Non-negative Decomposition of Geophysical Dynamics
Manuel Lopez Radcenco, Ronan Fablet, Abdeldjalil Aissa El Bey, Pierre Ailliot

To cite this version:

HAL Id: hal-01739801
https://hal.archives-ouvertes.fr/hal-01739801
Submitted on 21 Mar 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
NON-NEGATIVE DECOMPOSITION OF GEOPHYSICAL DYNAMICS

1. Abstract
The decomposition of geophysical processes into relevant modes is a key issue for characterization, forecasting and reconstruction problems in environmental sciences. Moreover, the blind separation of contributions associated with different sources is a classical problem in signal and image processing. Recently, significant advances have been reported with the introduction of non-negative and sparse formulations. In this work, we address the blind decomposition of linear operators or transfer functions between variables of interest, with an emphasis on a non-negative setting. We illustrate the relevance of these decompositions for the analysis, prediction and reconstruction of geophysical dynamics.

2. Context and motivation
Satellite remote sensing:
- Huge datasets exist.
- Largely under-exploited scientific potential.

General objective: Exploit satellite remote sensing datasets to improve our understanding of geophysical processes.
Specific objective: Characterization and decomposition of variable relationships from observations.

3. Model
Non-negative linear decomposition:

\[y_k = \sum_{i=1}^{n} \alpha_{ik} \beta_k x_i + \omega_k \]

Non-negative superposition of linear modes.

Subject to \(\alpha_{ik} \geq 0, \quad \forall k \in [1, K], \quad \forall i \in [1, N] \)

- Linear modes \(\beta_k \) are shared by all observation pairs.
- Non-negative mixing coefficients \(\alpha_{ik} \) are specific to each observation pair.
- Model characterization can be reformulated as a dictionary learning problem.

4. Applications
I. Upper ocean dynamics segmentation
Case study: Alboran Sea (35°N - 38°N, 0°W - 5°W).
- Daily synthetic images (2009-2012):
 - Sea surface temperature (SST).
 - Sea surface salinity (SSS).
- Cold water intake from the Atlantic through the Gibraltar Strait.
- Strong seasonal patterns.
- Inversion of SST/SSS correlation.

II. Analog forecasting of dynamical systems
Case study: Lorenz ‘96 dynamical system

\[x_{t+1} = S(x_t) \]

\[y_{t+1} = S(y_t) \]

Local linear regression
Non-negative decomposition (K=4)

Fig. 4: Analog forecasting with non-negative decomposition.
Fig. 8: Normalized forecasting RMSE vs. number of analogs used to estimate locally-linear forecasting operators.

III. Super-resolution of sea surface height (SSH) fields
Case study: Western Mediterranean Sea (36.5°N - 40°N, 15°E - 8.5°E).

\[x_{t} = [SSH_{L}(x_{t-1}), SST_{t}(x_{t-1})] \]

\[y_{t} = SSH_{H}(x_{t}) \]

Local linear regression
Non-negative decomposition (K=4)

Fig. 6: Patch-based super-resolution of SSH fields from OI-SSH, SST and along-track SSH.
Fig. 7: High-resolution SSH image reconstruction, April 20th, 2012

<table>
<thead>
<tr>
<th>Method</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA</td>
<td>0.1697</td>
</tr>
<tr>
<td>KNN</td>
<td>0.2228</td>
</tr>
<tr>
<td>NN</td>
<td>0.1647</td>
</tr>
<tr>
<td>Non-negative decom.</td>
<td>0.1666</td>
</tr>
<tr>
<td>SSH</td>
<td>0.2228</td>
</tr>
</tbody>
</table>

Tab. 1: Mean high-resolution SSH field reconstruction error.

5. Conclusion
We introduced a new observation-based non-negative decomposition model and explored applications to the characterization and forecasting of geophysical dynamics. The proposed formulation exploits a dictionary-based formulation and has increased flexibility and adaptability, since it allows for the exploitation of alternative constraints. We illustrated the practicality and versatility of the proposed formulation by presenting applications to the analysis of geophysical processes, the prediction of dynamical systems and the super-resolution of altimetric fields. Future work will explore and evaluate alternative model constraints as well as the integration of the proposed approach in analog data assimilation methods. Moreover, an application to the super-resolution of SSH fields from wide-swath pseudo-SWOT observations, possibly enabling the modeling of higher-order geometrical details, is also considered.

Contact: manuel.lopezradcenco@imt-atlantique.fr
http://perso.telecom-bretagne.eu/manuellopezradcenco/