of such equations are given by using fixed point theorem. In Section 3, we

develop a discrete-time approximation of a Forward-Backward Doubly SDE with finite stopping

time horizon, namely the first exit time of a forward SDE from a domain O. The main result

of this section is providing a rate of convergence of order h1/2 for the square of Euler time dis-

cretization error for Forward-Backward Doubly SDE scheme (3.7)-(3.13). Moreover, we relate

the BDSDE in the Markovian setting to Sobolev semilinear SPDEs with Dirichlet null condition

by proving Feynman-Kac’s formula in Section 4. Finally, the last Section is devoted to numerical

implementations and tests.
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2. Backward doubly stochastic differential equations with random terminal time

Any element x ∈ R
d, d ≥ 1, will be identified with a line vector with ith component xi and its

Euclidean norm defined by |x| = (
∑

i |xi|2)1/2. For each real matrix A, we denote by ‖A‖ its

Frobenius norm defined by ‖A‖ = (
∑

i,j a
2
i,j)

1/2.

Let (Ω,F ,P) be a probability space, and let {Wt, 0 ≤ t ≤ T} and {Bt, 0 ≤ t ≤ T} be two mutually

independent standard Brownian motions with values in R
l and R

d. For each 0 ≤ s ≤ T , we define

Fs := FBs ∨ FWs,T ,

with FBs := σ(Br; 0 ≤ r ≤ s ) and FWs,t := σ(Wr − Ws; s ≤ r ≤ t) ∨ N where N is the class of

P-null sets of F . Note that (Ft)t≤T is not an increasing family of σ-fields, so it is not a filtration.

Hereafter, let us define the spaces and the norms which will be needed for the formulation of the

BDSDE with random terminal time.

- L
p(FBτ ) the space of Rk valued FBτ -measurable random variables ξ such that

‖ξ‖pLp := E(eλτ |ξ|p) < +∞ ;

- H2
k×d([0, T ]) the space of Rk×d-valued Ft-measurable process Z = (Zt)t≤T such that

‖Z‖2H2 := E[

∫ τ

0
eλt|Zt|2dt] < +∞ ;

- S2k([0, T ]) the space of R
k valued Ft-adapted processes Y = (Yt)t≤T , with continuous paths

such that

‖Y ‖2S2 := E[ sup
t≤τ

eλt|Yt|2] < +∞ ;

We need the following assumptions:

Assumption (HT) The final random time τ is an FBτ -stopping time and the final condition ξ

belongs to L
2(FBτ ).

Assumption (HL) The two coefficients f : Ω× [0, T ] × R
k × R

k×d → R
k and g : Ω× [0, T ] ×

R
k×R

k×d → R
k×l satisfy: for all t ∈ [0, T ], (y, z), (y′, z′) ∈ R

k×R
k×d and for some real numbers

α, µ, λ, K > 0, C > 0, λ >
2K

1− α − 2µ+ C and 0 < α < 1,

(i) f(., y, z) and g(., y, z) are Ft measurable,

(ii) |f(t, y, z) − f(t, y′, z′)| ≤ K
(
|y − y′|+ ‖z − z′‖

)
,

(iii) 〈y − y′ , f(t, y, z) − f(t, y′, z) 〉 ≤ −µ |y − y′|2,
(iv) ‖g(t, y, z) − g(t, y′, z′)‖2 ≤ C |y − y′|2 + α ‖z − z′‖2,
(v) E

∫ τ

0
eλ s|f(t, 0, 0)|2 ds < ∞ and E

∫ τ

0
eλ s‖g(t, 0, 0)‖2 ds < ∞.
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Now we introduce the definition of BDSDEs with random terminal time τ and associated with

(ξ, f, g).

Definition 2.1. A solution of BDSDE (τ, ξ, f, g) is a couple {(Ys, Zs); 0 ≤ s ≤ T} ∈ S2k([0, T ])×
H2
k×d([0, T ]) such that Yt = ξ on the set {t ≥ τ}, Zt = 0 on the set {t > τ} and

Yt = ξ +

∫ τ∧T

t
f(s, Ys, Zs) ds +

∫ τ∧T

t
g(s, Ys, Zs) d

←−
W s −

∫ τ∧T

t
Zs dBs, 0 ≤ t ≤ τ . (2.1)

We note that the integral with respect to W is a "backward Itô integral" (see Kunita [30] for

the definition) and the integral with respect to B is a standard forward Itô integral. We establish

in the following theorem the existence and uniqueness of the solution for BDSDE (2.1) which is

an extension of Peng’s results [40] in the standard BSDE case. This result is also given in [37]

(Theorem 1) for deterministic terminal time T and under weaker assumptions on the coefficient

f , namely f satisfies monotonicity condition and polynomial growth in y. For ease of reference

and completness, we give the proof of this result.

Theorem 2.1. Under the Assumptions (HT) and (HL), there exists a unique solution {(Ys, Zs ); 0 ≤
s ≤ T } ∈ S2k([0, T ]) ×H2

k×d([0, T ]) of the BDSDE (2.1).

Proof.

a) Uniqueness: Let (Y 1, Z1) and (Y 2, Z2) be two solutions of the BDSDE (2.1) and denote

by (Ȳ , Z̄) := (Y 1 − Y 2, Z1 − Z2). Applying generalized Itô formula (see Lemma 1.3 in [39]) to

eλs|Ȳs|2 yields

eλt|Ȳt|2 +

∫ τ∧T

t
eλs
(
λ|Ȳs|2 + ‖Z̄s‖2

)
ds = 2

∫ τ∧T

t
eλs
〈
Ȳs, f(s, Y

1
s , Z

1
s )− f(s, Y 2

s , Z
2
s )
〉
ds

+ 2

∫ τ∧T

t
eλs
〈
Ȳs, g(s, Y

1
s , Z

1
s )− g(s, Y 2

s , Z
2
s )
〉
d
←−
W s − 2

∫ τ∧T

t
eλs
〈
Ȳs, Z̄s

〉
dBs

+

∫ τ∧T

t
eλs‖g(s, Y 1

s , Z
1
s )− g(s, Y 2

s , Z
2
s )‖2ds. (2.2)

Then, taking expectation we obtain

E[eλt|Ȳt|2] + E[

∫ τ∧T

t
eλs
(
λ|Ȳs|2 + ‖Z̄s‖2

)
ds] = 2E[

∫ τ∧T

t
eλs
〈
Ȳs, f(s, Y

1
s , Z

1
s )− f(s, Y 2

s , Z
2
s )
〉
ds]

+ E[

∫ τ∧T

t
eλs‖g(s, Y 1

s , Z
1
s )− g(s, Y 2

s , Z
2
s )‖2ds].

From Assumption (HL) there exists 0 < ε < 1 such that

2
〈
Ȳs, f(s, Y

1
s , Z

1
s )− f(s, Y 2

s , Z
2
s )
〉
≤ (−2µ+

K

1− ε)|Ȳs|
2 + (1− ε)‖Z̄s‖2,

which together with the Lipschitz continuous assumption on g provide

E
[
eλt|Ȳt|2

]
+ E

[ ∫ τ∧T

t
eλs
(
λ|Ȳs|2 + ‖Z̄s‖2

)
ds
]
≤ E

[ ∫ τ∧T

t
eλs(−2µ+

K

1− ε + C)|Ȳs|2ds
]

+ E
[ ∫ τ∧T

t
eλs(α+ 1− ε)‖Z̄s‖2ds

]
,
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where 0 < α < 1. Consequently

E
[
eλt|Ȳt|2

]
+ E

[ ∫ τ∧T

t
eλs
(
(λ+ 2µ− K

1− ε − C)|Ȳs|2 + (ε− α)‖Z̄s‖2
)
ds
]
≤ 0.

Next, choosing ε =
1 + α

2
and since λ+ 2µ − 2K

1− α − C > 0, we conclude that

Y 1
t = Y 2

t and Z1
t = Z2

t , P− a.s. , ∀t ∈ [0, T ].

b) Existence: The existence of a solution will be proven in two steps. In the first step, we

suppose that g does not depend on y, z, then we are able to transform our BDSDE with data

(τ, ξ, f, g) into a BSDE (τ, ξ̄, f̄), where ξ̄ and f̄ are explicited below. Thus, the existence is proved

by appealing to the existence result for BSDEs with random terminal time estblished by Peng

1991. In the second step, we study the case when g depends on y, z using Picard iteration.

Step 1 : Suppose that g := g0 does not depend on y, z, and the BDSDE (2.1) becomes

Yt = ξ +

∫ τ∧T

t
f(s, Ys, Zs)ds+

∫ τ∧T

t
g(s)d

←−
W s −

∫ τ∧T

t
ZsdBs, 0 ≤ t ≤ T. (2.3)

Denoting

Ȳt := Yt +

∫ t

0
g(s)d

←−
W s, ξ̄ := ξ +

∫ τ

0
g(s)d

←−
W s,

we have the following BSDE

Ȳt = ξ̄ +

∫ τ∧T

t
f̄(s, Ȳs, Zs)ds −

∫ τ∧T

t
ZsdBs, 0 ≤ t ≤ T. (2.4)

where f̄(s, y, z) := f(s, y −
∫ t

0
g(s)d

←−
W s, z). We can easily check that ξ̄ and f̄ satisfy the same

assumptions that Peng [40] (Theorem 2.2) has proved for the existence and uniqueness of the

solution for the standard BSDE (2.4). Thus, we get the existence of the solution for the BDSDEs

(2.3).

Step 2 : The nonlinear case when g depends on y, z. The solution is obtained by using the fixed

point Banach theorem. For any given (Ȳ , Z̄) ∈ H2
k([0, T ])×H2

k×d([0, T ]), let consider the BDSDE

with random terminal time:

Yt = ξ +

∫ τ∧T

t
f(s, Ys, Zs)ds +

∫ τ∧T

t
g(s, Ȳs, Z̄s)d

←−
W s −

∫ τ∧T

t
ZsdBs, 0 ≤ t ≤ T. (2.5)

It follows from Step 1 that the BDSDE (2.5) has a unique solution (Y,Z) ∈ H2
k([0, T ]) ×

H2
k×d([0, T ]). Therefore, the mapping:

Ψ : H2
k([0, T ]) ×H2

k×d([0, T ]) −→ H2
k([0, T ]) ×H2

k×d([0, T ])

(Ȳ , Z̄) 7−→ Ψ(Ȳ , Z̄) = (Y,Z)
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is well defined.

Next, let (Y,Z), (Y
′

, Z
′

), (Ȳ , Z̄) and (Ȳ ′ , Z̄ ′) ∈ H2
k([0, T ]) × H2

k×d([0, T ]) such that (Y,Z) =

Ψ(Ȳ , Z̄) and (Y
′

, Z
′

) = Ψ(Ȳ ′ , Z̄ ′) and set ∆η = η − η
′

for η = Y, Ȳ , Z, Z̄,K. Applying Itô

formula and taking expectation yield to

E[eλt|∆Yt|2] + E
[ ∫ τ∧T

t
eλs
(
λ|δYs|2 + ‖δZs‖2

)
ds
]
= 2E[

∫ τ∧T

t
eλs〈∆Ys, f(s, Ys, Zs)− f(s, Y

′

s , Z
′

s)〉ds]

+ E[

∫ τ∧T

t
eλs‖g(s, Ȳs, Z̄s)− g(s, Ȳ ′

s, Z̄
′

s)‖2ds].

From Assumption (HL) there exists α < ε < 1 such that

〈∆Ys, f(s, Ys, Zs)− f(s, Y
′

s , Z
′

s)〉 ≤ (−2µ +
K

1− ε)|∆Ys|
2 + (1− ε)‖∆Zs‖2,

which together with the Lipschitz continuous assumption on g provide

E[eλt|∆Yt|2] + (λ+ 2µ− K

1− ε )E[
∫ τ∧T

t
eλs|δYs|2ds] + εE[

∫ τ∧T

t
eµs‖∆Zs‖2ds]

≤ CE[

∫ τ∧T

t
eµs|∆Ȳs|2ds] + αE[

∫ τ∧T

t
eµs‖∆Z̄s‖2ds].

Next, choosing ε such that λ+ 2µ− K

1− ε =
εC

α
, we obtain

ε
[C
α
E[

∫ τ∧T

t
eλs|∆Ys|2ds] + E[

∫ τ∧T

t
eλs‖∆Zs‖2ds]

]

≤ α
[C
α
E[

∫ τ∧T

t
eλs|∆Ȳs|2ds] + E[

∫ τ∧T

t
eλs‖∆Z̄s‖2ds]

]
.

Since
α

ε
< 1, then Ψ is a strict contraction on H2

k([0, T ] ×H2
k×d([0, T ]) equipped with the norm

‖(Y,Z)‖2 =
C

α
E[

∫ τ∧T

0
eλs|∆Ys|2ds] + E[

∫ τ∧T

0
eλs‖∆Zs‖2ds].

Thus from Banach fixed point theorem there exists a unique pair (Y,Z) ∈ H2
k([0, T ])×H2

k×d([0, T ])

solution of BDSDE associated to (τ, ξ, f, g). Moreover, thanks to Assumption (HL) and standard

calculations and estimates we show that Y belongs to S2k([0, T ]). �

3. Numerical scheme for Forward-Backward Doubly SDEs

In this section, we are interested in developing a discrete-time approximation of a Forward-

Backward Doubly SDE with finite stopping time horizon, namely the first exit time of a forward

SDE from a cylindrical domain D = [0, T ) × O. As usual, since we will state in the Markovian



Matoussi and Sabbagh /Numerical computation for BDSDEs 8

framework, we need a slight modification of the filtration. So, we fix t ∈ [0, T ] and for each

s ∈ [t, T ], we define

F ts := FBt,s ∨ FWs,T ∨ N and Gts := FBt,s ∨ FWt,T ∨ N ,

where FBt,s = σ{Br − Bt, t ≤ r ≤ s}, FWs,T = σ{Wr −Ws, s ≤ r ≤ T} and N the class of P null

sets of F . Note that the collection {F ts, s ∈ [t, T ]} is neither increasing nor decreasing and it does

not constitute a filtration. However, {Gts, s ∈ [t, T ]} is a filtration. We will omit the dependance

of the filtration with respect to the time t if t = 0.

3.1. Formulation

For all (t, x) ∈ [0, T ]×Rd, let (Xt,x
s )0≤s≤t be the unique strong solution of the following stochastic

differential equation:

dXt,x
s = b(Xt,x

s )ds+ σ(Xt,x
s )dBs, s ∈ [t, T ], Xt,x

s = x, 0 ≤ s ≤ t, (3.1)

where b and σ are two functions on R
d with values respectively in R

d and R
d×d. We will omit

the dependance of the forward process X in the initial condition if it starts at time t = 0.

Let τ t,x be the first exit time of (s,Xt,x
s ) from a cylindrical domain D = [0, T ) × O for some

open bounded set O ⊂ R
d.

We now consider the following Markovian BDSDE with terminal random time τ associated to

the data (Φ, f, g): For all t ≤ s ≤ T ,
{
−dY t,x

s = 1{s<τ}f(s,X
t,x
s , Y t,x

s , Zt,xs )ds+ 1{s<τ}g(s,X
t,x
s , Y t,x

s , Zt,xs )d
←−
W s − Zt,xs dBs,

Y t,x
s = Φ(τ,Xt,x

τ ), τ ≤ s ≤ T,
(3.2)

where f and Φ are now two functions respectively on [0, T ]×R
d×R

k×R
k×d and R

d with values

in R
k and g is a function on [0, T ] × R

d × R
k × R

k×d with values in R
k×l.

Now, we specify some conditions on the domain and the diffusion process:

Assumption (D) O is an open bounded set of Rd with a C2-boundary.

Assumption (MHD)

(i) The matrix a := σσ∗ is elliptic, i.e. there exists Λ > 0 such that for all x, ζ ∈ Ō ,

Λ‖ζ‖2 ≤ ζa(x)ζ∗. (3.3)

(ii) There exists a positive constant L such that

|b(x)− b(x′)|+ ‖σ(x)− σ(x′)‖ ≤ L|x− x′|, ∀x, x′ ∈ R
d.
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Remark 3.1. We mention that this smoothness assumption (D) on the domain could be weakened

by considering the domain O as a finite intesection of smooth domains with compact boundaries

and further conditions on the set of corners (see conditions (D1) and (D2) in [12]). Under this

weakened hypotheses, one may just assume the the matrix a satisfies a non-characteristic bound-

ary condition outside the set of corners C and a uniform ellipticity condition on a neighborhood

of C.

Besides, we assume that the terminal condition Φ is sufficiently smooth:

Assumption (MHT)

Φ ∈ C1,2([0, T ]× R
d) and ‖∂tΦ‖+ ‖DΦ‖+ ‖D2Φ‖ ≤ L on [0, T ]× R

d.

We next state a strengthening of Assumption (HL) in the present Markov framework:

Assumption (MHL) There exist constants α, µ, λ, K > 0, C > 0, C ′ > 0, λ >
2K

1− α−2µ+C
and 0 < α < 1 such that for any (t1, x1, y1, z1), (t2, x2, y2, z2) ∈ [0, T ]× R

d × R
k ×R

k×d,

(i) |f(t1, x1, y1, z1)− f(t2, x2, y2, z2)| ≤ K
(√
|t1 − t2|+ |x1 − x2|+ |y1 − y2|+ ‖z1 − z2‖

)
,

(ii) ‖g(t1, x1, y1, z1)− g(t2, x2, y2, z2)‖2 ≤ C
(
|t1 − t2|+ |x1 − x2|2 + |y1 − y2|2

)
+ α‖z1 − z2‖2,

(iii) 〈y1 − y2 , f(t1, x1, y1, z1) − f(t1, x1, y2, z1) 〉 ≤ −µ |y1 − y2|2,
(iv) sup

0≤t≤T
(|f(t, 0, 0, 0)| + ‖g(t, 0, 0, 0)‖) ≤ C ′.

Remark 3.2. We note that the integrability condition given by Assumption (HT) in Section 2

is satisfied in this Markovian setting thanks to the smoothness of Φ (Assumption (MHT)) and

the fact that the exit time τ , under the ellipticity condition (3.3) verified by the matrix a (see

Stroock and Varadhan [41]), satisfies

sup
(t,x)∈[0,T )×Ō

E[exp(λτ t,x)] <∞.

From [39] and [30], the standard estimates for the solution of the Forward-Backward Doubly

SDE (3.1)-(3.2) hold and we remind the following theorem:

Theorem 3.1. Under Assumptions (MHT) and (MHL), there exist, for any p ≥ 2, two positive

constants C and Cp and an integer q such that :

E[ sup
t≤s≤τ

|Xt,x
s |2] ≤ C(1 + |x|2), (3.4)

E

[
sup
t≤s≤τ

|Y t,x
s |p +

( ∫ τ

t
‖Zt,xs ‖2ds

)p/2]
≤ Cp(1 + |x|q). (3.5)

From now on, CηL denotes a generic constant whose value may change from line to line, but

which depends only on X0, L, the constants appearing in Assumption (MHL) and some extra

parameter η (we simply write CL if it depends only on X0 and L). Similarly, ζηL denotes a generic

non-negative random variable such that E[|ζηL|p] ≤ Cη,pL for all p ≥ 1 (we simply write ζL if it

does not depend on the parameter η).
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3.2. Euler scheme approximation of Forward-BDSDEs

3.2.1. Forward Euler scheme

In order to approximate the forward diffusion process (3.1), we use a standard Euler scheme with

time step h, associated to a grid

π := {ti = ih ; i ≤ N}, h := T/N , N ∈ N,

This approximation is defined by

XN
t = x+

∫ t

0
b(Xϕ(s))ds+

∫ t

0
σ(Xϕ(s))dBs, t ≥ 0 (3.6)

where ϕ(s) := sup{t ∈ π : t ≤ s}. Notice that ϕ(t) = ti, for t ∈ [ti, ti+1) and the continuous

approximation (3.6) is equivalent to the following discrete approximation
{
XN

0 = x,

XN
ti+1

= XN
ti + b(XN

ti )(ti+1 − ti) + σ(XN
ti )(Bti+1

−Bti), i ≤ N.
(3.7)

Then, we approximate the exit time τ by the first time of the Euler scheme (t,XN
t )t∈π from D

on the grid π:

τ̄ := inf{t ∈ π : XN
t /∈ O} ∧ T.

Remark 3.3. One may approximate the exit time τ by its continuous version τ̃ which is defined

as the first exit time of the Euler scheme (t,XN
t ), namely

τ̃ := inf{t ∈ [0, T ] : XN
t /∈ O} ∧ T.

However, this approximation requires more regularity on the boundary of O (see e.g. [22, 23]).

The upper bound estimates for the error due to the approximation of τ by τ̄ was proved by

Bouchard and Menozzi [12] for the weak version of such estimate and Gobet [22, 23] for the

strong one. Recently, Bouchard, Geiss and Gobet [11] have improved the following L1-strong

error:

Theorem 3.2. Assume that (MHD) and (D) hold. Then, there exists CL > 0 such that

E[|τ − τ̄ |] ≤ CLh1/2. (3.8)

Remark 3.4. Let us mention that the upper bound estimates for the error due to the approxi-

mation of τ by τ̄ proved by Bouchard and Menozzi [12] for the weak version of such estimate is

as following: for any ε ∈ (0, 1) and each positive random variable ζ satisfying E[(ζL)
p] ≤ CpL for

all p ≥ 1, there exists CεL > 0 such that

E
[
E[ζL|τ − τ̄ ||FBτ+∧τ̄ ]

2
]
≤ CεLh1−ε, (3.9)
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where τ+ is the next time after τ in the grid π such that τ+ := inf{t ∈ π : τ ≤ t}.
For the strong estimate error, Gobet [22, 23] has proved that, for each ε ∈ (0, 1/2), there exists

CεL > 0 such that

E[|τ − τ̄ |] ≤ CεLh1/2−ε. (3.10)

3.2.2. Euler scheme for BDSDEs

Regarding the approximation of (3.2), we adapt the approach of [6]. We define recursively (in a

backward manner) the discrete-time process (Y N , ZN ) on the time grid π by

Y N
T = Φ(τ̄ , XN

τ̄ ), (3.11)

and for i = N − 1, . . . , 0, we set

ZNti = h−1
Eti

[
(Y N
ti+1

+ g(ti+1,Θ
N
i+1)∆Wi)∆B

⊤
i

]
, (3.12)

Y N
ti = Eti [Y

N
ti+1

] + 1{ti<τ̄}hEti [f(ti,Θ
N
i )] + 1{ti<τ̄}Eti [g(ti+1,Θ

N
i+1)∆Wi], (3.13)

where

ΘN
i := (XN

ti , Y
N
ti , Z

N
ti ) , ∆Wi =Wti+1

−Wti , ∆Bi = Bti+1
−Bti .

⊤ denotes the transposition operator and Eti denotes the conditional expectations over the σ-

algebra F0
ti . The above conditional expectations are well defined at each step of the algorithm.

Observe that Y N
ti 1{ti≥τ̄} = Φ(τ̄ , XN

τ̄ )1{ti≥τ̄} and ZNti 1{ti≥τ̄} = 0. One can easily check that

Y N
ti+1

+ g(ti+1,Θ
N
i+1)∆Wi ∈ L2(Fti+1

)

for all 0 ≤ i < N under the Lipschitz continuous assumption. Then an obvious extension of Itô

martingale representation theorem yields the existence of the Gt-progressively measurable and

square integrable process ZN satisfying, for all i < N

Y N
ti+1

+ g(ti+1,Θ
N
i+1)∆Wi = Eti [Y

N
ti+1

+ g(ti+1,Θ
N
i+1)∆Wi] +

∫ ti+1

ti

ZNs dBs.

Following the arguments of Pardoux and Peng [39] (see page 213), we can prove that in fact ZN

is Ft-progressively measurable thanks to the independance of the increments of B and the two

Browian motions B and W .

This allows us to consider a continuous-time extension of Y N in S2 defined on [0, T ] by

Y N
t = Φ(τ̄ , XN

τ̄ ) +

∫ T

t
1{s<τ̄}f(ϕ(s),Θ

N
ϕ(s))ds +

∫ T

t
1{s<τ̄}g(ψ(s),Θ

N
ψ(s))d

←−
W s −

∫ T

t
ZNs dBs,

(3.14)

where ψ(s) := inf{t ∈ π : t ≥ s}.



Matoussi and Sabbagh /Numerical computation for BDSDEs 12

Remark 3.5. Observe that Zs = 0 on ]τ, T ] and ZNs = 0 on ]τ̄ , T ]. For later use, note also that

ZNti = h−1
Eti [

∫ ti+1

ti

ZNs ds] , i < N. (3.15)

In order to prove (3.25) of Proposition 3.2, we need the following lemma.

Lemma 3.1. Let Assumptions (MHL) and (MHT) hold. Then,

max
i<N

(|Y N
ti |+

√
h‖ZNti ‖) ≤ ζL and ‖Y N‖S2 + ‖ZNϕ ‖H2 + ‖ZNψ ‖H2 ≤ CL. (3.16)

3.2.3. Upper bounds for the discrete-time approximation error

In this section, we provide bounds for the (square of the) discrete-time approximation error up

to a stopping time θ ≤ T P-a.s. defined as

Err(h)2θ := max
i<N

E
[

sup
t∈[ti,ti+1]

1{t<θ}|Yt − Y N
t |2

]
+ E

[ ∫ θ

0
‖Zt − ZNϕ(t)‖2dt

]
, (3.17)

where we recall ϕ(s) := sup{t ∈ π : t ≤ s}.

We first recall some standard controls on X, (Y,Z) and XN .

Proposition 3.1. Let Assumptions (MHL), (MHT) and (MHD) hold. Fix p ≥ 2. Let ϑ be a

stopping time with values in [0, T ]. Then,

E

[
sup
t∈[ϑ,T ]

|Yt|p +
( ∫ T

ϑ
‖Zt‖2dt

)p/2] ≤ CpL(1 + |Xϑ|p),

and

E

[
sup
t∈[ϑ,T ]

(|Xt|p + |XN
t |p)|FB0,ϑ

]
≤ ζpL.

Moreover,

max
i<N

E
[

sup
t∈[ti,ti+1]

(|Xt −Xti |p + |XN
t −XN

ti |p)
]
+ E

[
sup
t∈[0,T ]

(|Xt −XN
t |p)

]
≤ CpLhp/2,

P
[
sup
t∈[0,T ]

(|XN
t −XN

ϕ(t)| > r
]
≤ CLr−4h, r > 0,

and, if θ is a stopping time with values in [0, T ] such that ϑ ≤ θ ≤ ϑ+ h P-a.s., then

E
[
|XN

θ −XN
ϑ |p + |Xθ −Xϑ|p|FB0,ϑ

]
≤ ζpLhp/2.

Remark 3.6. Let ϑ ≤ θ P-a.s. be two stopping times with values in π and Z̄ti be the best

approximation of (Zt)ti≤t≤ti+1
by Fti-measurable random variable in the following sense

Z̄ti := h−1
Eti [

∫ ti+1

ti

Zsds] , i < N. (3.18)
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Then, recalling that ti+1 − ti = h, it follows from (3.18),(3.15) and Jensen’s inequality that

E

[ ∫ θ

ϑ
‖Z̄ϕ(s) − ZNϕ(s)‖2ds

]
=
∑

i<N

E

[ ∫ ti+1

ti

1{ϑ≤ti≤θ}

∥∥Eti
[
h−1

∫ ti+1

ti

(Zu − ZNu )du
]∥∥2ds

]

≤
∑

i<N

E

[ ∫ ti+1

ti

1{ϑ≤ti≤θ}h
−1

∫ ti+1

ti

‖Zu − ZNu ‖2du ds
]

≤ E

[ ∫ θ

ϑ
‖Zs − ZNs ‖2ds

]

(3.19)

Observe that the above inequality does not apply if ϑ and θ do not take values in π. This explains

why it is easier to work with τ+, instead of τ , that is, work on Err(h)2τ+∧τ̄ instead of Err(h)2τ∧τ̄ .

Now we state an upper bound result for some stopping time θ with values in π.

Theorem 3.3. Assume that Assumptions (MHL), (MHD) and (MHT) hold, and define

R(Y )πS2 := max
i<N

E
[

sup
t∈[ti,ti+1]

|Yt − Yti |2
]

, R(Z)πH2 := E
[ ∫ T

0
‖Zt − Z̄ϕ(t)‖2dt

]

Then for all stopping times θ with values in π, we have

Err(h)2θ ≤ CL
(
h+ E[|Yθ − Y N

θ |2] +R(Y )πS2 +R(Z)πH2

+ E
[ ∫ T

0
‖Zt − Z̄ψ(t)‖2dt

]
+ E

[ ∫ (τ̄∨τ)∧θ

τ̄∧τ∧θ
(ζL + 1{τ̄<τ}‖Zs‖2)ds

])
. (3.20)

Proof. Equations (3.2) and (3.14), the generalized Ito’s lemma (see Lemma 1.3 in [39]) applied

to (Y − Y N )2 on [t ∧ θ, ti+1 ∧ θ] for t ∈ [ti, ti+1] and i < N , and taking expectation yield to

∆θ
t,ti+1

:= E
[
|Yt∧θ − Y N

t∧θ|2 +
∫ ti+1∧θ

t∧θ
‖Zs − ZNs ‖2ds

]

= E
[
|Yti+1∧θ − Y N

ti+1∧θ|2
]
+ E

[
2

∫ ti+1∧θ

t∧θ
(Ys − Y N

s )(1{s<τ}f(Θs)− 1{s<τ̄}f(Θ
N
ϕ(s)))ds

]

+ E
[ ∫ ti+1∧θ

t∧θ
‖1{s<τ}g(Θs)− 1{s<τ̄}g(Θ

N
ψ(s))‖2ds

]
,

where Θs := (Xs, Ys, Zs). Using the fact that 1{s<τ} ≤ 1{s<τ̄} + 1{τ≤s<τ̄} + 1{τ̄≤s<τ} and the

inequality 2ab ≤ εa2 + ε−1b2, we then deduce that for ε > 0 to be chosen later,

∆θ
t,ti+1

≤ E
[
|Yti+1∧θ − Y N

ti+1∧θ|2
]
+ εE

[ ∫ ti+1∧θ

t∧θ
|Ys − Y N

s |2ds
]

+ ε−1
E
[ ∫ ti+1∧θ

t∧θ
1{s<τ̄}(f(Θs)− f(ΘN

ϕ(s)))
2ds+

∫ ti+1∧θ

t∧θ
1{τ̄≤s<τ}(f(Θs))

2ds
]

+ ε−1
E
[ ∫ ti+1∧θ

t∧θ
1{τ≤s<τ̄}(f(Θs))

2ds
]
+ E

[ ∫ ti+1∧θ

t∧θ
1{s<τ̄}‖g(Θs)− g(ΘN

ψ(s))‖2ds
]

+ E
[ ∫ ti+1∧θ

t∧θ
1{τ̄≤s<τ}‖g(Θs)‖2ds

]
+ E

[ ∫ ti+1∧θ

t∧θ
1{τ≤s<τ̄}‖g(Θs)‖2ds

]
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Recall from Remark 3.5 that Z = 0 on ]τ, T ]. Since Yt = Φ(τ,Xτ ) on {t ≥ τ}, we then deduce

from the Lipschitz continuous assumption (MHL) that

∆θ
t,ti+1

≤ E
[
|Yti+1∧θ − Y N

ti+1∧θ|2
]
+ εE

[ ∫ ti+1∧θ

t∧θ
|Ys − Y N

s |2ds
]

+CLε
−1

E
[ ∫ ti+1∧θ

t∧θ
1{s<τ̄}(|Xs −XN

ϕ(s)|2 + |Ys − Y N
ϕ(s)|2 + ‖Zs − ZNϕ(s)‖2)ds

]

+CL(ε
−1 + 1)E

[ ∫ ti+1∧θ

t∧θ
1{τ̄≤s<τ}(|Xs|2 + |Ys|2)ds

]

+CL(ε
−1 + 1)E

[ ∫ ti+1∧θ

t∧θ
1{τ≤s<τ̄}(|Xτ |2 + |Φ(τ,Xτ )|2)ds

]

+(CLε
−1 + α)E

[ ∫ ti+1∧θ

t∧θ
1{τ̄≤s<τ}‖Zs‖2ds

]

+E
[ ∫ ti+1∧θ

t∧θ
1{s<τ̄}(CL|Xs −XN

ψ(s)|2 + CL|Ys − Y N
ψ(s)|2 + α‖Zs − ZNψ(s)‖2)ds

]
.

Now, appealing to Proposition 3.1 yields to

∆θ
t,ti+1

≤ E
[
|Yti+1∧θ − Y N

ti+1∧θ|
2
]
+ εE

[ ∫ ti+1∧θ

t∧θ
|Ys − Y N

s |2ds
]

+ CLε
−1

E
[ ∫ ti+1∧θ

t∧θ
(h+ |Ys − Yϕ(s)|2 + |Yϕ(s) − Y N

ϕ(s)|2 + ‖Zs − Z̄ϕ(s)‖2 + ‖Z̄ϕ(s) − ZNϕ(s)‖2)ds
]

+ CL(ε
−1 + 1)E

[ ∫ ti+1∧θ

t∧θ
1{τ̄∧τ≤s<τ∨τ̄}ζLds

]
+ (CLε

−1 + α)E
[ ∫ ti+1∧θ

t∧θ
1{τ̄≤s<τ}‖Zs‖2ds

]

+ E
[ ∫ ti+1∧θ

t∧θ
(CLh+ CL|Ys − Yψ(s)|2 +CL|Yψ(s) − Y N

ψ(s)|2 + α‖Zs − Z̄ψ(s)‖2 + α‖Z̄ψ(s) − ZNψ(s)‖2)ds
]
.

Next, we obtain from the definition of ϕ

∆θ
t,ti+1

≤ E
[
|Yti+1∧θ − Y N

ti+1∧θ|
2
]
+ εE

[ ∫ ti+1∧θ

t∧θ
|Ys − Y N

s |2ds
]

+ CL(ε
−1 + 1)E

[
h|Yti∧θ − Y N

ti∧θ|2 + h|Yti+1∧θ − Y N
ti+1∧θ|2 +

∫ ti+1∧θ

t∧θ
(|Ys − Yϕ(s)|2 + |Ys − Yψ(s)|2ds)

]

+ CL(ε
−1 + 1)E

[ ∫ ti+1∧θ

t∧θ
hds
]
+ CLε

−1
E
[ ∫ ti+1∧θ

t∧θ
(‖Zs − Z̄ϕ(s)‖2 + ‖Z̄ϕ(s) − ZNϕ(s)‖2)ds

]

+ αE
[ ∫ ti+1∧θ

t∧θ
(‖Zs − Z̄ψ(s)‖2 + ‖Z̄ψ(s) − ZNψ(s)‖2)ds

]

+ CL(ε
−1 + 1)E

[ ∫ ti+1∧θ

t∧θ
1{τ̄∧τ≤s<τ∨τ̄}ζLds

]
+ (CLε

−1 + α)E
[ ∫ ti+1∧θ

t∧θ
1{τ̄≤s<τ}‖Zs‖2ds

]
.

(3.21)
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It then follows from Gronwall’s lemma that

E
[
|Yt∧θ−Y N

t∧θ|2
]
≤ (1 + CL(ε

−1 + 1)h + CεLh)E
[
|Yti+1∧θ − Y N

ti+1∧θ|
2
]

+ (CL(ε
−1 + 1) + CεLh)E

[
h|Yti∧θ − Y N

ti∧θ
|2 +

∫ ti+1∧θ

t∧θ
(|Ys − Yϕ(s)|2 + |Ys − Yψ(s)|2)ds

]

+ (CL(ε
−1 + 1) + CεLh)E

[ ∫ ti+1∧θ

t∧θ
hds
]

+ (CLε
−1 + CεLh)E

[ ∫ ti+1∧θ

t∧θ
(‖Zs − Z̄ϕ(s)‖2 + ‖Z̄ϕ(s) − ZNϕ(s)‖2)ds

]

+ (α+ CεLh)E
[ ∫ ti+1∧θ

t∧θ
(‖Zs − Z̄ψ(s)‖2 + ‖Z̄ψ(s) − ZNψ(s)‖2)ds

]

+ (CL(ε
−1 + 1) + CεLh)E

[ ∫ ti+1∧θ

t∧θ
1{τ̄∧τ≤s<τ∨τ̄}ζLds

]

+ (CLε
−1 + α+ CεLh)E

[ ∫ ti+1∧θ

t∧θ
1{τ̄≤s<τ}‖Zs‖2ds

]
.

(3.22)

Then, by taking t = ti in (3.21), using (3.22) to estimate the second term in the right-hand

side of (3.21) and recalling Remark 3.5 we have for ε > 0 sufficiently large, depending on the

constants CL, and h small

∆θ
ti,ti+1

≤ (1 + CLh)E
[
|Yti+1∧θ − Y N

ti+1∧θ
|2
]

+ CLE
[ ∫ ti+1∧θ

ti∧θ
(h+ |Ys − Yϕ(s)|2 + |Ys − Yψ(s)|2ds)

]

+ CLE
[ ∫ ti+1∧θ

ti∧θ
‖Zs − Z̄ϕ(s)‖2ds

]
+ CLE

[ ∫ ti+1∧θ

ti∧θ
‖Zs − Z̄ψ(s)‖2ds

]

+ CLE
[ ∫ ti+1∧θ

ti∧θ
1{τ̄∧τ≤s<τ∨τ̄}ζLds

]
+ CLE

[ ∫ ti+1∧θ

ti∧θ
1{τ̄≤s<τ}‖Zs‖2ds

]
.

Thus, from the following estimate

E[|Ys − Yψ(s)|2] ≤ E[ sup
ti≤s≤ti+1

|Ys − Yψ(s)|2]

≤ CL(1 + |x|)h,

we conclude that

∆θ := max
i<N

E
[
|Yti∧θ − Y N

ti∧θ|2 +
∫ θ

0
‖Zs − ZNs ‖2ds

]

≤ CL
(
E
[
|Yθ − Y N

θ |2
]
+ h+R(Y )πS2 +R(Z)πH2 + E

[ ∫ T

0
‖Zt − Z̄ψ(t)‖2dt

])

+ CLE
[
ζL|τ̄ ∧ θ − τ ∧ θ|+

∫ θ

0
1{τ̄≤s<τ}‖Zs‖2ds

]
.
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We finish the proof by using again Remark 3.5 to obtain

E

[∫ θ

0
‖Zs − ZNϕ(s)‖2ds

]

≤ CL
(
E

[∫ θ

0
‖Z̄ϕ(s) − ZNϕ(s)‖2ds

]
+ E

[ ∫ T

0
‖Zs − Z̄ϕ(s)‖2ds

])
(3.23)

≤ CL
(
E

[∫ θ

0
‖Zs − ZNs ‖2ds

]
+R(Z)πH2

)
,

which implies the required result, by the definition of Err(h)2θ in (3.3). �

Proposition 3.2. Let Assumptions (MHL), (MHD) and (MHT) hold. There then exist CL >

0 and a positive random variable ζL satisfying E[(ζL)
p] ≤ CpL for all p ≥ 2 such that

Err(h)2T ≤ CL
(
h+R(Y )πS2 +R(Z)πH2 + E

[
ζL|τ − τ̄ |+ 1{τ̄<τ}

∫ τ

τ̄
‖Zs‖2ds

]

+ E
[ ∫ T

0
‖Zt − Z̄ψ(t)‖2dt

])
.

(3.24)

and

Err(h)2τ∧τ̄ ≤ Err(h)2τ+∧τ̄ ≤ CL
(
h+R(Y )πS2 +R(Z)πH2 + E

[
ζL|τ − τ̄ |+ 1{τ̄<τ}

∫ τ

τ̄
‖Zs‖2ds

]

+ E
[ ∫ T

0
‖Zt − Z̄ψ(t)‖2dt

])
,

(3.25)

where we recall τ+ is the next time after τ in the grid π such that τ+ := inf{t ∈ π : τ ≤ t}.

Remark 3.7. Note that we shall control Err(h)2τ∧τ̄ through the slightly stronger term Err(h)2τ+∧τ̄ .

This will allow us to work with stopping times with values in the grid π in order to be able to

apply (3.19), which will be technically easier.

Proof.

(i) First to prove (3.24), it suffices to apply Theorem 3.3 for θ = T and observe that the Lipschitz

continuity of Φ implies that

E[|Φ(τ,Xτ )− Φ(τ̄ , XN
τ̄ )|2]

≤ CLE
[
|τ − τ̄ |2 + |Xτ̄ −XN

τ̄ |2 +
∣∣∣
∫ τ∨τ̄

τ∧τ̄
b(Xs)ds+

∫ τ∨τ̄

τ∧τ̄
σ(Xs)dBs

∣∣∣
2]
,

where |τ − τ̄ |2 ≤ T |τ − τ̄ |, E[|Xτ̄ −XN
τ̄ |2] ≤ CLh by Proposition 3.1 and

E

[∣∣∣
∫ τ∨τ̄

τ∧τ̄
b(Xs)ds+

∫ τ∨τ̄

τ∧τ̄
σ(Xs)dBs

∣∣∣
2]
≤ E[ζL|τ − τ̄ |]

by Doob’s inequality, (MHD) and Proposition 3.1 again.

(ii) We now prove the upper bound (3.25). We have by applying Theorem 3.3 to θ = τ+ ∧ τ̄

Err(h)2τ+∧τ̄ ≤ CL
(
h+ E[|Yτ+∧τ̄ − Y N

τ+∧τ̄ |2] +R(Y )πS2 +R(Z)πH2

)
.
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It remains to show that

E[|Yτ+∧τ̄ − Y N
τ+∧τ̄ |2] ≤ CL

(
h+ E

[
ζL|τ − τ̄ |+ 1{τ̄<τ}

∫ τ

τ̄
‖Zs‖2ds

])
. (3.26)

Observe that by (3.2) and (3.14)

Yτ+∧τ̄ − Y Nτ+∧τ̄ = Φ(τ,Xτ )− Φ(τ̄ , XN
τ̄ )

+ 1{τ+<τ̄}

(∫ τ̄

τ+

f(XN
ϕ(s), Y

N
ϕ(s), Z

N
ϕ(s))ds+

∫ τ̄

τ+

g(XN
ψ(s), Y

N
ψ(s), Z

N
ψ(s))d

←−
W s −

∫ τ̄

τ+

ZNs dBs

)

+ 1{τ̄<τ+}

(∫ τ

τ̄
f(Xs, Ys, Zs)ds+

∫ τ

τ̄
g(Xs, Ys, Zs)d

←−
W s −

∫ τ

τ̄
ZsdBs

)
. (3.27)

Then

E[|Yτ+∧τ̄ − Y N
τ+∧τ̄ |2] ≤ E[|Φ(τ,Xτ )− Φ(τ̄ , XN

τ̄ )|2]

+ E

[
1{τ+<τ̄}

∣∣
∫ τ̄

τ+

f(XN
ϕ(s), Y

N
ϕ(s), Z

N
ϕ(s))ds

∣∣2
]
+ E

[
1{τ+<τ̄}

∣∣
∫ τ̄

τ+

g(XN
ψ(s), Y

N
ψ(s), Z

N
ψ(s))d

←−
W s

∣∣2
]

+ E

[
1{τ̄<τ+}

∣∣
∫ τ

τ̄
f(Xs, Ys, Zs)ds

∣∣2
]
+ E

[
1{τ̄<τ+}

∣∣
∫ τ

τ̄
g(Xs, Ys, Zs)d

←−
W s

∣∣2
]
. (3.28)

We start with the first term in the right hand side of (3.27). By using (MHD), (MHL), (MHT)

and Proposition 3.1 and applying Itô’s lemma to (Φ(t,Xt))t≥0 between τ̄ and τ , we easily check

that

E[|Φ(τ,Xτ )− Φ(τ̄ , XN
τ̄ )|2] ≤ CL

(
E[|Xτ̄ −XN

τ̄ |2] + E
[∣∣
∫ τ

τ̄
LΦ(s,Xs)ds

∣∣2])

≤ CL
(
E[|Xτ̄ −XN

τ̄ |2] + E[ζL|τ − τ̄ |]
)
,

where L is the second order differential operator defined in (4.2).

Then, by appealing to (MHD) and Proposition 3.1 we conclude that

E[|Φ(τ,Xτ )− Φ(τ̄ , XN
τ̄ )|2] ≤ CL

(
h+ E[ζL|τ − τ̄ |]

)
. (3.29)

For the second term in (3.27), it follows from Jensen’s inequality, the isometry property, the

Lipschitz continuous assumption (MHL), Lemma 3.1 and Proposition 3.1 that

E

[
1{τ+<τ̄}|

∫ τ̄

τ+

f(XN
ϕ(s), Y

N
ϕ(s), Z

N
ϕ(s))ds|2

]
+ E

[
1{τ+<τ̄}|

∫ τ̄

τ+

g(XN
ψ(s), Y

N
ψ(s), Z

N
ψ(s))d

←−
W s|2

]

≤ E

[
|τ̄ − τ+|

∫ τ̄

τ+

|f(XN
ϕ(s), Y

N
ϕ(s), Z

N
ϕ(s))|2ds

]
+ E

[ ∫ τ̄

τ+

|g(XN
ψ(s), Y

N
ψ(s), Z

N
ψ(s))|2ds

]

≤ CLE
[ ∫ τ̄

τ+

(
|XN

ϕ(s)|2 + |Y N
ϕ(s)|2 + ‖ZNϕ(s)‖2 + |XN

ψ(s)|2 + |Y N
ψ(s)|2 + ‖ZNψ(s)‖2

)
ds
]

≤ CLE
[
ζL(|τ̄ − τ |+ |τ − τ+|)

]

≤ CLE[h+ ζL|τ̄ − τ |]. (3.30)
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The last term is easily controlled by using the same previous calculations.

E

[
1{τ̄<τ+}

∣∣
∫ τ

τ̄
f(Xs, Ys, Zs)ds

∣∣2
]
+ E

[
1{τ̄<τ+}|

∫ τ

τ̄
g(Xs, Ys, Zs)d

←−
W s|2

]

≤ CL
(
E

[
|τ − τ̄ |

∫ τ

τ̄

∣∣f(Xs, Ys, Zs)
∣∣2ds

]
+ E

[
1{τ̄<τ+}

∫ τ

τ̄
|g(Xs, Ys, Zs)|2ds

])

≤ CL
(
E

[
|τ − τ̄ |

∫ τ

τ̄
CL(|Xs|2 + |Ys|2 + ‖Zs‖2)ds

]
+ E

[
1{τ̄<τ+}

∫ τ

τ̄
(|Xs|2 + |Ys|2 + ‖Zs‖2)ds

])

≤ CLE
[
|τ − τ̄ |2ζL

]
+ E

[
|τ − τ̄ |

∫ τ

τ̄
CL‖Zs‖2ds

]
+ CLE

[
ζL|τ̄ − τ |+ 1{τ̄<τ}

∫ τ

τ̄
‖Zs‖2ds

]

≤ CLE
[
ζL|τ̄ − τ |+ 1{τ̄<τ}

∫ τ

τ̄
‖Zs‖2ds

]
. (3.31)

Finally, we finish the proof of (3.27) by combining the three estimates. �

Our next result concerns the regularity of (Y,Z) which was proved in [3]:

Theorem 3.4. Let Assumptions (D), (MHT), (MHL) and (MHD) hold. Then

R(Y )πS2 +R(Z)πH2 ≤ CLh and E
[ ∫ T

0
‖Zt − Z̄ψ(t)‖2dt

]
≤ CLh. (3.32)

Combining the estimates (3.8) and (3.32), we finally obtain our main result, which provides

an upper bound for the convergence rate of Err(h)2τ+∧τ̄ (and thus for Err(h)2τ∧τ̄ and Err(h)2T ).

Theorem 3.5. Let Assumptions (D), (MHT), (MHL) and (MHD) hold. Then, for each

ε ∈ (0, 1/2), there exists CεL > 0 such that

Err(h)2τ+∧τ̄ ≤ CLh1/2 and Err(h)2T ≤ CLh1/2 (3.33)

4. Semilinear Stochastic PDEs with Dirichlet null condition

The aim of this section is to give a Feynman-Kac’s formula for the weak solution of a class of

semilinear SPDEs with Dirichlet null condition on the boundary via the associated Markovian

class of BDSDEs with random terminal time studied in Section 2. Indeed, for a given open

connected domain O of Rd, we are interested in the following semilinear SPDEs :




dut + Lut dt+ f(t, x, ut,Dσut) dt+ g(t, x, ut,Dσut ) d
←−
W t = 0 ,∀ 0 ≤ t ≤ T, ∀x ∈ O,

u(T, x) = Φ(x) , ∀x ∈ O
u(t, x) = 0 , ∀ 0 ≤ t ≤ T, ∀x ∈ ∂O,

(4.1)

where Dσ := ∇uσ and L is the second order differential operator which is defined component

by component with

Lϕ(x) =
d∑

i=1

bi(x)
∂

∂xi
ϕ(x) +

1

2

d∑

i,j=1

aij(x)
∂2

∂xi∂xj
ϕ(x) (4.2)

and a := σσ∗.
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4.1. Definitions and formulation

Let us first introduce some notations:

- Cnl,b(R
p,Rq) is the set of Cn-functions which grow at most linearly at infinity and whose partial

derivatives of order less than or equal to n are bounded.

- L2 (O) will be a Hilbert L2-space of our framework. We employ the following notation for its

scalar product and its norm,

(u, v) =

∫

O
u (x) v (x) dx, ‖u‖2 =

(∫

O
u2 (x) dx

) 1

2

.

Our evolution problem will be considered over a fixed time interval [0, T ] and the norm for an

element of L2 ([0, T ]×O) will be denoted by

‖u‖2,2 =
(∫ T

0

∫

O
|u(t, x)|2dxdt

) 1

2

.

We assume the following hypotheses :

Assumption (MHD’) The coefficients of the second order differential operator L satisfy:

• b is a bounded function and belongs to C2
l,b(R

d,Rd).

• σ ∈ C3
l,b(R

d,Rk×d) and satisfies the ellipticity condition (3.3).

Assumption (MHT’) Φ ∈ L
2(O;Rk) with polynomial growth, namely there exists C > 0 and

p ∈ N such that |Φ(x)| ≤ C(1 + |x|p).

The space of test functions which we employ in the definition of weak solutions of the evolution

equations (4.1) is D := C∞([0, T ])⊗C∞c (O), where C∞ ([0, T ]) denotes the space of real functions

which can be extended as infinite differentiable functions in the neighborhood of [0, T ] and C∞c (O)
is the space of infinite differentiable functions with compact support in O. We denote by H the

space of FWt,T -progressively measurable processes (ut) with values in the Sobolev space H1
0 (O)

where

H1
0 (O) := {v ∈ L

2(O)
∣∣ ∇vσ ∈ L

2(O))}

endowed with the norm

‖u‖2H = E
[
sup

0≤s≤T
‖us‖22 +

∫

O

∫ T

0
|∇us(x)σ(x)|2dsdx

]
,

where we denote the gradient by ∇u(t, x) =
(
∂1u(t, x), · · ·, ∂du(t, x)

)
.

Definition 4.1. We say that u ∈ H is a weak solution of the SPDE (4.1) if the following relation
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holds for each Ψ ∈ D,

∫ T

t

∫

O
u(s, x) ∂sΨ(s, x) dx ds −

∫

O
Φ(x)Ψ(T, x)dx+

∫

O
u(t, x)Ψ(t, x) dx−

∫ T

t

∫

O
u(s, x)L∗u(s, x) dxds

=

∫ T

t

∫

O
Ψ(s, x) f(s, x, u(s, x),Dσu(s, x)) dx ds +

∫ T

t

∫

O
Ψ(s, x) g(s, x, u(s, x),Dσu(s, x)) dx d

←−
W s.

(4.3)

where

(
u(s, ·),L∗Ψ(s, ·)

)
:=

∫

O
Dσu(s, x)DσΨ(s, x) dx+

∫

O
u(s, x) div( (b − Ã)Ψ(s, x)) dx,

and Ãi =:
1

2

d∑

k=1

∂ak,i
∂xk

.

The existence and uniqueness of weak solution for such SPDEs with null Dirichlet condition

is ensured by Denis and Stoica (Theorem 4 in [21]). Indeed, we can rewrite the second order

differential operator L as following:

L =
1

2

d∑

i,j=1

∂i
(
aij(x)∂j

)
+

d∑

i=1

(
bi(x)− 1

2
∂ia

ij(x)
)
∂i. (4.4)

Therefore, since b and ∇a are bounded, the second term in the right hand side of (4.4) may be

considered as an extra term in the nonlinear term coefficient f which still satisfies the uniform

Lipschitz continuous condition in u and Dσu.

Motivated by developing Euler numerical scheme for such solution, we are now interested in

giving the probabilistic interpretation for the solution of SPDEs (4.1) within the framework of

BDSDE with random terminal time. Thus, this connection between SPDEs and BDSDEs will

be established by means of stochastic flow technics.

4.2. Stochastic flow of diffeomorphism and random test functions

We are concerned in this paper with solving SPDEs by developing a stochastic flow method which

was first introduced in Kunita [30], and Bally, Matoussi [8]. We recall that {Xt,x
s , t ≤ s ≤ T} is

the diffusion process starting from x at time t and is the strong solution of the equation:

Xt,x
s = x+

∫ s

t
b(Xt,x

r )dr +

∫ s

t
σ(Xt,x

r )dBr. (4.5)

The existence and uniqueness of this solution was proved in Kunita [30]. Moreover, we have the

following properties:

Proposition 4.1. For each t > 0, there exists a version of {Xt,x
s ); x ∈ R

d, s ≥ t} such that

Xt,·
s is a C2(Rd)-valued continuous process which satisfies the flow property: Xt,x

r = Xs,x
r ◦Xt,x

s ,
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0 ≤ t < s < r. Furthermore, for all p ≥ 2, there exists Mp such that for all 0 ≤ t < s, x, x′ ∈ R
d,

h, h′ ∈ R\{0},

E( sup
t≤r≤s

|Xt,x
r − x|p) ≤Mp(s − t)(1 + |x|p),

E( sup
t≤r≤s

|Xt,x
r −Xt,x′

r − (x− x′)|p) ≤Mp(s − t)(|x− x′|p),

E( sup
t≤r≤s

|∆i
h[X

t,x
r − x]|p) ≤Mp(s− t),

E( sup
t≤r≤s

|∆i
hX

t,x
r −∆i

h′X
t,x′
r |p) ≤Mp(s− t)(|x− x′|p + |h− h′|p),

where ∆i
hg(x) =

1
h(g(x + hei)− g(x)), and (e1, · · · , ed) is an orthonormal basis of Rd.

Under regular conditions Assumption (MHD’) on the diffusion, it is known that the stochastic

flow associated to a continuous SDE satisfies the homeomorphic property (see Kunita [30]). We

have the following result where the proof can be found in [30].

Proposition 4.2. Let Assumption (MHD’) holds. Then {Xt,x
s ;x ∈ R

d} is a C2-diffeomorphism

a.s. stochastic flow. Moreover the inverse of the flow which denoted by {X−1
t,s (y); y ∈ R

d} satisfies

the following backward SDE

X−1
t,s (y) = y −

∫ s

t
b̂(X−1

r,s (y))dr −
∫ s

t
σ(X−1

r,s (y))d
←−
B r (4.6)

for any t < s, where

b̂(x) = b(x)−
∑

i,j

∂σj(x)

∂xi
σij(x). (4.7)

We denote by J(X−1
t,s (x)) the determinant of the Jacobian matrix of X−1

t,s (x), which is positive

and J(X−1
t,t (x)) = 1. For ϕ ∈ C∞

c (Rd), we define a process ϕt : Ω× [t, T ]× R
d → R

k by

ϕt(s, x) := ϕ(X−1
t,s (x))J(X

−1
t,s (x)). (4.8)

We know that for v ∈ L
2(Rd), the composition of v with the stochastic flow is

(v ◦Xt,·
s , ϕ) := (v, ϕt(s, ·)).

In fact, by a change of variable, we have (see Kunita [32], Bally and Matoussi [8])

(v ◦Xt,·
s , ϕ) =

∫

Rd

v(Xt,x
s )ϕ(x)dx =

∫

Rd

v(y)ϕ(X−1
t,s (y))J(X

−1
t,s (y))dy = (v, ϕt(s, ·)).

Since (ϕt(s, x))t≤s is a process, we may not use it directly as a test function because∫ T

t
(u(s, ·), ∂sϕt(s, ·))ds has no sense. However ϕt(s, x) is a semimartingale and we have the

following decomposition of ϕt(s, x)
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Lemma 4.1. For every function ϕ ∈ C∞
c (Rd),

ϕt(s, x) = ϕ(x) +

∫ s

t
L∗ϕt(r, x)dr −

d∑

j=1

∫ s

t

(
d∑

i=1

∂

∂xi
(σij(x)ϕt(r, x))

)
dW j

r , (4.9)

where L∗ is the adjoint operator of L.

We also need equivalence of norms result which plays an important role in the proof of the

existence of the solution for SPDE as a connection between the functional norms and random

norms. For continuous SDEs, this result was first proved by Barles and Lesigne [10] by using an

analytic method and Bally and Matoussi [8] by a probabilistic method.

Proposition 4.3. There exists two constants c > 0 and C > 0 such that for every t ≤ s ≤ T

and ϕ ∈ L1(Rd),

c

∫

Rd

|ϕ(x)|dx ≤
∫

Rd

E(|ϕ(Xt,x
s )|)dx ≤ C

∫

Rd

|ϕ(x)|dx. (4.10)

Moreover, for every Ψ ∈ L1([0, T ] × R
d),

c

∫

Rd

∫ T

t
|Ψ(s, x)|dsdx ≤

∫

Rd

∫ T

t
E(|Ψ(s,Xt,x

s )|)dsdx ≤ C
∫

Rd

∫ T

t
|Ψ(s, x)|dsdx. (4.11)

We give now the following result which allows us to link by a natural way the solution of SPDE

with the associated BDSDE. Roughly speaking, if we choose in the variational formulation (4.3)

the random functions ϕt(·, ·) defined by (4.8), as a test functions, then we obtain the associated

BDSDE. In fact, this result plays the same role as Itô’s formula used in [39] to relate the solution

of some semilinear SPDEs with the associated BDSDEs:

Proposition 4.4. Let Assumptions (MHT’), (MHL) and (MHD’) hold and u ∈ H be a weak

solution of the SPDE (4.3) associated to (Φ, f, g) on the whole domain R
d, then for s ∈ [t, T ]

and ϕ ∈ C∞
c (Rd),

∫

Rd

∫ T

s
u(r, x)dϕt(r, x)dx + (u(s, ·), ϕt(s, ·)) − (Φ(·), ϕt(T, ·)) −

∫

Rd

∫ T

s
u(r, x)L∗ϕt(r, x))drdx

=

∫

Rd

∫ T

s
fr(x, u(r, x),Dσu(r, x))ϕt(r, x)drdx +

∫

Rd

∫ T

s
gr(x, u(r, x),Dσu(r, x)σ(x))ϕt(r, x)d

←−
W rdx,

(4.12)

where
∫

Rd

∫ T

s
u(r, x)dϕt(r, x)dx is well defined thanks to the semimartingale decomposition result

(Lemma 4.1).
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4.3. Probabilistic representation of the solution of SPDE

As introduced in Section 3, we consider now the Markovian BDSDE with random terminal time

τ t,x which is the first exist time of the forward diffusion Xt,x from the domain O

Y t,x
s = Φ(Xt,x

T∧τ t,x) +

∫ T

s
1(τ t,x>r)f(r,X

t,x
r , Y t,x

r , Zt,xr ) dr −
∫ T

s
Zt,x,r dBr

+

∫ T

s
1(τ t,x>r)g(r,X

t,x
r , Y t,x

r , Zt,xr ) d
←−
W r .

(4.13)

Remark 4.1. We have Y t,x
s = Zt,xs = 0, ∀ τ t,x ≤ s ≤ T . In fact, the process Zt,x is the density

which appears in the Ito’s representation theorem of the random variable

ξ = Φ(Xt,x
T∧τ t,x) +

∫ T

s
1(τ t,x>r ) f(r,X

t,x
r , Y t,x

r , Zt,xr ) dr

But, the r.v ξ is FWτ t,x-measurable, then Zt,xr = Zt,xr 1(τ t,x ≥ r ). Now, we look at (4.13) for T ≥
s > τ t,x, all the terms in the right hand of (4.13) vanisch, then Y t,x

s vanischs, for T ≥ s > τ t,x.

The main result in this section is the following

Theorem 4.1. Assume (MHT’), (D), (MHL) and (MHD’) hold and let {(Y t,x
s , Zt,xs ), t ≤

s ≤ T} be the solution of BDSDE (4.13) . Then, u(t, x) := Y t,x
t , dt ⊗ dx, a.e. is the unique

solution of the SPDE (4.3) and

Y t,x
s = u(s ∧ τ t,x,Xt,x

s∧τ t,x), Zt,xs = Dσu(s ∧ τ t,x,Xt,x
s∧τ t,x). (4.14)

Proof. Step 1: local variational form of SPDE

Let u ∈ H be a weak solution of (4.1) and let θ ∈ C1
c (O). Then, we apply the variational

equation (4.3) for the test function θΨ, with Ψ ∈ C∞([0, T ]) ⊗ C∞c (O) to obtain

∫ T

t

∫

O
u(s, x) θ(x) ∂sΨ(s, x) dx ds −

∫

O
Φ(x)θ(x)Ψ(T, x)dx+

∫

O
u(t, x) θ(x)Ψ(t, x) dx

−
∫ T

t

∫

O
Dσu(s, x) θ(x)DσΨ(s, x) dx ds −

∫ T

t

∫

O
u(s, x) div( (b − Ã) θ(x)Ψ(s, x)) dx ds

=

∫ T

t

∫

O
Ψ(s, x)

[
θ(x) f(s, x, u(s, x),Dσu(s, x)) +Dσu(s, x)Dσθ(x)

]
dx ds

+

∫ T

t

∫

O
θ(x)Ψ(s, x) g(s, x, u(s, x),Dσu(s, x)) dx d

←−
W s.

(4.15)

Since θ has a compact support on O, we can rewrite the variational formulation (4.15) in the
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whole domain R
d

∫ T

t

∫

Rd

u(s, x) θ(x) ∂sΨ(s, x) dx ds −
∫

Rd

Φ(x)θ(x)Ψ(T, x)dx+

∫

Rd

u(t, x) θ(x)Ψ(t, x) dx

−
∫ T

t

∫

Rd

Dσu(s, x) θ(x)DσΨ(s, x) dx ds −
∫ T

t

∫

Rd

u(s, x) div( (b − Ã) θ(x)Ψ(s, x)) dx ds

=

∫ T

t

∫

Rd

Ψ(s, x)
[
θ(x) f(s, x, u(s, x),Dσu(s, x)) +Dσu(s, x)Dσθ(x)

]
dx ds

+

∫ T

t

∫

Rd

θ(x)Ψ(s, x) g(s, x, u(s, x),Dσu(s, x)) dx d
←−
W s.

(4.16)

Then, from Proposition 4.4, which gives the weak variational formulation (4.16) applied to ran-

dom test function ϕt(·, ·) (4.8) yields to:

∫ T

s

∫

Rd

u(r, x) θ(x) drϕt(r, x) dx dr −
∫

Rd

Φ(x)θ(x)ϕt(T, x)dx+

∫

Rd

u(s, x) θ(x)ϕt(s, x) dx

−
∫ T

s

∫

Rd

Dσu(r, x) θ(x)Dσϕt(r, x) dx dr −
∫ T

s

∫

Rd

u(r, x) div( (b − Ã) θ(x)ϕt(r, x)) dx dr

=

∫ T

s

∫

Rd

ϕt(r, x)
[
θ(x) f(r, x, u(r, x),Dσu(r, x)) +Dσu(r, x)Dσθ(x)

]
dx dr

+

∫ T

s

∫

Rd

θ(x)ϕt(r, x) g(r, x, u(r, x),Dσu(r, x)) dx d
←−
W r.

(4.17)

Moreover, by Lemma 4.1, we have that
∫ T

s

∫

Rd

u(r, x) θ(x) drϕt(r, x) dx dr =

∫

Rd

∫ T

s
u(r, x) θ(x)L∗ϕt(r, x) dr dx

−
∫

Rd

∫ T

s
u(r, x) θ(x)∇ (σ∗(x)ϕt(r, x)) (x) dBr dx.

Using Integration by parts, we obtain
∫ T

s

∫

Rd

u(r, x)θ(x)drϕt(r, x)dx dr =

∫ T

s

∫

Rd

Dσ (u(r, x)θ(x))ϕt(r, x)dxdBr

+

∫ T

s

∫

Rd

Dσ (u(r, x)θ(x))Dσϕt(r, x)dxdr +

∫ T

s

∫

Rd

u(r, x) div( (b − Ã) θ(x)ϕt(r, x)) dx dr

=

∫ T

s

∫

Rd

θ(x) (Dσu(r, x))ϕt(r, x)dxdBr +

∫ T

s

∫

Rd

u(r, x)Dσθ(x)ϕt(r, x)dxdBr

+

∫ T

s

∫

Rd

θ(x)Dσu(r, x)Dσϕt(r, x)dxdr +

∫ T

s

∫

Rd

u(r, x)Dσθ(x)Dσϕt(r, x)dxdr

+

∫ T

s

∫

Rd

u(r, x) div( (b − Ã) θ(x)ϕt(r, x)) dx dr.
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Using again integration by parts for the fourth term in the right hand of the above equation, we

get
∫ T

s

∫

Rd

u(r, x)θ(x)drϕt(r, x)dx dr =

∫ T

s

∫

Rd

θ(x) (Dσu(r, x))ϕt(r, x)dxdBr

+

∫ T

s

∫

Rd

u(r, x)Dσθ(x)ϕt(r, x)dxdBr +

∫ T

s

∫

Rd

θ(x)Dσu(r, x)Dσϕt(r, x)dxdr

+

∫ T

s

∫

Rd

u(r, x) div( (b − Ã) θ(x)ϕt(r, x)) dx dr

−
∫ T

s

∫

Rd

(
Dσu(r, x)Dσθ(x) + u(r, x)D2

σθ(x)
)
ϕt(r, x)dxdr.

(4.18)

We substitute now the above equation in (4.17) to get
∫

Rd

u(s, x) θ(x)ϕt(s, x) dx−
∫

Rd

Φ(x)θ(x)ϕt(T, x)dx

+

∫ T

s

∫

Rd

θ(x) (Dσu(r, x))ϕt(r, x)dxdBr +

∫ T

s

∫

Rd

u(r, x)Dσθ(x)ϕt(r, x)dxdBr

=

∫ T

s

∫

Rd

ϕt(r, x)
[
θ(x) f(r, x, u(r, x),Dσu(r, x)) − u(r, x)D2

σθ(x)
]
dx dr

+

∫ T

s

∫

Rd

θ(x)ϕt(r, x) g(r, x, u(r, x),Dσu(r, x)) dx d
←−
W r.

Now the change of variable y = X−1
t,s (x) in the above equation gives

∫

Rd

u(s,Xt,x
s ) θ(Xt,x

s )ϕ(x) dx−
∫

Rd

Φ(Xt,x
T )θ(Xt,x

T )ϕ(x)dx

+

∫ T

s

∫

Rd

θ(Xt,x
r )

(
Dσu(r,X

t,x
r )
)
ϕ(x)dxdBr +

∫ T

s

∫

Rd

u(r,Xt,x
r )Dσθ(X

t,x
r )ϕ(x)dxdBr

=

∫ T

s

∫

Rd

ϕ(x)
[
θ(Xt,x

r ) f(r,Xt,x
r , u(r,Xt,x

r ),Dσu(r,X
t,x
r ))− u(r,Xt,x

r )D2
σθ(X

t,x
r )

]
dx dr

+

∫ T

s

∫

Rd

θ(Xt,x
r )ϕ(Xt,x

r ) g(r,Xt,x
r , u(r,Xt,x

r ),Dσu(r,X
t,x
r )) dx d

←−
W r.

Define Y t,x
s := u(s,Xt,x

s ), a.e. and Zt,xs := Dσu(s,X
t,x
s ) a.e.. In particular we have u(t, x) =

Y t,x
t , a.e. and Dσu(t, x) = Zt,xt , a.e.. Thus, it follows from the last equation

∫

Rd

[
Y t,x
s θ(Xt,x

s )− Y t,x
T θ(Xt,x

T )
]
ϕ(x)dx

=

∫

Rd

∫ T

s

[
θ(Xt,x

r ) f(r,Xt,x
r , Y t,x

r , Zt,xr )− u(r,Xt,x
r )D2

σθ(X
t,x
r )

]
ϕ(x) dx dr

+

∫

Rd

∫ T

s
θ(Xt,x

r ) g(r,Xt,x
r , Y t,x

r , Zt,xr )ϕ(x) d
←−
W r dx

−
∫

Rd

∫ T

s

[
θ(Xt,x

r )Zt,xr − Y t,x
r Dσθ(X

t,x
r )

]
dBr ϕ(x)dx.
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Since ϕ ∈ C∞
c (Rd) is arbitrary function, we get the following equation

Y t,x
s θ(Xt,x

s ) = Y t,x
T θ(Xt,x

T ) +

∫ T

s

[
θ(Xt,x

r ) f(r,Xt,x
r , Y t,x

r , Zt,xr )− u(r,Xt,x
r )D2

σθ(X
t,x
r )

]
dr

∫ T

s
θ(Xt,x

r ) g(r,Xt,x
r , Y t,x

r , Zt,xr ) d
←−
W r −

∫ T

s

[
θ(Xt,x

r )Zt,xr − Y t,x
r Dσθ(X

t,x
r )

]
dBr.

(4.19)

Step 2: Approximation of the random terminal time and BDSDE

We denote the set Oǫ by Oǫ := {x ∈ O : d (x,Oc ) > ǫ } and the function

θǫ(x) :=

{
1 , x ∈ Oǫ,
0 , x ∈ Ocǫ

2

.

So, 0 ≤ θǫ(x) ≤ 1 and θǫ ∈ C∞
c (Oǫ). We define the exit stoping time from the set Oǫ by

τ t,xǫ := inf{ t < s ≤ T : Xt,x
s /∈ Oǫ } ∧ (T − ε(T − t)) ∈ [t, T ].

Then, for t ≤ s ≤ τ t,xǫ , we have θǫ(X
t,x
s ) = 1 and Dσθǫ(X

t,x
s ) = D2

σθǫ(X
t,x
s ) = 0. Then, we use

the localization function θǫ in Equation (4.19) to get

Y t,x

s∧τ t,xǫ

= Y t,x

τ t,xǫ

+

∫ τ t,xǫ

s∧τ t,xǫ

f(r,Xt,x
r , Y t,x

r , Zt,xr ) dr

+

∫ τ t,xǫ

s∧τ t,xǫ

g(r,Xt,x
r , Y t,x

r , Zt,xr ) d
←−
W r −

∫ τ t,xǫ

s∧τ t,xǫ

Zt,xr dBr.

(4.20)

Since the domain O is smooth enough satisfying Assumption D, we have that the stoping

time τ t,xǫ converge to the stoping time τ t,x a.s, where τ t,x := inf{ t < s : Xt,x
s /∈ O } ∧ T (see

Chapter IV page 119-120 in Gobet [24]) .

So, passing to the limit in the BDSDE (4.20), we obtain

Y t,x
s∧τ t,x = Y t,x

τ t,x +

∫ τ t,x

s∧τ t,x
f(r,Xt,x

r , Y t,x
r , Zt,xr ) dr

+

∫ τ t,x

s∧τ t,x
g(r,Xt,x

r , Y t,x
r , Zt,xr ) d

←−
W r −

∫ τ t,x

s∧τ t,x
Zt,xr dBr.

(4.21)

In the other hand, Y t,x
T∧τ t,x = Φ(Xt,x

T∧τ t,x). Indeed, using the boundary condition of the solution

u of the SPDE, we get Y t,x
T∧τ t,x = u

(
τ t,x, Xt,x

τ t,x

)
= 0 which complete the proof of Theorem 4.1

and in particular the representation (4.14). �



Matoussi and Sabbagh /Numerical computation for BDSDEs 27

Remark 4.2. We may get uniqueness of the solution for the SPDE (4.1) from the probabilistic

representation. Indeed, let u and ū to be two solutions of the SPDE (4.1) and (Y, Z) and (Ȳ , Z̄)

are the two associated solutions of the BDSDEs (4.21). We denote by ∆u := u− ū, ∆Y := Y − Ȳ
and ∆Z := Z − Z̄. By usual computations on BSDEs, we obtain that ∆u(t, x) = ∆Y t,x

t∧τ t,x =

0, ∀x ∈ O. So, the uniqueness of the solution of the SPDE is given by the uniqueness of the

BDSDEs.

4.4. Numerical Scheme for SPDE

Let us first recall that (XN , Y N , ZN ) denotes the numerical Euler scheme of the FBDSDEs

(3.1)-(3.2) given in (3.7)-(3.11)-(3.13)-(3.12). The numerical approximation of the SPDE (4.1)

will be presented in the following lemma:

Lemma 4.2. Let x ∈ O and tn ∈ π. Define

uN (tn, x) := Y N,tn,x
tn and vN (tn, x) := ZN,tn,xtn (4.22)

Then uN (tn, ·) (resp. vN (tn, ·)) is FBtn,T -measurable and we have for all x ∈ O and t, tn ∈ π such

that t ≤ tn

uN (tn,X
t,x
tn ) = Y N,t,x

tn (resp. vN (tn,X
t,x
tn ) = ZN,t,xtn ).

We define the error between the solution of the SPDE and the numerical scheme as follows:

ErrorN (u, v) := sup
0≤s≤T

E
[ ∫

O
|uNs (x)− u(s, x)|2ρ(x)dx

]

+
N−1∑

n=0

E
[ ∫

O

∫ tn+1

tn

‖vNs (x)− v(s, x)‖2dsρ(x)dx
]
. (4.23)

The following theorem shows the convergence of the numerical scheme (4.22) of the solution of

the SPDE (4.1).

Theorem 4.2. Assume (MHT’), (D), (MHL) and (MHD’) hold. Then, the error ErrorN (u, v)

converges to 0 as N →∞ and there exists a positive constant CL such that

ErrorN (u, v) ≤ CLh. (4.24)

We can follow the same arguments presented in [6] (see Theorem 5.2). So, the proof is omitted.

5. Implementation and numerical tests

In this part, we are interested in implementing our numerical scheme. Our aim is only to test

statically its convergence. Further analysis of the convergence of the used method and of the

error bounds will be accomplished in a future work. All the numerical tests have been performed

on a PC equipped with a processor Intel Core i7 (dual core) with 2.80 Ghz with codes written

in C and compiled with GCC (GNU).
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5.1. Notations and algorithm

Not forgetting that π := {ti = ih ; i ≤ N}, h := T/N , N ∈ N, is the time grid of the interval

[0, T ]. We use a path-dependent algorithm, for every fixed path of the brownian motion B, we

approximate by a regression method the solution of the associated PDE. Then, we replace the

conditional expectations which appear in (5.3) and (5.4) by L
2(Ω,P) projections on the function

basis approximating L
2(Ω,Ftn). We compute ZNtn in an explicit manner and we use I Picard

iterations to compute Y N
tn in an implicit way. Actually, we proceed as in [25], except that in

our case the solutions Y N
tn and ZNtn are measurable functions of (XN

tn , (∆Bi)n≤i≤N−1). So, each

solution given by our algorithm depends on the fixed path of B.

5.1.1. Forward Euler scheme

The discrete approximation of the forward diffusion process (3.1) is defined by

{
XN

0 = x,

XN
ti+1

= XN
ti + b(XN

ti )(ti+1 − ti) + σ(XN
ti )(Bti+1

−Bti), i ≤ N.
(5.1)

Then, we approximate the exit time τ by the first time of the Euler scheme (t,XN
t )t∈π from D

on the grid π:

τ̄ := inf{t ∈ π : XN
t /∈ O} ∧ T.

The simulation of the diffusion stopped at the exit time is based on the approach of Gobet

and Menozzi [27]. In this approach, we simulate the diffusion with an Euler scheme with step

size h and stop it at discrete times (ti)i∈N∗ in a modified domain, whose boundary has been

appropriately shifted. The shift is locally in the direction of the inward normal n(t, x) at any

point (t, x) on the parabolic boundary of O, and its amplitude is equal to c0|nTσ|(t, x)
√
h, with

c0 :=
E[s2τ+ ]

2E[sτ+]
= 0.5826 · · · , (5.2)

where s0 = 0, ∀n ≥ 1, sn :=
∑n

i=1G
i, the Gi being i.i.d standard centered normal variables,

τ+ := inf{n ≥ 0 : sn > 0}.

5.1.2. Numerical scheme for BDSDEs

For each fixed path of B, the solution of (3.1)-(3.2) is approximated by (Y N , ZN ) defined by the

following algorithm, given in the multidimensional case.

For 0 ≤ n ≤ N − 1: ∀j1 ∈ {1, . . . , k},

Y N
tn,j1 = Etn

[
Y N
tn+1,j1 + hfj1(X

N
tn , Y

N
tn , Z

N
tn ) +

l∑

j=1

gj1,j(X
N
tn+1

, Y N
tn+1

, ZNtn+1
)∆Bn,j

]
, (5.3)
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∀j1 ∈ {1, . . . , k} and ∀j2 ∈ {1, . . . , d}

hZNtn,j1,j2 = Etn

[
Y N
tn+1,j1∆Wn,j2 +

l∑

j=1

gj1,j(X
N
tn+1

, Y N
tn+1

, ZNtn+1
)∆Bn,j∆Wn,j2

]
. (5.4)

We stress that at each discretization time, the solution of the algorithm depends on the fixed

path of the brownian motion B.

5.1.3. Vector spaces of functions

At every tn, we select k(d + 1) deterministic functions bases (pi,n(.))1≤i≤k(d+1) and we look

for approximations of Y N
tn and ZNtn which will be denoted respectively by yNn and zNn , in the

vector space spanned by the basis (pj1,n(.))1≤j1≤k (respectively (pj1,j2,n(.))1≤j1≤k,1≤j2≤d). Each

basis pi,n(.) is considered as a vector of functions of dimension Li,n. In other words, Pi,n(.) =

{α.pi,n(.), α ∈ R
Li,n} where α is the coefficient of the projection on L

2(Ω,Ftn).
As an example, we cite the hypercube basis (HC) used in [25]. In this case, pi,n(.) does not depend

nor on i neither on n and its dimension is simply denoted by L. A domain D⊂R
d centered on

X0=x, that is D =
∏d
i=1(xi−a, xi+a], can be partitionned on small hypercubes of edge δ. Then,

D=
⋃
i1,...,id

Di1,...,id
where Di1,...,id =(xi − a+ i1δ, xi − a+ i1δ]× . . .× (xi − a+ idδ, xi − a+ idδ].

Finally we define pi,n(.) as the indicator functions of this set of hypercubes.

5.1.4. Description of the algorithm

The main difference with the numerical scheme for FBDSDE in [6] is the simulation of the first

exit time of the forward diffusion process from the domain O. The computation of this exit time

τ̄ follows a simple and very efficient improved procedure given in [27]. The purpose is to stop the

Euler scheme at its exit time of a smaller domain in order to compensate the underestimation of

exits and to achieve an error of order o(
√
h). The smaller domain is defined by

ON := {x ∈ O : d(x, ∂O) > c0
√
h|nTσ(t, x)|},

where n(t, x) is the inward normal vector at the closest point of x on the boundary of O and

c0 is the constant given by (5.2). We shall interpret |nTσ(t, x)| as the noise amplitude along the

normal direction to the boundary. Thus the efficient exit time of the Euler scheme is given by

τ̂N := inf{ti > 0 : XN
ti /∈ On} ≤ τ̄ .

For more details on this procedure see the book of Gobet [24] (page 142-144).

Now the projection coefficients α are computed by using M independent Monte Carlo simula-

tions of Xtn
N and∆Wn which will be respectively denoted by XN,mtn and ∆Wm

n ,m=1, . . . ,M . The

algorithm is explicite as follows:
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→ Initialization: For n = N , take (yN,mN ) = (Φ(XN,m
τ̂N

)) and (zN,mN ) = 0 .

→ Iteration: For n = N − 1, . . . , 0:

• We approximate (5.4) by computing for all j1 ∈ {1, . . . , k} and j2 ∈ {1, . . . , d}

αMj1,j2,n = arginf
α

1

M

M∑

m=1

∣∣∣yN,M,I
n+1,j1

(XN,m
tn+1

)
∆Wm

n,j2

h

+
l∑

j=1

gj1,j

(
XN,m
tn+1

,yN,Mn+1 (X
N,m
tn+1

), zN,Mn+1 (X
N,m
tn+1

)
)∆Bn,j∆Wm

n,j2

h
− α.pmj1,j2,n

∣∣∣
2
.

Then we set zN,Mn,j1,j2
(.) = (αMj1,j2,n.pj1,j2,n(.)), j1 ∈ {1, . . . , k}, j2 ∈ {1, . . . , d}.

• We use I Picard iterations to obtain an approximation of Ytn in (5.3):

· For i = 0: ∀j1 ∈ {1, . . . , k}, αM,0
j1,n

= 0.

· For i = 1, . . . , I: We approximate (5.3) by calculating αM,i
j1,n

, ∀j1 ∈ {1, . . . , k}, as the minimizer

of:

1

M

M∑

m=1

∣∣∣yN,Mn+1,j1
(XN,m

tn+1
)+ hfj1

(
XN,m
tn ,yN,M,i−1

n (XN,m
tn ),zN,Mn (XN,m

tn )
)

+
l∑

j=1

gj1,j

(
XN,m
tn+1

,yN,Mn+1 (X
N,m
tn+1

),zN,Mn+1 (X
N,m
tn+1

)
)
∆Bn,j −α.pmj1,k

∣∣∣
2
.

Finally, we define yN,Mn (.) as:

yN,Mn,j1
(.) = (αMj1,n.pj1,n(.)),∀j1 ∈ {1, . . . , k}.

5.2. One-dimensional case (Case when d = k = l = 1)

5.2.1. Function bases

We use the basis (HC) defined above. So we set:

d1 = min
n,m

Xm
tn , d2 = max

n,m
Xm
tn and L =

d2 − d1
δ

where δ is the edge of the hypercubes (Dj)1≤j≤L defined by Dj =
[
d+ (j − 1)δ, d + jδ

)
,∀j.

We take at each time tn

1Dj
(XN,m

tn ) = 1[d+(j−1)δ,d+jδ)(X
N,m
tn ), j = 1, . . . , L

and

(pmi,n(.))=
{√ M

card(Dj)
1Dj

(XN,m
tn ),1≤j≤L

}
, i = 0, 1.
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Card(Dj) denotes the number of simulations of XN
tn which are in our cube Dj .

This system is orthonormal with respect to the empirical scalar product defined by

< ψ1, ψ2 >n,M :=
1

M

M∑

m=1

ψ1(X
N,m
tn )ψ2(X

N,m
tn ).

In this case, the solutions of our least squares problems are given by:

αM1,n =
1

M

M∑

m=1

p1,n(X
N,m
tn )

{
yN,Mn+1 (X

N,m
tn+1

)
∆Wm

n

h

+ g
(
XN,m
tn+1

, yN,Mn+1 (X
N,m
tn+1

), zN,M,
n+1 (XN,m

tn+1
)
)∆Bm

n ∆Wm
n

h

}
,

αM,i
0,n =

1

M

M∑

m=1

p0,n(X
N,m
tn )

{
yN,Mn+1 (X

N,m
tn+1

) + hf
(
XN,m
tn , yN,M,i−1

n (XN,m
tn ), zN,Mn (XN,m

tn )
)

+ g
(
XN,m
tn+1

, yN,Mn+1 (X
N,m
tn+1

), zN,Mn+1 (X
N,m
tn+1

)
)
∆Bm

n

}
.

Remark 5.1. We note that for each value of M , N and δ, we launch the algorithm 50 times

and we denote by (Y 0,x,N,M
0,m′ )1≤m′≤50 the set of collected values. Then we calculate the empirical

mean Y
0,x,N,M,I
0 and the empirical standard deviation σN,Mdefined by:

Y
0,x,N,M
0 =

1

50

50∑

m′=1

Y 0,x,N,M
0,m′ and σN,M =

√√√√ 1

49

50∑

m′=1

|Y 0,x,N,M
0,m′ −Y 0,x,N,M

0 |2. (5.5)

We also note before starting the numerical examples that our algorithm converges after at most

three Picard iterations. Finally, we stress that (5.5) gives us an approximation of u(0, x) the

solution of the SPDE (4.1) at time t = 0.

5.2.2. Comparison of numerical approximations of the solutions of the FBDSDE and the

FBSDE: the general case

Now we take




Φ(x) = −x+K,

f(t, x, y, z) = −θz − ry + (y − z
σ )

−(R− r),
g1(t, x, y, z) = 0.1z + 0.5y + log(x)

and we set θ = (µ − r)/σ, K = 115, X0 = 100, µ = 0.05, σ = 0.2, r = 0.01, R = 0.06, δ = 1,

N = 20, T = 0.25 and we fix d1 = 60 and d2 = 200 as in [26]. We fix our domain O =]60, 200[,

choosen large enough to compenstate the rate of convergence of the exit time approximation

which is slow (of order h1/2).

The functions g1,g2 and g3 taken in what follows are examples of the function g. They are suf-

ficiently regular and Lipschitz on [60, 200] × R × R and could be extended to regular Lipschitz
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functions on R
3. In this case, the continuous Lipschitz assumption is satisfied.

We compare the numerical solution of our BDSDE with terminal time τ̄ (noted again Y
t,x,N,M
t ),

the BDSDE’s one (noted here by Y
0,x,N,M
t,BDSDE ) and the BSDE’s one (noted here by Y

0,x,N,M
t,BSDE ),

without g and B. Note that each CPU-Time given in the tables is for 50 macro-runs of the

algorithms.

When t is close to maturity t = t19

M Y
0,x,N,M
t19,BSDE(σ

N,M ) Y
0,x,N,M
t19,BDSDE(σ

N,M ) Y
0,x,N,M
t19 (σN,M )

128 13.748(0.879) 15.453(0.948) 13.392(1.021)

512 13.827(0.384) 15.535(0.409) 12.210(0.3580)

2048 13.762(0.223) 15.465(0.240) 12.051(0.197)

8192 13.781(0.091) 15.485(0.097) 14.814 (0.107)

32768 13.796(0.054) 15.501(0.058) 14.729 (0.053)

when t = t15

M Y
0,x,N,M
t15,BSDE(σ

N,M ) Y
0,x,N,M
t15,BDSDE(σ

N,M ) Y
0,x,N,M
t15 (σN,M )

128 14.168(0.905) 17.894(1.096) 13.049(1.116)

512 14.113(0.388) 17.774(0.429) 16.469(0.441)

2048 13.988(0.226) 17.607(0.270) 9.817(0.178)

8192 13.985(0.093) 17.623(0.104) 12.951(0.115)

32768 13.994(0.055) 17.627(0.064) 13.232(0.053)

when t = 0

M Y
0,x,N,M
0,BSDE(σ

N,M ) Y
0,x,N,M
0,BDSDE(σ

N,M ) Y
0,x,N,M
0 (σN,M ) CPU-Time (sec)

128 15.431(1.005) 13.571(1.146) 19.719(1.558) 2.418

512 15.029(0.428) 13.173(0.500) 24.371(0.659) 10.234

2048 14.763(0.243) 12.885(0.280) 13.433(0.233) 46.882

8192 14.718(0.098) 12.825(0.106) 12.543(0.122) 220.531

32768 14.715(0.060) 12.804(0.064) 13.458(0.057) 940.531

In the previous tables, we test our algorithm for different times (when they are close to the

maturity and in initial time t = 0) and we modify the number of Monte Carlo simulation M for

fixed number of time discretization N . We note that the numerical value of the BDSDE with

random terminal time τ̄ converges to the value of classical BDSDE for M large and this can be
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explained by the fact that the approximated value of the exit time is close to the maturity T .

For g2(y, z) = 0.1z + 0.5y when t = t19.

M Y
0,x,N,M
t19,BDSDE(σ

N,M ) Y
0,x,N,M,I
t19 (σN,M )

128 14.767(0.949) 13.545(1.020)

512 14.850(0.410) 12.862(0.358)

2048 14.781(0.240) 12.739(0.197)

8192 14.801(0.097) 14.401(0.107)

32768 14.818(0.058) 14.358(0.053)

when t = t15

M Y
0,x,N,M
t15,BDSDE(σ

N,M ) Y
0,x,N,,M
t15 (σN,M )

128 16.267(1.093) 13.607(1.111)

512 16.166(0.428) 15.191(0.443)

2048 16.007(0.270) 11.675(0.180)

8192 16.024(0.104) 13.551(0.114)

32768 16.029(0.064) 13.689(0.053)

when t = 0

M Y
0,x,N,M
0,BDSDE(σ

N,M ) Y
0,x,N,M
0 (σN,M ) CPU-Time (sec)

128 13.821(0.063) 17.811(1.529) 2.401

512 14.555(1.132) 19.766(0.645) 10.182

2048 14.176(0.495) 13.976(0.241) 46.679

8192 13.899(0.277) 13.635(0.122) 223.694

32768 13.842(0.105) 14.139(0.058) 969.030

For g3(x, y) = logx+ 0.5y: when t is close to maturity t = t19.

M Y
0,x,N,M
t19,BDSDE(σ

N,M ) Y
0,x,N,M
t19 (σN,M )

128 15.452(0.948) 13.392(1.021)

512 15.534(0.409) 12.210(0.358)

2048 15.464(0.240) 12.051(0.197)

8192 15.484(0.097) 14.814(0.107)

32768 15.501(0.058) 14.729(0.053)
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when t = t15

M Y
0,x,N,M
t15,BDSDE(σ

N,M ) Y
0,x,N,M
t15 (σN,M )

128 18.253(1.068) 12.782(1.003)

512 18.166(0.453) 17.383(0.454)

2048 18.010(0.266) 9.325(0.174)

8192 18.006(0.109) 12.490(0.097)

32768 18.017(0.065) 12.858(0.049)

when t = 0

M Y
0,x,N,M
0,BDSDE(σ

N,M ) Y
0,x,N,M,
0 (σN,M ) CPU-Time (sec)

128 12.071(0.054) 20.496(1.421) 2.401

512 12.075(0.088) 27.093(0.654) 10.322

2048 12.122(0.218) 13.362(0.221) 47.039

8192 12.384(0.381) 11.878(0.101) 221.504

32768 12.791(0.903) 12.948(0.051) 938.669

In the previous tables, we test our algorithm for different examples of the function g (g1 and g2
are dependent in z, g3 is independent of z).
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Figure 1. Comparisom of the BSDE’s solution, the BDSDE’s one and the solution of BDSDE with random time
for g1(x, y, z) = log(x) + 0.5y + 0.1z. Confidence intervals are with dotted lines.
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We see on Figure 1 and 2 the impact of the function g on the solution; we modify N , M

and δ as in [33], by taking these quantities as follows: First we fix d1 = 40 and d2 = 180

(which means that x ∈ [d1, d2] = [40, 180] and in this case our continuous lipschitz assumptions

are satisfied). Let j ∈ N, we take αM = 3, β = 1, N = 2(
√
2)(j−1), M = 2(

√
2)αM (j−1) and

δ = 50/(
√
2)(j−1)(β+1)/2. Then, we draw the map of each solution at t = 0 with respect to j.

We remark from the figures that numerical values of the BDSDE with random terminal time

coincide with that of the clasical BDSDE after just few variation of the parameters. This allow us

to think about performing the rate of convergence of our algorithm by getting weaker estimates

for the BDSDE (as Bouchard and Menozzi for the classical BSDEs [12]).
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Figure 2. Comparisom of the BSDE’s solution, the BDSDE’s one and the solution of BDSDE with random time
for g2(x, y, z) = 0.5y + 0.1z. Confidence intervals are with dotted lines.

6. Conclusion

The main result of this paper is to develop a discrete-time approximation of a Forward-Backward

Doubly SDE with finite stopping time horizon, namely the first exit time of a forward SDE from

a domain O. More precisely we provide a rate of convergence of order h1/2 for the square of Eu-

ler time discretization error for the scheme (3.7)-(3.13) (Theorem 3.5). This order is performed

compared to the one obtained by Bouchard and Menozzi [4] in the case of BSDE with random

terminal time (the strong error) thanks to the recent work of Bouchard, Geiss and Gobet [11].

Moreover, Euler scheme for a class of semilinear SPDEs with Cauchy-Dirichlet condition is pro-
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vided via the scheme of the Forward-Backward Doubly SDE (3.7)-(3.13), this gives a probabilistic

point of view for the approximation error of this class of SPDEs.
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