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Abstract. Nonnegative matrix factorization (NMF) has been well-known as a
powerful spectral model for audio signals. Existing work, including ours, has in-
vestigated the use of generic source spectral models (GSSM) based on NMF for
single-channel audio source separation and shown its efficiency in different set-
tings. This paper extends the work to multichannel case where the GSSM is com-
bined with the source spatial covariance model within a unified Gaussian model-
ing framework. Specially, unlike a conventional combination where the estimated
variances of each source are further constrained by NMF separately, we propose
to constrain the total variances of all sources altogether and found a better separa-
tion performance. We present the expectation-maximization (EM) algorithm for
the parameter estimation. We demonstrate the effectiveness of the proposed ap-
proach by using a benchmark dataset provided within the 2016 Signal Separation
Evaluation Campaign.

Keywords: Multichannel audio source separation, generic spectral model, non-
negative matrix factorization, spatial covariance model, Gaussian modeling.

1 INTRODUCTION

Audio source separation, which aims at separating individual sound sources from their
mixture, is crucial in many practical applications such as speech enhancement, sound
post-production, and robotics. Despite numerous efforts in the past decades, its per-
formance in real-world conditions is still far from perfect [1]. To improve the separa-
tion performance, depending on specific scenario where certain side information can be
known, a range of informed source separation algorithms has been proposed in the liter-
ature [2]. Such side information can be e.g., score associated with musical sources [3],
text associated with spoken speeches [4], motion associated with audio-visual objects
in a video [5], or deformed references [6]. Following this trend, very abstract semantic
information just about the type of audio source (e.g., if a source in the mixture is speech,
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musical instrument, or environmental sound) has been used to create a so-called uni-
versal speech model in [7] or the universal sound class model in [8]. Exploiting this
idea, we have investigated the use of generic speech and noise model for single-channel
speech separation in [9] and shown its promising result. Further more, we have pro-
posed to combine the block sparsity constraint investigated in [7] with the component
sparsity constraint presented in [8] in a common formulation so as to take into account
the advantage of both of them.

It is interesting to note that most cited work above [3–5, 7, 9, 8] considered only
a single channel case, where the mixtures are mono, and exploited non-negative ma-
trix factorization (NMF) [10, 11] to model the spectral characteristics of audio sources.
When more recording channels are available, multichannel source separation algorithm
should be considered as it allows to exploit important information about the spatial lo-
cations of the sources. Such additional information has been shown to greatly improve
the separation performance. To date, the spatial cues can be modeled by e.g., the inter-
channel time difference and interchannel intensity difference [12], the rank-1 mixing
vector in the frequency domain [13, 14], or the full-rank spatial covariance matrix in
Gaussian modeling framework [15, 16]. In this paper, we present an extension of our
previous work [9] to multichannel case where the NMF-based GSSM is combined with
the powerful full-rank spatial covariance model in a Gaussian modeling paradigm [15].
Note that the combination of NMF with such spatial covariance model has been in-
vestigated in several works [17, 18, 16]. However, our work is different from [17, 18]
in the sense that we use the pre-trained GSSM so as the intermediate source variances
are better constrained. As consequence, the overall algorithm is much less sensitive
to the parameter initialization and it does not suffer from the well-known permutation
problem. Our work is also different from [16] as we exploit the mixed group sparsity
constraint in the optimization algorithm in order to automatically select the most rep-
resentative spectral components in the GSSM. Specially, unlike all existing approaches
[17, 18, 16] where the estimated variances of each source are independently constrained
by NMF, we propose to constrain the total variances of all sources altogether so as the
parameters are estimated in a more global consistent way.

The structure of the rest of the paper is as follows. We introduce the problem formu-
lation and modeling in Section 2. We then present the proposed multichannel algorithm
with the details of parameter estimation in Section 3. We validate the effectiveness of
the proposed approach in Section 4. Finally we conclude in Section 5.

2 PROBLEM FORMULATION AND MODELING

Let us denote by cj(t) ∈ RI×1 the contribution of j-th source, j = 1, 2, ..., J , to an
array of I microphones, and x(t) =

∑J
j=1 cj(t) the mixture signal. The objective of

source separation is to estimate cj(t) given x(t). As most source separation algorithm
operates in the frequency domain, we denote by cj(n, f) and x(n, f) the short-term
Fourier transform (STFT) of cj(t) and x(t), respectively, where n = 1, 2, .., N presents
time frame index and f = 1, 2, ..., F the frequency bin index. The mixing model in the
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frequency domain writes:

x(n, f) =

J∑
j=1

cj(n, f). (1)

2.1 General Gaussian modeling framework

We consider the nonstationary Gaussian modeling framework [15], where cj(n, f) is
modeled as a zero-mean complex Gaussian random vector cj(n, f) ∼ Nc(0,Σj(n, f)).
Here 0 denotes a I×1 vector of zeros, and the covariance matrix Σj(n, f) is factorized
as

Σj(n, f) = vj(n, f)Rj(f), (2)

where vj(n, f) are scalar time-dependent variances encoding the spectro-temporal power
of the sources and Rj(f) are time-independent I × I spatial covariance matrices en-
coding their spatial characteristics. Under the assumption that the source images are
statistically independent, the mixture vector x(n, f) also follows a zero-mean multi-
variate complex Gaussian distribution with the covariance matrix computed as

Σx(n, f) =

J∑
j=1

vj(n, f)Rj(f). (3)

Denoting by Σ̂x(n, f) = E(x(n, f)xH(n, f)) the empirical covariance matrix,
which can be numerically computed by local averaging over neighborhoods of (n, f)
[15, 16]. The negative log-likelihood is computed as

L(θ) =
∑
n,f

tr
(
Σ−1

x (n, f)Σ̂x(n, f)
)
+ log det

(
πΣx(n, f)

)
, (4)

where det() presents the matrix determinant. Under this model, the parameters
{vj(n, f),Rj(f)}j,n,f can be estimated in the Maximum likelihood (ML) sense by
minimizing L(θ). Then the STFT coefficients of the source images are obtained in the
minimum mean square error (MMSE) sense by multichannel Wiener filtering as

ĉj(n, f) = vj(n, f)Rj(f)Σ
−1
x (n, f)x(n, f). (5)

Finally, the estimated time-domain source images ĉj(t) can be obtained by performing
the inverse STFT of ĉj(n, f).

2.2 NMF-based spectral model

As mentioned earlier, NMF has been widely applied to single channel audio source
separation where the spectrogam of the mixture is factorized by two smaller matrices
known as the spectral dictionary and the activation [11]. When adapting NMF to the
considered Gaussian modeling framework, the nonnegative source variance vj(n, f)
can be approximated as

vj(n, f) ≈ v̂j(n, f) =
Kj∑
k=1

wjfkhjkn, (6)
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where wjfk is an entry of the spectral basis matrix Wj ∈ RF×Kj

+ , hjkn is an entry
of the activation matrix Hj ∈ RKj×N

+ , and Kj the number of latent components in
the NMF model to model the j-th source. Given the matrix of the source variances
Vj = {vj(n, f)}n,f ∈ RF×N

+ , the corresponding NMF parameters can be estimated
by minimizing the Itakura-Saito divergence, which offers scale invariant property, as

min
Hj≥0,Wj≥0

D(Vj‖WjHj), (7)

where D(Vj‖WjHj) =
∑N

n=1

∑F
f=1 dIS

(
vj(n, f)‖v̂j(n, f)

)
, and dIS(x‖y) = x

y −
log(xy )− 1.

The parameters {Wj ,Hj} are usually initialized with random non-negative values
and are iteratively updated via the well-known multiplicative update (MU) rules [10,
11]. To our best knowledge, this NMF formulation for the source variances within the
presenting Gaussian modeling framework was first presented in [17], and then further
discussed in [18].

3 PROPOSED APPROACH

We will first introduce the GSSM construction in Section 3.1. We then discuss the novel
GSSM fitting with a sparsity constraint in Section 3.2. Finally, we present the derived
EM algorithm in Section 3.3. Note that we focus on NMF as spectral model in this
paper, however the whole idea of the proposed approach can actually be used for other
spectral models than NMF.

3.1 GSSM construction

We assume that the types of sources in the mixture are known and some examples
of them are available. This is actually feasible in practice as we often know at least
what type of target signal to extract from a recording, e.g., in the speech enhancement
usecase, one target source is speech and another is noise. Let the spectrogram of p-
th example of the j-th source spj (t) be denoted by Vp

j . First, Vp
j is used to learn a

corresponding NMF spectral dictionary, denoted by Wp
j , by optimizing the criterion

similarly to (7):
min

Hp
j≥0,Wp

j≥0
D(Vp

j‖W
p
jH

p
j ) (8)

where Hp
j is the time activation matrix. Given Wp

j for all examples p = 1, ..., Pj of the
j-th source, the GSSM for the j-th source is constructed as

Uj = [W1
j , . . . ,W

Pj

j ], (9)

then the GSSM for all the sources is computed by

U = [U1, . . . ,UJ ]. (10)

As an example for speech and noise separation, in practical implementation we
may need several speech examples from different male voices and female voices (e.g.,
P1 = 4), and several examples of different types of noise such as those from outdoor
environment, cafeteria, waterfall, street (e.g., P2 = 5).
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3.2 GSSM fitting with mixed group sparsity constraint

The GSSM for all sources U constructed in (10) become a large matrix when the num-
ber of examples Pj for each source increases, and it is actually a redundant dictionary
since different examples may share similar spectral patterns. Thus in the NMF model
fitting, sparsity constraint is naturally needed so as to automatically select only a subset
of U which represents the sources in the mixture [19]. In other words, the model-based
spectrogram of the mixture Ṽ =

∑J
j=1 Vj is decomposed by solving the following

optimization problem
min
H≥0

D(Ṽ‖UH) + λΩ(H) (11)

whereΩ(H) presents a penalty function imposing sparsity on the activation matrix H ∈
RK×N

+ , and λ is a trade-off parameter determining the contribution of the penalty. Note
that unlike existing approaches [17, 18, 16] where the matrix of the estimated variances
of each source Vj was constrained by NMF independently as (7), we propose here to
constrain the matrix of the total variances of all sources Ṽ altogether by (11). This can
be seen as an additional NMF-based separation step applied on the source variances,
while the existing works does not perform any additional separation of the variances,
but more like denoising of the already separated variances. In our recent work [9] we
investigated a general form for the penalty function as

Ω(H) = α

G∑
g=1

log(ε+ ‖Hg‖1) + (1− α)
K∑

k=1

log(ε+ ‖hk‖1), (12)

where the first term on the right hand side of the equation presents the so-called block
sparsity-inducing penalty (which enforces the activation of relevant examples only while
omitting irrelevant ones since their corresponding activation block in H will likely
converge to zero), the second term presents the so-called component sparsity-inducing
penalty (which enforces the activation of relevant components in U only), α ∈ [0, 1]
weights the contribution of each term. In (12), hk ∈ R1×N

+ is a row (or component) of
H, Hg is a subset of H representing the activation coefficients for g-th block, G is the
total number of blocks, ε is a non-zero constant (i.e., set by 3∗10−6 in our experiment),
and ‖.‖1 denotes `1-norm operator (i.e., the maximum absolute column sum of the ma-
trix). In the considered setting, a block represents one training example for a source and
G is the total number of used examples (i.e., G =

∑J
j=1 Pj).

By putting (12) into (11), we have a complete criterion for estimating H given Ṽ
and the pre-trained spectral model U. The derived MU rule for updating H is presented
in [9] and summarized in the Algorithm 1, where Yg is a uniform matrix of the same
size as Hg and zk a uniform row vector of the same size as hk.

3.3 Proposed multichannel algorithm

Within the presenting Gaussian modeling framework, EM algorithm has been derived to
estimate the parameters {vj(n, f),Rj(f)}j,n,f by considering the set of hidden STFT
coeffients of all the source images {cj(n, f)}n,f as the complete data. In the E-step,
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the Wierner filter Qj(n, f) and the expected covatiance Σ̂j(n, f) of the spatial images
of the j-th source are computed. Then in the M-step, Rj(f) and vj(n, f) are updated
by minimizing (4), which gives close-form solution. The detail of this EM derivation
can be found in [15, 18]. For the proposed approach as far as the GSSM concerned,
the E-step of EM algorithm remains the same. In the M-step, we additionally perform
the optimization defined in (11) by MU rules so as the estimated intermediate source
variance vj(n, f) is further updated with the supervision of the GSSM. The detail of
EM algorithm for the parameter estimation is summarized in Algorithm 1.

Algorithm 1 EM algorithm for the parameter update
// E-step (perform calculation for all j, n, f ):
Σj(n, f) = vj(n, f)Rj(f) // equation (2)
Σx(n, f) =

∑J
j=1 vj(n, f)Rj(f) // equation (3)

Qj(n, f) = Σj(n, f)Σ
−1
x (n, f)

Σ̂j(n, f) = Qj(n, f)Σ̂x(n, f)Q
H
j (n, f) +

(
I−Qj(n, f)

)
Σj(n, f)

// M-step (perform calculation for all j, n, f )
Rj(f) =

1
N

∑N
n=1

1
vj(n,f)

Σ̂j(n, f) // update Rj(f)

vj(n, f) =
1
I

tr(R−1
j (f)Σ̂j(n, f)) // update vj(n, f)

Vj = {vj(n, f)}n,f
Ṽ =

∑J
j=1 Vj

// Perform NMF in the M-step to further constrain source spectra by the GSSM
for iter = 1, ...,MU-iteration do

for g = 1, ..., G do
Yg ← 1

ε+‖Hg‖1
end for
Y = [YT

1 , . . . ,Y
T
G]
T

for k = 1, ...,K do
zk ← 1

ε+‖hk‖1
end for
Z = [zT1 , . . . , z

T
K ]T

V̂ = UH

H← H�
(

UT (Ṽ�V̂.−2)

UT (V̂.−1)+λ(αY+(1−α)Z)

). 1
2 // MU rule

end for

vj(n, f) = [UjHj ]n,f // updating constrained spectra

4 EXPERIMENTS

4.1 Dataset and settings

We validated the performance of the proposed algorithm in a popular but very impor-
tant speech enhancement usecase where we know already two types of sources in the
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mixture: speech and noise. For better comparison with the state of the art, we used
the benchmark development dataset of the ”Two-channel mixtures of speech and real-
world background noise” (BGN) task1 within the SiSEC 2016 [1]. This devset con-
tained stereo mixtures of 10 second duration and 16 KHz sampling rate. They were
mixed of male/female speeches and noises recorded from six different public environ-
ments: cafeteria (Ca), square (Sq), and subway (Su). Overall there were nine mixtures
of two sources: three with Ca noise, four with Sq noise, and two with Su noise. The
signal-to-noise ratio was drawn randomly per mixture between -17 and +12 dB by the
dataset creators.

For training the GSSM for speech and noise, we took one male voice and two fe-
male voices from the SiSEC 20152. These three speech examples were also 10-second
long. Five noise training examples were extracted from the Diverse Environments Mul-
tichannel Acoustic Noise Database (DEMAND)3. Again they were 10-second long and
contained three types of environmental noise: cafeteria, square, metro. We made sure
that these examples used for GSSM training are different from those in the devset,
which were used for testing. The number of NMF components in Wp

j for each speech
example was set to 32, while that for noise example was 16, and each Wp

j was obtained
after 20 MU iterations. Other parameter settings were as follows. The STFT window
length of 50% overllaping was 1024. The spatial covariance matrix Rj(f) for noise was
initialized following the diffuse model, while Rj(f) for speech was initialized follow-
ing the direct+diffuse model [15] assuming the direction-of-arrival (DoA) for speech
source is 900. For testing, we first varied the number of EM and MU iterations and
found that generally the convergence obtained after about 10 iterations. Specifically the
best result was obtained by 15 EM iterations and 10 MU iterations. The trade-off pa-
rameter λ determining the contribution of the sparsity-inducing penalty in (11) and the
factor α weighting the contribution of each penalty term in (12) were tested with dif-
ferent values: λ = {1, 10, 25, 50, 100, 200, 500}, α = {0, 0.2, 0.4, 0.6, 0.8, 1} and we
found that the algorithm is less sensitive to the choice of α, while more sensitive to the
choice of λ and λ > 10 decreases the separation performance. The best choice for these
parameters are λ = 10, α = 0.2.

4.2 Comparison results

We compare the speech separation performance of the proposed approach with several
state of the art and baseline algorithms as follows:

– Liu’s method: the algorithm performed Time Difference of Arrival (TDOA) cluster-
ing based on GCC-PHAT and participated to the same SiSEC 2016 campaign [1].
The separation results were submitted by the authors and evaluated by the SiSEC
organizers.

– Wood’s method [20]: this algorithm first applied NMF to the magnitude spectro-
grams of the mixtures with channels concatenated in time. Each dictionary atom

1 https://sisec.inria.fr/sisec-2016/bgn-2016/
2 https://sisec.inria.fr/sisec-2015/2015-underdetermined-speech-and-music-mixtures/.
3 http://parole.loria.fr/DEMAND/.
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was then clustered to either the speech or the noise according to its spatial origin.
Again the separation results for devset were submitted to the SiSEC 2016 campaign
and evaluated by the SiSEC organizers.

– Arberet’s method [17]: using the similar Gaussian modeling framework, the al-
gorithm further constrained the estimated source variances by unsupervised NMF
where the parameters were obtained by optimizing the criterion (7) in the M-step of
EM algorithm instead of (11) like us. Such optimization criterion was implemented
by Ozerov et. al. in [18].

– Baseline 1: the presenting GSSM + full-rank spatial covariance approach but there
is no sparsity constraint in (11) (i.e., λ = 0). This is to investigate the importance
of the sparsity constraint (12) in the GSSM fitting.

– Baseline 2: the presenting GSSM + full-rank spatial covariance approach but the
estimated variances of each source Vj are further constrained by NMF where the
corresponding activation matrix Hj obtained by optimizing the following criterion:

min
Hj≥0

D(Vj‖UjHj) + λΩ(Hj) (13)

We submitted results obtained by this method to the SiSEC 2016 BGN task and ob-
tained the best performance among other submitting methods in term of the overall
signal-to-distortion (SDR) ratio [1].

– Proposed method: the presenting GSSM + full-rank spatial covariance approach
where the matrix of the total variances of all sources Ṽ is constrained by NMF
and the activation matrix is obtained by optimizing (11). EM algorithm for the
corresponding parameter updates is present in Algorithm 1.

The separation performance (for speech source only) for all approaches was evaluated
by the signal-to-distortion ratio (SDR), the signal-to-interference ratio (SIR), the signal-
to-artifacts ratio (SAR), and the source image-to-spatial distortion ratio (ISR), measured
in dB [21]. These values are shown in Table 1 where the higher the better.

Methods SDR SIR SAR ISR

Liu’s method -7.0 -1.4 15.0 3.1
Wood’s method [20] 1.9 3.6 3.7 5.1

Arberet’s method [17, 18] 4.4 4.6 12.1 15.9
Baseline 1 (No sparsity constraint) 0.4 -1.1 9.5 8.3

Baseline 2 (λ = 10, α = 0.2) 7.4 8.9 12.7 11.3

Proposed method (λ = 10, α = 0.2) 7.7 10.7 11.6 13.9
Table 1. Average speech separation performance obtained on the devset of the BGN task of
SiSEC 2016. Results for Liu’s method and Wood’s method were submitted by the authors [1].

It is interesting to see that the result obtained by the Baseline 1 is lower than that
of Arberet’s method, even the former used the pre-trained GSSM while the later was
completely unsupervised. It reveals that the GSSM itself is redundant and contains some
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irrelevant spectral patterns with the actual sources in the mixture. Thus constraining
the source variances by the GSSM without a relevant spectral pattern selection guided
by the sparsity penalty is even worse than unsupervised NMF case where the spectral
patterns were randomly initialized and then updated by MU rules. The importance of
such sparsity penalty is explicitly confirmed by the fact that the result obtained by the
Baseline 2 was far more better than that of the Baseline 1. It is also not surprising to
see that the Baseline 2 clearly outperforms Arberet’s method as the former exploited
additional information about the types of sources in the mixtures so as to learn the
GSSM in advance. We also tested the case where the small size dictionary obtained
by jointly decomposing all training examples for the target signal, but the performance
was lower than the Baseline 2. Finally, the proposed method offers the best separation
performance in terms of SDR and SIR, the two important criteria. This confirms the
effectiveness of the proposed approach where the GSSM is successfully combined with
the spatial covariance model in a unified Gaussian modeling framework. Furthermore,
the benefit of the new criterion (11) compared to the conventional one (13) for the NMF
parameter estimation is supported. Our further analysis, which is not described here
due to the lack of space, shows in addition that with such new criterion, the algorithm
is less sensitive to the parameter initialization and the choice of hyper-parameters λ
and α as compared to the Baseline 2.

5 CONCLUSION

We have presented a novel multichannel audio source separation algorithm, which ex-
ploits the use of generic source spectral model within the well-established Gaussian
modeling framework. Such redundant GSSM can be easily learned from source exam-
ples by NMF and shown to be very useful in guiding the source separation. Specially,
we have proposed a new optimization criterion in order to better constrain the interme-
diate source variances estimated in each EM iteration. Experiment with a benchmark
dataset from the SiSEC 2016 campaign has confirmed the effectiveness of the proposed
approach compared to both the state of the art and the baselines. Motivating by the
GSSM, future work can be devoted to extend the current approach so as to exploit in
addition the use of a generic spatial covariance model, which remains to be defined.

References
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