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Abstract

We consider a stylized model for a power network with distributed local power

generation and storage. This system is modeled as network connection a large

number of nodes, where each node is characterized by a local electricity consump-

tion, has a local electricity production (e.g. photovoltaic panels), and manages a

local storage device. Depending on its instantaneous consumption and production

rates as well as its storage management decision, each node may either buy or

sell electricity, impacting the electricity spot price. The objective at each node

is to minimize energy and storage costs by optimally controlling the storage de-

vice. In a non-cooperative game setting, we are led to the analysis of a non-zero

sum stochastic game with N players where the interaction takes place through the

spot price mechanism. For an infinite number of agents, our model corresponds

to an Extended Mean-Field Game (EMFG). In a linear quadratic setting, we ob-

tain and explicit solution to the EMFG, we show that it provides an approximate

Nash-equilibrium for N -player game, and we compare this solution to the optimal

strategy of a central planner.
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1 Introduction

Until the late 90’s, the power system was characterized by predictable supply insured
by massive vertically-integrated utilities which assumed the three major services: gen-
eration, transmission and distribution. Since then, critical changes have been occurring,
and the centralized and vertically-integrated scheme is giving way to a new scheme where
small-scale distributed generation and storage have an important weight [13]. Indeed,
technological innovation and environmental concerns triggered and are still boosting
the integration of intermittent renewable energy, part of which is provided by rela-
tively small and geographically distributed generation. The fast growing deployment
of decentralized small scale power generation is aided by the simultaneous evolution of
local storage technologies and its complementary deployment. This transition calls for
in-depth re-engineering of distribution networks at various levels, including tariff struc-
tures. A growing literature is interested in distributed storage management and the
analysis of its development within the system. In particular, mean field games (MFG)
approach has been already used by [11] who analyze a system with controlled electrical
vehicles and by [12] with local batteries. These two papers deal with numerical analysis
of corresponding MFG without providing the existence and uniqueness of the optimal
control results.

Our Mean Field Game model for the power network with distributed storage
and generation. The aim of a our paper is to provide a stylized quantitative model
for a power system with distributed local energy generation and storage where some
questions arising in this power grid can be tractably analyzed. This system is modeled
as a network connecting a large number of nodes. Each node has a local electricity
consumption, a local electricity production (e.g. photovoltaic panels), and manages a
local storage device. In our model each node is characterized by two state variables:
the local net production Qt and the battery level St, and a control variable: the storage
action αt. At each moment, Qt − αt can be either positive or negative ; if positive,
respectively negative, it corresponds to electricity that the node sells to, resp. buys
from, the grid at the spot price. We consider that objective of each node is to minimize
its own cost of electricity consumption by controlling the storage device. As in [11] or
[12], we assume that the spot price level reflects the instantaneous global consumption,
hence, it depends on the strategies of the nodes. In a non-cooperative game setting,
we are led to the analysis of a non-zero sum stochastic game with N players and to
the search of Nash-equilibria. We rely on a Mean Field Game (MFG) approach, more
precisely we formulate and solve an Extended Mean Field Game (EMFG) with common
noise.
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Literature review for MFG and FBSDE. First we mention that mean field game
theory was introduced by the parallel works of Caines, Huang and Malhame [17, 16] and
of Lasry and Lions [18, 19] , see also the notes of Cardaliaguet [3] based on the lectures
of P.-L. Lions at the Collège of France [22], and the recent the book of Carmona and
Delarue [8]. Carmona, Delarue, and Lacker [9] have developed a probabilistic approach
based on a stochastic maximum principle for a representative player and use a fixed
point argument to find a mean field Nash equilibrium. A related but distinct concept
is that of mean field type control. In this case, the goal is to assign a strategy to all
players at once, such that the resulting crowd behavior is optimal with respect to costs
imposed on a central planner. For a comparison of mean field games and mean field
type control, see the book of Bensoussan, Frehse, and Yam [1] (see also [2]) as well as
the article by Carmona, Delarue, and Lachapelle [7]. A key reference is the work of
Carmona and Delarue [6], which characterizes solutions to the mean field type control
problem in terms of a stochastic maximum principle for McKean-Vlasov type dynamics
(see also [9], [10]).
Conceptually, mean field type control (MFC) is different from the mean field game
(MFG), and although in general an optimal control on MFC is not an equilibrium
strategy on MFG, nevertheless Lasry and Lions in [20] have pointed out that in many
cases a mean field Nash equilibrium is also the solution to an optimal control problem.
The work of Graber [14] also have highlighted this point of view. Motivated by economic
examples, he reformulated the Nash equilibrium for MFG as an optimal control problem,
therefore, he have studied the mean field type control problem associated to the MFG,
even though, a priori, he was interested in mean field games. The present work also
follows this point of view.

Main contributions. A primary contribution of this paper is that the EMFG ap-
proach provides an analytically and numerically tractable setting to assess questions
related to the distributed generation and storage. Under proper conditions, the EMFG
we associate to this power network game is proven to admit a unique solution which can
be characterized though solving an associated Forward Backward Stochastic Differential
Equations (FBSDE). In the particular case where the cost structure is quadratic and
the pricing rule is linear, the FBSDE which characterizes the solution of the EMFG
can be solved explicitly. This provides a quite tractable and efficient setting to analyze
numerically various questions arising in this power grid. For example, our model gives
indication to the question on how decentralized batteries could spread, be managed and
how this will impact the spot price depending on the electricity tariff structure. Our
model also points out how characteristics of the prosumers’ consumptions/productions
such as their seasonal pattern and their volatility change the way they manage a storage.
In addition, our model gives clues to an aggregator on how to manage a collection of
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consumers in a decentralized way. To our knowledge, only the paper by [4] also provides
explicit solution for an EMFG applied to optimal liquidation of a portfolio. We refer
the reader to [5] for general discussion on the probabilistic approach for MFG.
A secondary, yet important finding, is that our EMFG can be profitably compared to
a suitable Mean Field Type Control (MFC) problem whose solution can be interpreted
as the optimal strategy of a central planner who coordinates the storage actions at the
nodes.

Structure of the paper. This paper is organized as follows. In Section 2 we introduce
the stylized model for the power network, we define the associated N -players Nash
Game as well as the problem of a central planner who aims to optimally coordinate the
storage in the nodes. In Section 3 we provide the EMFG approximation, characterize the
solution of this EMFG and show how it compares to the solution of the MFC problem
related to the central planner. In Section 4 we provide and discuss the explicit solution
in the particular case where the cost structure is quadratic and the pricing rule is linear.
Finally, in Section 5 a numerical case of study is detailed: our model is applied to the
case where the network is composed by two types of agents: group 1 of traditional
consumers with no local production nor storage, and group 2 of prosumers with local
production and storage. Both the EMFG and central planner strategies are analyzed,
compared and commented.

2 The power grid model

We consider a stylized model for a power grid with distributed local energy generation
and storage. The grid connects N nodes indexed by i = 1, · · · , N . Each node is
characterized by two state variables: the local net power production Qit which represents
the local power production minus the local power consumption at node i, and the storage
level Sit which represents the total energy available in the storage device. We assume
that the nodes forming this grid can be partitioned in Γ different groups: the nodes a
same group γ share same characteristics of local net power production and storage, yet
these characteristics vary from one group to the other.
We denote by Nγ the number of nodes in group γ, so that N =

∑Γ
γ=1Nγ , and let

πγ = Nγ/N be the ratio of the population size of region γ to the whole population. We
shall abusively write i ∈ γ to signify that the node i is in region γ.

The grid also connects a group, indexed by 0, which is characterized by one state
variable, its local net power production Q0

t , and which is does not possess any storage.
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Power Grid

Rest of the

world Q0

Region 1

node 1
S1
t | Q1

t

node i
Si | Qi

node i
Si | Qi

node i
Si | Qi

node i
Si | Qi

node i
Si | Qi

Region 2

node i
Si | Qi

node i
Si | Qi

node i
Si | Qi

node i
Si | Qi

Remark 2.1 (Partitioning of the nodes) Such a partitioning of the nodes is rele-
vant for the modelling and analysis of various situations. For instance, in Section 5 we
consider a gird with two types of agents, group 1 consists of traditional consumers with
no local production nor storage, and group 2 consists of prosumers with local production
and storage. We may also consider a grid with Γ different geographical regions, each
region beeing characterized by a specific mode of local power production, etc.

In oder to model the dynamics of the state variables, we consider a complete probabil-
ity space (Ω,F ,P) on which are defined independent Brownian motions B0, B1, · · · , BN .
We considerN independent identically distributed (i.i.d.) random variables xi0 = (si0, q

i
0)

which are independent from B0 and the Bi. We denote by IF = {Ft} the filtration de-
fined by Ft = σ((si0, q

0
0 , q

i
0), B0

s , B
i
s, i = 1, · · ·N, s ≤ t}, and by IF 0 = {F0

t } the filtration
generated by B0, F0

t = σ(B0
s , s ≤ t}. We denote by A the set of IF -adapted real-valued

processes a = {at} such that E
[∫ T

0
|au|2du

]
<∞.

We assume that at node i, the battery level is controlled through a storage action αi ∈ A
according to

Si,α
i

t = si0 +

∫ t

0

αisds,
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and that, if the node i is in the region γ, then the net power production is given by

dQit = µγ(t, Qit)dt+ σγ(t, Qit)dB
i
t + σγ0(t, Qit)dB

0
t , Qi0 = qi0.

In net injection of the node i is

Qit − αit,

it can be either positive or negative. If positive then it corresponds to electricity being
sold from the node i to the grid ; if negative, then it corresponds to electricity being
bought by the node i from the grid.
The net injection of the rest of the world is given by

dQ0
t = µ0(t, Q0

t )dt+ σ0(t, Q0
t )dB

0
t , Q0

0 = q0
0 .

In our model B0
t represents a common signal which affects the energy demand of the

whole grid. Then for each i, σγ0 : IR → IR is a given function which allows to model
how the node i of region γ is affected by the common signal B0

t . We assume that the
rest of the world is only affected by this common signal B0

t .

Remark 2.2 (Constraints on the storage) In our model we do not enforce con-
straints on the storage level nor on the injection/withdrawal rates. Indeed, we give
priority to finding explicit solutions to our problem in order to analyse the qualitative
behavior of the system. In the numerical examples we considered we were able to obtain
reasonable interpretations and results.

2.1 Electricity spot price

We make the assumption that the electricity price per Watt-hour depends on the in-
stantaneous demand. When the strategy α = (α1, · · · , αN ) ∈ AN is implemented the
spot price is given by

PN,αt = p

(
−Q0

t −
N∑
i=1

η(Qit − αit)

)
,

where p(·) is the exogeneous inverse demand function for electricity, and η is a scaling
parameter which weights the contribution of each individual node i to the whole system.
We model a grid with a large number of ‘small’ nodes i, hence we shall be considering
the limit as N → +∞ and η → 0. Here we assume that

η = 1/N

Hence the spot price depends in the averaged net injections 1
N

∑N
i=1(Qit − αit)

PN,αt = p

(
−Q0

t −
N∑
i=1

1

N
(Qit − αit)

)
.
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Assumption 2.1 The function p(·) is assumed to be strictly increasing.

Remark 2.3 The fact that the spot price depends on the averaged net injections
1
N

∑N
i=1(Qit−αit) is the rationale for our Extended Mean Field Game (EMFG) approx-

imation developed in Section 3. Recall that πγ = Nγ/N and notice that the electricity
price can be expressed as

PN,αt = p

−Q0
t −

Γ∑
γ=1

πγ
∑
i∈γ

1

Nγ
(Qit − αit)

 .

At a “macroscopic level’, each region γ influences the price through the its average
net injection

∑
i∈γ

1
Nγ

(Qit − αit) modulated by the ratio πγ = Nγ/N .

2.2 Cost functions

We consider a finite time horizon T > 0. When the control action α = (α1, · · · , αN ) is
implemented, the cost incurred at the node i in the region γ = 1, · · · , N breaks down
into three components : a volumetric charge, a demand charge, and a storage cost. The
first two components correspond to the electricity bill. Indeed, the consumer’s bill is
commonly the sum of two components: one proportional to the energy consumed (the
volumetric charge) and one linked to the maximum power the consumer subscribed to
(the demand charge) meaning that the consumer’s instantaneous consumption is limited
to this power. The third component of the cost corresponds to the costs of the storage
(purchase, maintenance, wear).

J i,γ,N (α) = E

[∫ T

0

PN,αt

(
αit −Qit

)
dt

]
︸ ︷︷ ︸

volumetric charge

+E

[∫ T

0

LγT (Qit, α
i
t)dt

]
︸ ︷︷ ︸

demand charge

+ E

[∫ T

0

LS(Si,α
i

t , αit)dt+ g(Si,α
i

T )

]
︸ ︷︷ ︸

storage cost

.

where LγT , LS : IR× IR→ IR , and g : IR→ IR are continuous functions.
The term PN,αt

(
αit −Qit

)
represents the current volumetric cost (or profit) of elec-

tricity consumed (or produced) at the spot price PN,αt . The term LγT (Qit, α
i
t) is linked to

the maximum instantaneous power subscribed by consumers. Electricity system costs
are closely related to maximum power the system required in peak hours: production
installed capacities and network are designed to satisfy highest level of demand. The
term LS(Si,α

i

t , αit) represents the current storage cost and is assumed to be identical in
all the regions γ. The terminal cost g(Si,α

i

T ) typically guarantees a a minimal level of
storage at the end of the period.
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Finally, the region 0/ rest of the world incurs only energy and transmission costs

J0,N (α) = E

[∫ T

0

−PN,αt Q0
tdt

]
︸ ︷︷ ︸

energy cost

+E

[∫ T

0

L0
T (Q0

t , 0)dt

]
︸ ︷︷ ︸
transmission cost

(2.1)

Assumption 2.2 The current cost (s, q, α) 7→ LγT (q, α) + LS(s, α) is strictly convex
with respect to (s, α). The terminal cost s 7→ g(s) is strictly convex with respect to s.

Assumption 2.3 There exists some constant C > 0 such that

1

C

(
|q|2 + |s|2 + |a|2

)
− C ≤ LγT (q, a) + LS(s, a) + g(s) ≤ C

(
|q|2 + |s|2 + |a|2

)
+ C.

Assumption 2.4 The functions LγT , LS and g are continuously differentiable.

Remark 2.4 (On the quadratic costs hypothesis) Though characterization results
of EMFG equilibria for more general cost functions exist in the literature, see e.g. [5],
very few are the cases where a tractable analysis can be worked out, especially under the
presence of common noise. In the case of quadratic cost functions, considered in Section
4 we are able to provide a quasi-explicit solution which allows to perform an easy-to-
implement numerical analysis for the system. We defend that, even under the quadratic
cost assumption, our model can to some extent accommodate for some relevant cases
of study.

2.3 Optimality criteria

Non-cooperative game point of view The aim of each node i is to minimize the
cost of electricity consumption by controlling the size and the management of the storage
device. In a non-cooperative game setting, we are led to the analysis of a non-zero sum
stochastic game with N players and to the search of Nash-equilibria:

Definition 2.1 (Nash equilibrium for the N-players game) We say that
α? = (α?,1, · · · , α?,N ) belongs to AN is a Nash-equilibrium if for each (i, γ), for an y
u ∈ A:

J i,γ,N (α?,1, · · · , α?,i−1, u, α?,i+1, · · · , α?,N ) ≥ J i,γ,N (α?,1, · · · , α?,N ).

Definition 2.2 (ε-Nash equilibrium for the N-players game) Let ε > 0. We say
that α? = (α?,1, · · · , α?,N ) ∈ AN is a ε-Nash-equilibrium if for each (i, γ), for any
u ∈ A:

J i,γ,N (α?,1, · · · , α?,i−1, u, α?,i+1, · · · , α?,N ) ≥ J i,γ,N (α?,1, · · · , α?,N )− ε.
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Central Planner point of view We should also consider the power grid model
from the perspective of a central planner whose aim is to dictate a storage rule: α =

(α1, · · · , αN ) in order to minimize the egalitarian cost function between the nodes and
the rest of the world

JC,N (α) = Jr,N (α) +

N∑
i=1

ηJ i,γ,N (α).

where η = 1/N is the scaling parameter which weights the contribution of each individ-
ual node to the system. The cost function JC,N (α) can also be written as

JC,N (α) = E

[∫ T

0

LrT (Q0
t , 0, P

N,α
t )dt

]
+

Γ∑
γ=1

πγ
Nγ∑
i=1

1

Nγ
J i,γ,N (α).

Definition 2.3 (Optimal coordinated plan) We say that α̂ = (α̂1, · · · , α̂N ) ∈ AN

is an optimal coordinated plan if: α̂ = argminα∈AN JC,N,η(α).

3 An Extended Mean Field Game approximation

In this section we consider on the filtered probability space (Ω,F ,P, IF ), Γ standard
brownian motions Bγ , γ = 1, · · · ,Γ which are mutually independent and independent
from the Brownian filtration IF 0.
We shall use the following notation. If ξ = {ξt} is an IF -adapted process, then ξ̄ = {ξ̄t}
denotes the process defined by : ξ̄t := E[ξt|F0

t ].

Let x0 = (s0, q0) = (xγ0 = (sγ0 , q
γ
0 )1≤γ≤Γ be a random vector which is independent

from IF 0. Let Q0 and Qγ be the processes defined by

Qγ = qγ0 +

∫ t

0

µγ(u,Qγ)du+

∫ t

0

σγ(u,Qγ)dBγu +

∫ t

0

σγ,0(u,Qγ)dB0
u (3.1)

Q0
t = q0

0 +

∫ t

0

µr(u,Q0
t )du+

∫ t

0

σ0(u,Q0
u)dB0

u . (3.2)

If ν̄ = (ν̄1, · · · , ν̄Γ) is an IF 0-adapted IRΓ-valued process, we denote

P ν̄t = p

−Q0
t −

∑
γ∈Γ

πγ
(
E[Qγt |F0

t ]− ν̄γ,0t

) , (3.3)

In this section we are going to consider two types of cost functions. For an IF 0-adapted
IRΓ-valued process ν̄0 = (ν̄1,0, · · · , ν̄Γ,0) is an IF 0-adapted IRΓ-valued process, and for
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a control process α = (α1, · · · , αΓ), we define for each γ = 1, · · · ,Γ

Jγx0
(αγ , ν̄) = E

∫ T

0

[
P ν̄t (αγt −Q

γ
t ) + LγT (Qγt , α

γ
t ) + LS(Sγt , α

γ
t )
]
dt+ E [g(Sγt )] (3.4)

and JCx0
(α) = E

∫ T

0

[
P ᾱt Q

0
t + L0

T (Q0
t , 0)

]
dt+

Γ∑
γ=1

πγJγx0
(αγ , ᾱt) (3.5)

where Sγt = sγ0 +

∫ t

0

αγudu, (3.6)

Definition 3.1 (Mean field Nash equilibrium) Let x0 = (s0, q0) be a random vec-
tor independent from IF 0. We say that α? = {αγ,?, 1 ≤ γ ≤ Γ} is a mean field Nash
equilibrium if, for each γ, αγ,? minimizes the function αγ 7→ Jγ,MFG

x0
(αγ , {E[α?t |F0

t ]}).

Definition 3.2 (Mean field optimal control) Let x0 = (s0, q0) be a random vector
independent from IF 0. We say that α̂ = {α̂γ , 1 ≤ γ ≤ Γ} is a mean field optimal control
if, α̂ minimizes the function α 7→ JCx0

(αγ).

Proposition 3.1 (Characterization of Mean field Nash equilibria) Let ν̄ be a given
IF 0-adapted IRΓ-valued process, and x0 = (s0, q0) = {xγ0 = (sγ0 , q

γ
0 ), 1 ≤ γ ≤ Γ} be

a random vector which is independent form IF 0. Then there exists a unique control
α? = (α1,?, · · · , αΓ,?) = α?(ν̄, x0) such that: for each γ, αγ,? minimizes the function
αγ 7→ Jγ,MFG

x0
(αγ , ν̄). Moreover, if (Sγ,?, Qγ) is the state process corresponding to the

initial data condition xγ0 , to the control αγ,?, and to the dynamic (3.6)-(3.1), then there
exists a unique adapted solution (Y γ,?, Z0,γ,?, Zγ,?) of the BDSE{

dY γ,?t = −∂sLS(Sγ,?t , αγ,?t )dt+ Z0,γ,?
t dB0

t + Zγ,?t dBγt

Y γ,?T = ∂sg(Sγ,?T )
(3.7)

satisfying the coupling condition

0 = Y γ,?t + P ν̄t + ∂αL
γ
T (Qγt , α

γ,?
t ) + ∂αLS(Sγ,?t , αγ,?t ) (3.8)

Conversely, assume that there exists (αγ,?, Sγ,?, Y γ,?, Z0,γ,?, Zγ,?) which satisfy the cou-
pling condition (3.8) as well as the FBSDE (3.6)-(3.1)-(3.7), then αγ,? is the optimal
control minimizing Jγ,MFG

x0
(αγ , ν̄) and Sγ,? is the optimal trajectory. If in addition:

E
[
αγ,?t |F0

t

]
= ν̄γ,0t , ∀γ = 1, · · · ,Γ, (3.9)

then α? is a mean field nash equilibrium.

Proof. Fix some γ ∈ {1, · · · ,Γ}. Assumptions 2.2, 2.3 and 2.4 insure that the function

αγ ∈ A 7→ Jγ,MFG
x0

(αγ , ν̄)
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is a strictly convex coercive function and Gateaux-differentiable. The Gateaux derivative
of J := Jγ,MFG

x0
(·, ν̄) is

dβJ (αγ) = E

[∫ T

0

{
P ν̄u + ∂αL

γ
T (Qγu, α

γ
u) + ∂αLS(Sγu , α

γ
u)
}
βudu

]

+E

[∫ T

0

∂sL(Sγu , α
γ
u)S̃βudu + S̃βT∂sg(SγT )

]
,

where S̃βu is the process defined by

dS̃βu = βudu, S̃β0 = 0 .

Hence, there exists a unique optimal control αγ,? = αγ,?(ν̄, x0) which satisfies the Euler
optimality condition

0 = E

[∫ T

0

{
P ν̄u + ∂αL

γ
T (Qγu, α

γ
u) + ∂αLS(Sγu , α

γ
u)
}
βudu

]

+E

[∫ T

0

∂sL(Sγu , α
γ
u)S̃βudu + S̃βT∂sg(SγT )

]
(3.10)

Let Sγ,? be the associated optimal trajectory, and let (Y γ,?, Z0,γ,?, Zγ,?) be the solution
to the BDSE (3.7), then by Itô Lemma, for each β

E
[
S̃βTY

γ,?
T

]
= E

[∫ T

0

(
Y γ,?t βt − ∂sLS(Sγ,?t , α?t )S̃

β
t

)
dt

]
. (3.11)

Taking into account the terminal condition Y ?T = ∂sg(Sγ,?T ) and the optimality condition
(3.10), the previous equation leads to

E

[∫ T

0

(
Y γ,?u + P ν̄u + ∂αL

γ
T (Qγu, α

γ,?
u ) + ∂αLS(Sγ,?u , αγ,?u )

)
βudu

]
= 0. (3.12)

Since β is arbitrary we conclude to the coupling condition (3.8).
Conversely, if (αγ,?, Sγ,?, Y γ,?, Z0,γ,?, Zγ,?) satisfies the coupling condition (3.8) and the
FBSDE system (3.6)-(3.1)-(3.7), then we verify that the gateau derivative of Jγ,MFG

x0
(·, ν̄)

at αγ,? is equal to zero and we conclude by the strict convexity of Jγ,MFG
x0

(·, ν̄) to the
desired result. tu

Proposition 3.2 (Characterization of Mean field optimal controls) Assume that
α̂ = (α̂1, · · · , α̂Γ) minimizes the functional JCx0

(α), and denote by Ŝ = (Ŝ1, · · · , ŜΓ) is
the corresponding controlled trajectory. Then there exists a unique adapted solution
(Ŷ = (Ŷ 1, · · · Ŷ Γ

t ), Ẑ = (Ẑ1, · · · , ẐΓ), Ẑ0 = (Ẑ0,1, · · · , Ẑ0,Γ)) of the BDSE{
dŶ γt = −∂sLS(Ŝγt , α̂

γ
t )dt+ Ẑ0,γ

t dB0
t + Ẑγt dB

γ
t

Ŷ γT = ∂sg(ŜγT )
(3.13)
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satisfying the coupling condition: for all γ = 1, · · · ,Γ

0 = Ŷ γt + ∂αL
γ
T (Qγt , α̂

γ
t ) + ∂αLS(Ŝt, α̂

γ
t ) + P

¯̂α
t

−p′
(
−Q0

t −ΠΓ ·
(
Q̄t − ¯̂αt

)) (
Q0
t + ΠΓ ·

(
Q̄t − ¯̂αt

))
(3.14)

with ¯̂αt = E[α̂t|F0
t ] and ΠΓ = (π1, · · · , πΓ)T .

Conversely, suppose (Ŝ, α̂, Ŷ , Ẑ0, Ẑ) is an adapted solution to the forward backward
system (3.6)-(3.13), with the coupling condition (3.14), then α̂ is the optimal control
minimizing JMFC

x0
(α) and Ŝ is the optimal trajectory.

Proof. Assumption 2.4 insures that the cost function α ∈ A 7→ JC
x0

(α) is Gateaux
differentiable. with Gateaux derivative given by

dβJ
MFC
x0

(α) =
∑
γ

πγE

[
∂sg(SγT )S̃β

γ

T +

∫ T

0

∂sLS(Sγu , α
γ
u)Sβ

γ

u du

]

+
∑
γ

πγE

[∫ T

0

{
P ᾱ

0

u + ∂αL
γ
T (Qγ , αγt ) + ∂αLS(Sγ , αγ)

}
βγudu

]

−
∑
γ

πγE

[∫ T

0

p′
(
−Q0

u −ΠΓ ·
(
Q̄u − ᾱu

)) (
Q0
u + ΠΓ ·

{
Q̄u − ᾱu

)}
βγudu

]
,

where S̃β
γ

u is the process defined by

dS̃β
γ

u = βγudu, S̃β
γ

0 = 0 .

Hence the optimal control α̂ satisfies the Euler optimality condition: for all β = (β1, · · · , βΓ)

0 =
∑
γ

πγE

[
∂sg(SγT )S̃β

γ

T +

∫ T

0

∂sLS(Sγu , α
γ
u)Sβ

γ

u du

]

+
∑
γ

πγE

[∫ T

0

{
P ᾱ

0

u + ∂αL
γ
T (Qγu, α

γ
u) + ∂αLS(Sγu , α

γ
u)
}
βγudu

]

−
∑
γ

πγE

[∫ T

0

p′
(
−Q0

u −ΠΓ ·
(
Q̄0
u − ᾱ0

u

)) (
Q0
u + ΠΓ ·

{
Q̄u − ᾱu

)}
βγudu

]
,

Now, let (Ŷ , Ẑ, Ẑ0) be the unique solution to the BSDE (3.13), and let Ŝ be the state
process associated to the optimal control α̂, applying Itô formula, we obtain∑

γ

πγE
[
Ŷ γT S̃

βγ

T

]
=

∑
γ

πγE

[∫ T

0

{
−∂sLS(Ŝu, α̂u) + βγu Ŷ

γ
u

}
du

]
.

Taking into account the terminal condition Ŷ γT = ∂sg(ŜγT ) and the Euler Optimality
condition for α̂ we get: for all β = (β1, · · · , βΓ) ∈ AΓ:

0 =
∑
γ

πγE

[∫ T

0

{
Ŷ γu + P

¯̂α
u + ∂αL

γ
T (Qγu, α̂u + ∂αLS(Ŝu, α̂u)

−p′
(
−Q0

u −ΠΓ ·
(
Q̄u − ¯̂αu

)) (
Q0
u + ΠΓ ·

(
Q̄u − ¯̂αu

))}
βγudu

]
.
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We deduce the coupling condition (3.14).

Proposition 3.3 Assume that α̂ is a mean field optimal control for the problem with
a pricing rule p. Then α̂ is a mean field nash equilibrium for the MFG problem with
pricing rule

pMFG(x) = p(x) + xp′(x) . (3.15)

Proof. It is sufficient to observe that in this case α̂ satisfies the characterization of the
mean field Nash equilibrium of Proposition (3.1). tu

To conclude this section, we mention that Graber [14] (Section 3, Theorem 3.7, p.15)
shows for a class of linear-quadratic extended Mean Fields an approximate Nash equi-
libria property. Same arguments apply in our case and lead to the following convergence
result.

Proposition 3.4 (ε-Nash equilibrium for the N-players game) Let αi,? is a mean
field Nash equilibrium for JMFG

xI0
. Then for each ε > 0 there exists Nε and ηε such that:

if N ≥ Nε and η ≤ ηε, then α? := (α1,?, · · · , αN,?) is an ε-Nash equilibrium for the
N-players game.

4 The Linear quadratic case

In this section, we assume that the pricing rule is linear

p : x 7→ p0 + p1x. (4.1)

In this case, the function α 7→ JCx0
(α) coercive and strictly convex, which implies the

existence of a unique mean field optimal control α̂.
Moreover, we assume that

LS : (s, α) 7→ A2

2
s2 +A1s+

C

2
α2

LγT : (q, α) 7→ Kγ

2
(q − α)

2

g : s 7→ B2

2

(
s− B1

B2

)2

,

where p0, p1, A1, A2, C, B1, B2 and {Kγ}Γγ=1 are some given constants with p1 > 0,
A2 > 0, A1 < 0, C < 0, B2 > 0 and Kγ ≥ 0 ∀γ.

• In the storage cost LS : the term (C/2)α2 is the current usage cost of the battery,
it penalizes the injection and withdrawal rate, the term (A2/2)s2 is the current
cost of storage capacity and A1 < 0 is the penalized negative stock level.
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• The demand charge Lγ is linked to the maximum instantaneous power subscribed
by consumers and is approximated in this setting by a quadratic expression.

• The terminal cost g(Si,α
i

T ) typically guarantees a a minimal level of storage at the
end of the period.

4.1 Explicit solution of the MFC

Let’s denote by K̂γ := C +Kγ . K̂γ is strictly positive since we assume C > 0 and
Kγ ≥ 0.

Let define the matrix MMFC :=


K̂1 + 2p1π1 2p1π2 · · · 2p1πΓ

2p1π1 K̂2 + 2p1π2 · · · 2p1πΓ

...
. . .

...
2p1π1 2p1π2 · · · K̂Γ + 2p1πΓ

 .

Its determinant is detMFC =
∏Γ
j=1(K̂j) +

∑Γ
j=1(2p1πj)

∏
i6=j(K̂

i).

Its inverse matrix is M−1
MFC = 1

detMMFC
M̂MFC with M̂MFC the following matrix



∏
j 6=1

K̂j +
∑
j 6=1

2p1πj
∏
i 6=1,j

K̂i −2p1π2

∏
j 6=1,2

K̂j · · · −2p1πΓ

∏
j 6=1,Γ

K̂j

−2p1π1

∏
j 6=1,2

K̂j
∏
j 6=2

K̂j +
∑
j 6=2

2p1πj
∏
i 6=2,j

K̂i · · · 2p1 − πΓ

∏
j 6=2,Γ

K̂j

...
. . .

...
−2p1π1

∏
j 6=1,Γ

K̂j · · ·
∏
j 6=Γ

K̂j +
∑
j 6=Γ

2p1πj
∏
i6=Γ,j

K̂i


.

Step 1. In this linear quadratic case, if α is an optimal coordinated plan then we
deduce from the FBSDE (3.6)-(3.13) and the coupling condition (3.14) that

dS̄t = ᾱtdt, S̄0 = S̄0,

dȲt = −(A2S̄t +A11Γ)dt+ Z̄0
t dB

0
t , ȲT = B2S̄T +B1,1Γ

with ᾱt = M
(
Ȳt + bt

)
,

where

bt = −
(
diag[K̂Γ] + 2p1ΠΓ

)
Q̄0
t − 2p1Q

r
t1Γ + p01Γ,

K̂Γ = (K̂1, · · · , K̂Γ)T and M = −M−1
MFC.
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By looking at a solution of the form Ȳt −B2S̄t = φ̄(t)S̄t + ψ̄(t), we are held to solve
the following system:

˙̄φ(t) + φ̄(t)Mφ(t) +B2Mφ̄(t) +B2φ̄(t)M +A2 +B2
2M = 0,

φ̄(T ) = 0

dψ̄(t) + (B2M + φ̄(t)M)ψ̄(t)dt+ (φ̄(t)Mbt +B2Mbt +A11Γ)dt− Z0
t dB

0
t = 0,

ψ̄(T ) = B11Γ.

Denote by A =

[
B2M M

−A2 −B2
2M −B2M

]
and referring to Theorem 5.3 in [23] , if

det

[
(0, IΓ) eA(T−t)

(
0

IΓ

)]
> 0

then φ̄ admits an explicit solution given by

φ̄(t) = −

[
(0, IΓ) eA(T−t)

(
0

IΓ

)]−1 [
(0, IΓ) eA(T−t)

(
IΓ

0

)]
.

By denoting χt the solution of the following linear ordinary differential equation

dχt = (B2M + φ̄(t)M)χtdt, χ0 = IΓ,

the solution of the linear BSDE for ψ̄ is

ψ̄t = χ−1
t χTB11Γ + E

[∫ T

t

χ−1
t χu

(
(φ̄uM +B2M)bu +A11Γ

)
du|F0

t

]
.

Step 2. In this linear quadratic case, if α is an optimal coordinated plan then we deduce
from the FBSDE (3.6)-(3.13) and the coupling condition (3.14) that

dŜt = α̂tdt, Ŝ0 = ŝ0,

dŶt = −
(
A2Ŝt + L1Γ

)
dt+ Ẑ0

t dB
0
t + ẐtdBt, ŶT = B2ŜT +B11Γ,

with α̂t = M̂
(
Ȳt + b̂t

)
,

M̂ = diag
(
−1

C +KΓ

)
and b̂t = p01Γ − 2p1(Qrt + ΠΓ(Q̄0

t − ᾱ0
t ))1Γ − diag(KΓ)Qt.

By looking at a solution of the form Ŷt − B2Ŝt = φ̂(t)Ŝt + ψ̂t, we are held to solve
the following system:

˙̂
φ(t) + φ̂(t)M̂φ̂(t) +B2M̂φ̂(t) +B2φ̂(t)M̂ +A2 +B2

2M̂ = 0,

φ̂(T ) = 0

dψ̂t + (B2M̂ + φ̂(t)M̂)ψ̂tdt+ (φ̂(t)M̂bt +B2M̂bt +A11Γ)dt− Ẑ0
t dB

0
t − ẐtdBt = 0,

ψ̂T = B1.
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As M̂ is diagonal, the solution of the Ricatti equation is explicit and by standard
computations we can get

φ̂γ(t) +B2 = − ρ
γ

∆γ

e−ρ
γ(T−t)(−B2∆γ + ργ)− eργ(T−t)(B2∆γ + ργ)

e−ργ(T−t)(−B2∆γ + ργ) + eργ(T−t)(B2∆γ + ργ)
,

with ργ :=
√
A2∆γ ,

∆γ :=
1

C +Kγ
.

Let’s define φ̂γ,B2(t) := φ̂γ(t)+B2, then the solution of the BSDE is also given explicitly
by

ψ̂γt = B1 exp

{
−
∫ T

t

∆γ
(
φ̂γ,B2(u)

)
du

}
−

E

[∫ T

t

∆γ φ̂γ,B2(u) exp

{
−
∫ u

t

∆γ φ̂γ,B2(s)ds

}(
b̂u −

A1

∆γφγ,B2(u)

)
du|Ft

]
.

4.2 Explicit solution of the MFC with 1 region

The system now becomes (π = 1):

dS̄t = ᾱtdt, S̄0 = S̄0,

dȲt = −(A2S̄t +A1)dt+ Z̄0
t dB

0
t , ȲT = B2S̄T +B1,

with

P̄t := p0 − (K + 2p1)Q̄0
t − p1Q

r
t −

A1

∆φ̄(t)
,

∆ :=
1

K + C + 2p1
,

ᾱt = −∆

(
Ȳt + P̄t +

A1

∆φ̄(t)

)
.

The solution is given by:

Ȳt = φ̄(t)S̄t + Ψ̄t,

where φ̄ is the unique solution to the Riccati equation

˙̄φ−∆ φ̄2 +A2 = 0 with φ̄(T ) = B2.

And Ψ̄ is the unique solution to the BSDE

dΨ̄t = ∆φ̄(t)
(
Ψ̄t + P̄t

)
dt+ Z̄0,Γ

t dB0
t , Ψ̄T = B1.

The function φ̄ and the process Ψ̄ are given by

φ̄(t) = − ρ
∆

e−ρ(T−t)(−B2∆ + ρ)− eρ(T−t)(B2∆ + ρ)

e−ρ(T−t)(−B2∆ + ρ) + eρ(T−t)(B2∆ + ρ)
with ρ :=

√
A2∆,
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Ψ̄t = B1 exp

{
−
∫ T

t

∆φ̄(u)du

}
− E

[∫ T

t

∆φ̄(u) exp

{
−
∫ u

t

∆φ̄(s)ds

}
P̄udu|F0

t

]
.

It follows that S̄0
t satisfies

S̄t = exp

{
−
∫ t

0

∆φ̄(u)du

}
S̄0 −∆

∫ t

0

exp

{
−
∫ t

u

∆φ̄(s)ds

}(
P̄u + Ψ̄u +

A1

∆φ̄(u)

)
du.

Steps 2. Now, the coupling condition states that

αt = −θ
(
Yt + Pt +

A1

θφ(t)

)
= −θ (ϕ(t)St + ψt + Pt) ,

where

θ =
1

C +K
and Pt = p0 − p1(Qrt + 2Q̄0

t − 2ᾱt)−KQt −
A1

θφ(t)
.

Then the FBSDE (3.6)-(3.7) becomes

dSt = −θ
(
Yt + Pt +

A1

θφ(t)

)
dt, S0 = s0,

dYt = −(A2St +A1)dt+ Z0
t dB

0
t + ZtdBt, YT = B2ST +B1.

Again, the solution is of the form

Yt = ϕ(t)St + ψt,

with

ϕ(t) = −ρ
θ

e−ρ(T−t)(−B2θ + ρ)− eρ(T−t)(B2θ + ρ)

e−ρ(T−t)(−B2θ + ρ) + eρ(T−t)(B2θ + ρ)
with ρ :=

√
A2θ,

ψt = B1 exp

{
−
∫ T

t

θϕ(u)du

}
− E

[∫ T

t

θϕ(u) exp

{
−
∫ u

t

θϕ(s)ds

}
Pudu|Ft

]
and

St = s0 exp

{
−
∫ t

0

θϕ(u)du

}
− θ

∫ t

0

exp

{
−
∫ t

u

θϕ(s)ds

}(
Pu + ψu +

A1

θφ(u)

)
du.

5 Numerical interpretations

5.1 Description of the game

The "rest of the world" region is composed by agents who are traditional consumers
and do not consider the opportunity to have storage and just face random consumption
for electricity and pay the resulting random bill for their electricity. Indeed, their con-
sumption is random but also spot prices they pay for their energy. The prosumer zones
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gather prosumers who optimize the capacity size of an individual battery and their in-
jections and withdrawals. Agents could be consumers, producers or alternatively both.
This last situation may represent residential consumers with photovoltaic pannels on
top of their roof. These Agents are indeed producers during daytime when the sun
shines and while they are out for work and these same Agents are consumers when they
get back home at sunset. We will consider examples with one or two prosumer zones
with different characteristics like their consumption volatility, consumption seasonality...

Remark: possible extension of the proposed model to demand side man-
agement. Let’s point out that our model can be extended to handle demand side man-
agement with respect to little adjustments. Indeed, demand response actions mainly
consist in postponing or moving forward electricity usages that can be typically repre-
sented by a storage. Costs of storage then represent the costs of effort it takes to the
Agent to modify its electricity consumption.

The optimization horizon T of the Agents is typically several hours like a day or two.
Indeed, we have in mind that residential batteries we represent in our problem can help
to dispatch Agent’s consumption over this horizon but not longer. In the simulations,
we consider T = 1 day.

Remark: model parameters. Our examples are designed to illustrate some styl-
ized behaviors of the model and parameter values we use in the following are not based
on real figures. Extensions of our model should be considered in the future, in particular
the illustration of a real system.

The random consumption of the prosumer and rest of the world zones are modeled as
the sum of a deterministic seasonal function µ and an Ornstein-Uhlenbeck (OU) process
(without independent noise for the rest of the world zone).

dQit = −aγ(Qit − µγ(t))dt+ σγdBit + σγ 0dB0
t , Qi0 = qi0, i ∈ γ,

dQ0
t = −a0(Q0

t − µ0(t))dt+ σ0dB0
t , Q0

0 = q0
0 .

We consider here only one prosumer zone, ie Γ = 1. We will consider examples in the
following where the seasonality of the rest of the world is twice in average the one of
the prosumer zones. The seasonality µ is a simple cosine function which is a proxy for
the peak and off-peak consumption of residential Agents. To summarize, the seasonal
component of the consumption are given for each date t expressed in day by:

µ0(t) = 2 cos(4πt− π/2)− 3 and µγ(t) = µ0(t)/2.

The other parameters of the model, if not stated otherwise, are in the following of the
analysis: a0 = aγ = 1, σγ = σ0 = 0.8 , σγ,0 = 0.3, p0 = 5, p1 = 5, A2 = 250, A1 = −15,

18



C = 5, K = 10, B2 = 5000 and B1 = −0.12B2.
Next figure is an example of random trajectories of the consumptions of several Agents
with corresponding spot prices driven by linear pricing rule 4.1. It happens that con-
sumption can be negative which means that the Agents are producing electricity at
that particular time. In the meanwhile spot prices can be negative which is an observed
feature of electricity spot price which typically occurs when the residual consumption
(consumption minus wind/solar productions) is very low, see for example [21].

Figure 1: Agent’s consumption (upper figure) and corresponding spot price (low figure)
with average prices (wide black line) for several simulations, T = 1 day.

5.2 Management of the storage with respect to the bill structure
and the impact of Agents on spot price

To have a storage enables Agents to influence two part of their electricity bill:

• to reduce the cost of the volumetric part of their electricity bill by reporting
their consumption/production when spot prices are low/high which also means
time-arbitraging spot. By doing so, they have a smoothing impact on spot prices:
their peak consumption is shifted during low global consumption period whereas
their off-peak consumption is shifted during high global consumption period. This
impacts directly the other population who also pays their volumetric part at the
spot price.

• to reduce the cost of their capacity charge by limiting their maximum con-
sumption. In general, this has less influence on the other consumer, ie. the rest
of the world, as this smoothes less spot prices.
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Several factors imply that Agents are going to use their storage rather to favor one
reduction or the other:

• The influence of the Agent’s consumption on the spot price: the influence
of the Agent’s consumption is measured by two factors. First of all is the individual
impact of the Agents linked to the size of the region he belongs to with respect to
others (represented by parameter πi). The second factor is the price differential
between peak and off-peak period linked in our model to the global influence of
the electricity consumption of the whole system over the spot price represented
by parameter p1. Small dissemination of storage in the system (low πi) and/or
large peak/off-peak spot price differential (high p1) favor spot arbitrage and the
willingness by Agent to use their storage to reduce the cost of their volumetric
part. Indeed, high πi which means lots of storage on the sytem will diminish
the interest of storage to make spot arbitrage because for example the individual
Agent who decides to store to benefit from low spot price is also imitated by many
others which has for consequence to increase spot price. On the contrary, low p1

implies that the seasonality of spot price is less and automatically reduces the
peak/off-peak differential.

• The bill structure: depending on the proportional weight of the volumetric
part of the bill (PN,αt

(
Qit − αit

)
) compared to the demand charge part of the bill

(K
γ

2 |Q
i
t − αit|2), the Agents manage their storage differently. If bill are driven

mainly by the demand charge, ie high K, the Agents use their storage so that
they smooth the seasonality of their consumption and even obtain a residual con-
sumption Qit − αit nearly constant and as close as possible to the average of the
consumption Qit over the period.

Let’s illustrate these conclusions by numerical examples. First, we modeled the rest
of the world and the prosumer zones to be equivalent in terms of consumption but we
suppose that the prosumers’ zone has no influence over the spot price compared
to the traditional consumers zone. It means that even if the number of prosumers is
non negligible (can even be approximated as being infinite), their number compared to
traditional consumers is low. This should correspond to a situation where residential
storages have being developed but are still an exception in the population. Fig. 1 shows
one simulation of spot price and the consumption Qi of the prosumers before they con-
sider using their storage. The optimized way to used their storage is as expected to
store when prices are low and to withdraw when prices are high as shown in Fig. 2 on
one simulation of spot and Agents’ consumption.

Let’s point out that the storage curves are almost always positive. Negative values
do occur but do not disrupt interpretations we can extract from the model. These
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negative value may be thought as the necessity to consider an energy reserve in the
storage: the storage in normal mode is always operated above an energy reserve which
may be necessary to use for some particular consumption/storage level occurrences.

Figure 2: One simulation of spot price (upper graph), prosumers’ consumption Qi

(middle graph), prosumer’s net consumptionQi−αi (lower middle graph) and prosumer’
storage level (lower graph) for every prosumers.

As expected, the resulting consumption that prosumers are adressing to the network
is therefore a mirror of their initial ones as shown in Fig. 2. The storage is used such
that Agents are reporting their high consumption when prices are low and are consum-
ing less when prices are high. In addition, their net consumption Qi − αi is smoother
compared to original consumption Qi. To have local storage enable to reduce the max-
imum instantaneous power consumption in average by 21% for every prosumers and
reduces the electricity bill of prosumers by more than 13% (the total reduction after
including storage costs is only 7%). This is summarized in the following array which
indicates the repartition of the bill between the volumetric part and the capacity part
and the reduction on both parts implied by having a local storage.

electricity bill reduction implied by battery

volumetric charge 76% 21%

demand charge 24% 8%

prosumers - battery owners

21



If the prosumer zone has now equal influence on the spot price as the rest of
the world, which means that batteries would have spread among the population in such
a way that battery owners and non-battery owners are equally distributed among the
total population. In this case, the benefit of having a local battery is as expected slightly
lower. Indeed, to postpone a large consumption when price are lower is less efficient
because every prosumers do the same and as such make the spot price to increase. We
now observe the following impacts (after having modified spot price parameter p1 such
that the average spot price remains the same as the previous one).

• the spot price are smoothed (maximum prices decrease whereas minimum prices
increase) and their volatility decreases (see upper graph of fig. 3). This smoothing
benefits to non-storer zone, indeed the spot price diminishes when their consump-
tion is high and spot price increases when their consumption is low which has a
lower impact on their bill. The "rest of the world" bill has diminished by 5 %.

• it is not optimal, contrary to previous example, to completely flip the maximum
and minimum consumption using the battery (see middle and lower graph of fig.
3), as such the reduction of the electricity bill on the volumetric charge is lower
than in the previous case when the influence on the spot price of prosumers was
very low,

• the prosumers make more effort to gain on their demand charge part of their bill:
they diminish their maximum consumption more (30% reduction compared to 21
% reduction when they have no influence on the spot price) because their main
interest is no more spot arbitrage.

• the optimal battery capacity is slightly lower.

Remark for autosufficient prosumer: we observe taht a prosumer who produces
in average enough to fulfill its consumption in energy can disconnect from the system
if the gain on spot is too little.

electricity bill reduction implied by battery

volumetric charge 76% 13%

demand charge 24% 16%

5.3 Impact of decentralized management of batteries against
centralized management

The impact of decentralisation against centralization optimization can be measured with
the common notion in game theory of Price of Anarchy, PoA. PoA measures the ratio
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Figure 3: One simulation of spot price (upper graph) without battery in the system
(straight line) and with batteries (dashed line), prosumers’ original consumption Qi

(middle graph), and prosumers’ net consumption Qi − αi (lower graph) for every pro-
sumers.

of the total costs of all zones obtained with decentralized optimization (MFG optimiza-
tion) an the costs of the total costs of all zones obtained with centralized optimization
(MFC optimization)). PoA is always greater than 1.

In the example we consider with two equivalent zones in terms of consumption,
and influence on the spot price, PoA is close to 1 meaning that the impact of having
decentralized batteries in the system for the two consumer zones is not too high and
that the optimization is rather close to what would be obtained by a centralized planner.
Nevertheless, we observe some slight impacts: indeed a centralized management would
allocate cost reductions more in favor to normal consumers ("rest of the world") than
what a decentralized management does.

• a centralized planner would install slightly higher battery capacity which would
penalized a bit the battery owners zone because the cost of their battery would
increase

• to have bigger batteries would make the spot price smoother (see fig. 4) and
benefit more to the population without battery by reducing more their energy
payment (7% cost reduction compared to 5% in MFG management)
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Figure 4: Average spot price over without battery in the system (straigth line), with
decentralized batteries (dashed line) and with batteries optimized by a central planner
(dotted line)

5.4 Consumption variability increases the benefit of storage

The more the volatility of the consumptions, the more useful the batteries are for pro-
sumers. Indeed, when the volatility of consumptions increases, the fraction of the bill
related to the demand charge increases. If the consumption variability is 2.5 times
higher, the battery still diminish the maximum consumption power by around 30 %,
this has therefore a bigger impact on the bill (22% reduction to be compared to 13
% when standard consumption variability). Of course, in order to be able to reduce
the maximum capacity of the prosumer’s consumption in the same order as when the
volatility of its consumptions is 2.5 times lower, the battery capacity also increases with
the variability of consumption. To summarized, increase of consumption variability has
two main impacts:

• increase of battery capacity of prosumers

• a larger reduction of the electricity bill

electricity bill reduction implied by battery

volumetric charge 67% 15%

demand charge 23% 28%

impact for battery owners and system with 2.5 higher consumption volatilities

5.5 Example of two prosumer competing zones

Our model can deal with several zones. Let’s modify a bit our core example to illustrate
a competition between two zones.. We consider now one prosumer zone whose seasonal
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pattern of consumption is in opposition with the "rest of the world" . This means that
the prosumer peak consumption now occurs when the "rest of the world" has its lowest
consumption. Without storage, spot price pattern is still governed by the "rest of the
world" consumption seasonality (because the seasonality of "rest of the game" is twice
the one of prosumer zone as chosen in section 5.1). This induced that the energy cost of
prosumers, without storage, is now lower than in previous examples (only 70%) because
they naturally consumes when prices are the lowest.

If this prosumer zone now installs local batteries, prosumers will install lower battery
capacity than in previous examples and only to fulfill the objective to diminish their
demand charge (indeed their consumption pattern is naturally optimal and their benefit
from spot arbitrage is then very low). By doing so, prosumers diminishes their maxi-
mum consumption which occur at off-peak and therefore make the off-peak spot price
slightly diminish. This reduction of consumption is reported when their consumption
is at the lowest which also correspond to the peak of spot prices and therefore makes
the peak spot price slightly increase. In this example, the storage management has a
negative impact for the "rest of the world" population which has its energy part of its
bill slightly increases (1% increase).

If the prosumer zone is now divided in two zones of equal size: one zone with a
seasonal pattern in phase with the "rest of the world" and referred next as "in-phase"
zone and one in opposition to the seasonality of the "rest of the world" and referred as
"de-phase" zone. In that case, the "de-phase" zone will have an increase of its bill after
having installed batteries because the "in-phase" has also installed batteries. By doing
so, the "in-phase" zone has smooth spot prices which is negative for "de-phase" zone.

5.6 Conclusion of numerical tests

Examples presented in this paper are some illustrations of what the model can enable
to study. Many other experiments and tests can be conducted easily because the model
is quite generic. Let’s recall that the model can cope with quite general dynamics
for the consumptions/production and is not limited to the simple Ornstein-Uhlenbeck
considered here. In particular, the implementation of cases calibrated on real figures
should be conducted in future research. Very recently [15] caracterised MFG with
constrained controls, their results may be applied for our class of Extended-MFG to
study how physical constraints of the storage influence numerical results.
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