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ABSTRACT

In most climate impact studies, model uncertainty in projections is estimated
as the empirical variance of the climate responses for the different modeling
chains. These estimates are however biased. We explore the importance of
the bias for a simple but classical configuration where uncertainties in pro-
jections are composed of two sources: model uncertainty and internal climate
variability. We derive exact formulation of the bias. It is positive, i.e. the
empirical variance tends to overestimate the true model uncertainty variance.
It can be especially high when a single time ANOVA is used for the analysis.
In the most critical configurations, when the number of members available
for each modeling chain is small (≤ 3) and when internal variability explains
most of total uncertainty variance (75% or more), the overestimation is higher
than 100% of the true model uncertainty variance. The bias is considerably
smaller with a time series ANOVA approach, owing to the multiple time steps
accounted for. The longer the transient time period used for the analysis,
the smaller the bias. When a quasi-ergodic ANOVA approach is applied to
decadal data for the whole 1980-2100 period, the bias is up to 2.5 to 20 times
smaller than that obtained with a single time approach, depending on the pro-
jection lead time. Whatever the approach, the bias is likely to be not negligible
for a large number of climate impact studies resulting in a likely large over-
estimation of the contribution of model uncertainty to total variance. In many
cases, classical empirical estimators of model uncertainty should be thus bias-
corrected.
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1. Introduction29

A critical issue in climate change studies is the estimation of uncertainties in projec-30

tions along with the contribution of the different uncertainty sources, namely scenario uncertainty,31

the different components of model uncertainty and internal variability (e.g. Hawkins and Sutton32

2009). Such estimation is intended to help evaluating the significance of estimated changes or at33

least their value for eventual planning purposes. This is besides intended to highlight the most im-34

portant uncertainty sources. This thus allows estimating the fraction of total uncertainty that could35

be narrowed via scenario refinement and model improvement. This also allows estimating the36

irreductible fraction of total uncertainty pertaining to natural variability (e.g. Hawkins and Sutton37

2011; Lafaysse et al. 2014).38

In the recent years, various methods have been proposed for partitioning uncertainty39

sources associated to Multimodel Multimember Ensembles (MM2E) of transient climate projec-40

tions (Johns et al. 2011; Jacob et al. 2014). Most are based on an Analysis of Variance (ANOVA)41

of projections available for the considered projection lead time (Hingray et al. 2007; Yip et al.42

2011; Giuntoli et al. 2015; Bosshard et al. 2013; van Pelt et al. 2015). In this single time approach,43

and provided multiple members are available for each modeling chain, the model uncertainty com-44

ponents are estimated from the dispersion between the climate responses of the different modeling45

chains, obtained for each chain from the multimember mean of the projections. Similarly, the46

internal variability component is estimated from the inter-member variance of the projections.47

In recent years, long time series have become available for the large majority of climate48

model experiments and in turn for a large number of modeling chains. Another approach is to49

estimate the different uncertainty components from those times series, based for instance on a50

quasi-ergodic assumption for climate simulations in transient climate (QEANOVA) (Hingray and51

Saı̈d 2014). This assumption considers that if the climate response of a particular simulation chain52

varies over the period, this variation should be gradual and smooth, the higher frequency variations53

of the time series being due to internal variability alone. It assumes also that the internal variability54

remains constant over the considered period or that it varies as a gradual and smooth function of55

the climate response of the chain. These assumptions were used by Räisänen (2001); Hawkins56

and Sutton (2009, 2011); Charlton-Perez et al. (2010); Hingray and Saı̈d (2014); Bracegirdle et al.57

(2014); Reintges et al. (2017) for changes in different climate variables such as surface tempera-58

ture, precipitation, winds or stratospheric ozone or Atlantic Meridional Overturning Circulation.59

In this time series approach, the noise-free signal, extracted from the time series of each simulation60

chain, defines the climate change response of the chain and its possible evolution with time. The61

climate responses of all chains can then be used to estimate the components of model uncertainty62

for any projection lead time. In parallel, the variance over time of the deviations from the climate63

response allows estimating the internal variability of each chain.64

Both single time and time series approaches have been used in a number of recent climate65

impact studies for a number of different climate variables. In most cases, the model uncertainty66

components are estimated with an empirical ANOVA. In a MM2E resulting from the experiments67

of different Global Climate Models (GCM) for instance, the GCM uncertainty is estimated as the68
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empirical variance of their respective climate responses. In a single prediction lead time approach,69

this empirical variance is however known to be a biased estimator of model uncertainty variance70

as shown in a more general context by Montgomery (2012) and recalled for climate projections71

by Northrop and Chandler (2014) and Lyu et al. (2015). The bias is positive, i.e. the empirical72

variance tends to overestimate the true model uncertainty variance. It is also known to be larger for73

small numbers of members. In a time series based approach, the empirical variance of the climate74

responses is also likely to be a biased estimator of model uncertainty.75

In the following, we explore the importance of the bias in both the single time and the76

time series approaches for a simple but classical configuration where MM2E are composed of77

two single uncertainty sources: model uncertainty and internal variability. For this analysis, we78

first derive theoretical expressions for unbiased estimators of model uncertainty and internal vari-79

ability variance in the general case where the climate response functions of the different modeling80

chains are linear combinations of functions of time (section 2). We next give the simplified expres-81

sions obtained for specific analysis configurations, including the time series approach considered82

in Hingray and Saı̈d (2014) and the single time approach considered in Yip et al. (2011) (section83

3). From these expressions, we discuss the bias resulting in estimating model uncertainty variance84

as the empirical variance of estimated climate responses (section 4). We especially discuss the85

importance of the bias for different levels of internal variability contribution to total uncertainty86

variance and we present how the bias depends on the number of members available for the esti-87

mation. Note that most expressions and results derived in the following are general and could also88

apply to datasets of non climate variables.89

2. Unbiased QEANOVA estimators90

In this section, we derive the expressions of unbiased estimators for model uncertainty91

and internal variability variance when estimated from a time series analysis of some climate vari-92

able Z, for which the climate response can be expressed as a linear combination of functions of93

time.94

a. Climate responses, model uncertainty and internal variability95

Let us consider a given MM2E ensemble of transient climate experiments composed of96

multiple members for G different climate modeling chains. The number of available members for97

chain g is Mg. A chain refers for instance to a given GCM and the members to the different runs98

available for each GCM. A chain could also refer to a given GCM/RCM combination where a given99

Regional Climate Model (RCM) is used to produce regional high resolution climate projections100

from the outputs of a given GCM. Members would respectively refer to the potentially multiple101

generations obtained with the different runs for each GCM/RCM chain (e.g. Lafaysse et al. 2014).102

Note Z(g,m, t) the experiment outputs obtained for the mth member of chain g for any103

given time t of the experiment period [tS, tF ]. These outputs for instance correspond to the n-yr104
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interannual mean values of annual projections for the n-yr period centered on year t. We consider105

that Z follows a model of the form106

Z(g,m, t) = ϕ(g, t)+η(g,m, t) (1)

for tS ≤ t ≤ tF where η(g,m, t) are i.i.d. with E{η(g,m, t)}= 0 and Var{η(g,m, t)}= σ2
η . ϕ(g, t)107

is the climate response of chain g at time t and η(g,m, t) is the deviation from the climate response108

obtained with the member m at this time as a result of internal variability. The climate response109

function ϕ(g, t) can be expressed, for each g, as:110

ϕ(g, t) = µ(t)+α(g, t) (2)

where µ(t) = 1
G ∑

G
g=1 ϕ(g, t) and α(g, t) = {ϕ(g, t)− 1

G ∑
G
g=1 ϕ(g, t)} are deterministic, with111

∑
G
g=1 α(g, t) = 0. µ(t) is the mean response function of the G modeling chains in the ensem-112

ble and α(g, t) is, for each modeling chain g, the deviation of its response function from µ(t).113

By definition, no correlation is expected between the climate responses and the devia-114

tions. The total uncertainty variance of Z at time t is σ2
Z(t) = s2

α(t)+σ2
η(t) where s2

α(t) and σ2
η(t)115

are the variances of the α ′s and the η ′s at t. s2
α(t) and σ2

η(t) correspond respectively to the model116

uncertainty and internal variability components of σ2
Z(t).117

We further consider that, for each modeling chain g, the response function ϕ(g, t) is a
linear combination of P functions of t of the form:

ϕ(g, t) =
P

∑
p=1

Φgp fgp(t)

with fgp(t) the pth function of t and with Φgp the corresponding model parameter. For instance, in118

the case where the response function for g is a linear function of time, we would have P = 2 with119

fg1(t) = 1 and fg2(t) = t− tS. In the case where it is a polynomial function of time of order P−1,120

we would have fgp(t) = (t− tS)p−1 for p = 1, . . . ,P. The P functions can be different from one121

chain to the another but a same set of functions { fp(t); p = 1, . . . ,P} can also apply for all chains.122

Let focus on some prediction lead time tk, where tk is the kth time step of t1, . . . , tT , a123

discretisation of [tS, tF ] into T times with t1 = tS and tT = tF . Noting Fgkp = fgp(tk), we can write,124

for any modeling chain g:125

ϕ(g, tk) =
P

∑
p=1

FgkpΦgp (3)

Equation (3) shows that unbiased estimators of Φgp for p = 1, . . . ,P;g = 1, . . . ,G allow having126

unbiased estimators of the climate response of each chain g and, in turn, unbiased estimators of127

the mean response µ(tk) and of the deviations α(g, tk). As shown later, unbiased estimators of the128

Φgp’s allow additionally having an unbiased estimator of the internal variability variance σ2
η(t).129
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An unbiased estimator of model uncertainty is not so straightforward. The following130

decomposition of the sample variance s2
α(tk) =

1
G−1 ∑

G
g=1{α(g, tk)}2 (see Appendix A) shows that131

it requires unbiased estimates of the cross-products ΦgpΦg′p′ for any g,g′ = 1, . . . ,G and p, p′ =132

1, . . . ,P. :133

s2
α(tk) =

1
G

G

∑
g=1

[
P

∑
p=1

F2
gkpΦ

2
gp +2

P

∑
p=1

∑
p′>p

FgkpFgkp′ΦgpΦgp′

]

− 2
G(G−1)

G

∑
g=1

[
∑

g′>g

P

∑
p=1

F2
gkpΦgpΦg′p + ∑

g′ 6=g

P

∑
p=1

∑
p′>p

FgkpFgkp′ΦgpΦg′p′

]
(4)

In the following, unbiased estimators of the Φgp’s and of the cross-products are obtained134

indirectly based on the raw climate projections Y (g,m, t) of the considered climate variable which135

are linked to Z through the simple relationships:136

Z(g,m, t) = Y (g,m, t)+aY (g,m, tC), (5)

where tC is some reference period included into [tS, tF ] and a is a constant. Case a = 0 corresponds137

to the case where the uncertainty analysis is carried out on the raw climate projections, i.e. Z =Y .138

Case a = −1 corresponds to the case where the uncertainty analysis is carried out on the climate139

change variable, i.e. Z = X where X(g,m, t) =Y (g,m, t)−Y (g,m, tC) with tC some reference time140

period. These two configurations will be considered respectively in sections 2.c and 2.d, while141

section 2.b gives the unbiased estimators of Y in the general case.142

b. Unbiased estimation of the auxiliary linear model143

Let consider the variable Y linked to Z through (5). Then Y follows necessarily a linear144

model of the form Y (g,m, t) = λ (g, t)+ν(g,m, t) for m = 1, . . . ,Mg and tS ≤ t ≤ tF where Mg is145

the number of members available for each g and where ν(g,m, t) are i.i.d. with E{ν(g,m, t)}= 0146

and Var{ν(g,m, t)} = σ2
ν . Let also consider that for each g, λ (g, t) is a linear combination of L147

functions of t of the form:148

λ (g, t) =
L

∑
`=1

Λg`rg`(t) (6)

with rg`(t) the `th function and Λg` the corresponding model parameter.149

For any chain g and member m, we can write in vector form:150  Y (g,m, t1)
...

Y (g,m, tT )

= Rg

 Λg1
...

ΛgL

+

 ν(g,m, t1)
...

ν(g,m, tT )

 (7)
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where Rg is the T ×L matrix of covariates which (k, `)th element is Rgk` = rg`(tk). For every g,151

unbiased estimators of Λg` based on all members m = 1, . . . ,Mg available for g are given by the152

least squares estimates153  Λ̂g1
...

Λ̂gL

=
1

Mg

Mg

∑
m=1

(R′gRg)
−1R′g

 Y (g,m, t1)
...

Y (g,m, tT )

 . (8)

Covariance matrix of the estimators Λ̂g`, `= 1, . . . ,L, is estimated by σ̂2
νgM−1

g Vg where Vg is the154

(L×L) matrix equals to (R′gRg)
−1 and where σ̂2

νg is an unbiased estimator of σ2
νg

given by:155

σ̂2
νg =

1
(T Mg−L)

T

∑
k=1

Mg

∑
m=1

{
Y (g,m, tk)−

L

∑
`=1

Rgk`Λ̂g`

}2

. (9)

This gives additionally the following unbiased estimators:156

Λ̂2
g`− σ̂2

νgM−1
g Vg`` for Λ2

g`,

Λ̂g`Λ̂g`′− σ̂2
νgM−1

g Vg``′ for Λg`Λg`′,

Λ̂g`Λ̂g′`′ for Λg`Λg′`′ when g 6= g′,

(10)

and where Vg``′ is the element (`,`′) of the (L×L) matrix Vg. Using (5), the decomposition (4) and157

the unbiased estimators in (10) allows us to derive the QEANOVA unbiased estimators of Φgp, s2
α ,158

σ2
η . We derive these expressions for the two configurations of interest in the following sections.159

c. Uncertainty analysis applied on the raw variable Y160

We here consider the simple case where the regression and the uncertainty analysis both161

apply on the raw climate variable Y . The regression model is estimated over the whole [tS, tF ]162

period. In this simple case, we have a = 0, Z = Y and thus L = P, ϕ(g, t) = λ (g, t), Fgk` = Rgk`163

and Φ̂g` = Λ̂g` for g = 1, . . . ,G, ` = 1, . . . ,L. Following (4) and (10), an unbiased estimator of164

s2
α(tk) is165

ŝ2
α(tk) = s2

α̂
(tk)−

1
G

G

∑
g=1

 σ̂2
νg

Mg

(
L

∑
`=1

R2
gk`Vg``+2

L

∑
`=1

∑
`′>`

Rgk`Rgk`′Vg``′

) (11)

where

s2
α̂
(tk) =

1
G−1

G

∑
g=1
{α̂(g, tk)}2 =

1
G−1

G

∑
g=1

(
L

∑
`=1

Rgk`Φ̂g`−
1
G

L

∑
`=1

G

∑
g′=1

Rg′k`Φ̂g′`

)2
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and where σ̂2
νg is given by (9).166

Note that if, for all chains g = 1, . . . ,G, the functions λ (g, t) are linear combinations of167

the same functions rg`(t) = r`(t), `= 1, . . . ,L and if the time discretization of the interval [tS, tF ] is168

the same, then all chains g have the same covariate matrix Rg =R and so Vg =V. If moreover all169

modeling chains g have the same number of members Mg = M, the expression (11) reduces to:170

ŝ2
α(tk) = s2

α̂
(tk)−

σ̂2
ν

M

(
L

∑
`=1

R2
k`V``+2

L

∑
`=1

∑
`′>`

Rk`Rk`′V``′

)
(12)

where σ̂2
ν is the mean of the estimates σ̂2

νg :171

σ̂2
ν =

1
G

G

∑
g=1

σ̂2
νg. (13)

In all cases, note finally that, as η(g,m, t) = ν(g,m, t), an unbiased estimator of σ2
ηg

is σ̂2
ηg = σ̂2

νg172

and an unbiased estimator of the mean of σ̂2
ηg is simply:173

σ̂2
η = σ̂2

ν . (14)

d. Uncertainty analysis applied on the change variable X.174

We now consider the case when the uncertainty analysis is applied on the change variable175

X(g,m, t) =Y (g,m, t)−Y (g,m, tC) where tC ≥ tS. The regression model is estimated on Y over the176

whole [tS, tF ] period. We have a =−1 and Z = X . Considering regression models with intercepts177

for Y and writing rg1(t) = rg1 the intercepts of each chain g, we have P = L−1 and Φ̂gp = Λ̂g(p+1)178

for g = 1, . . . ,G, p = 1, . . . ,P. In this case, ϕ(g, t) = λ (g, t)− λ (g, tC). Writing K the integer179

such that tC is the Kth time, we have thus ϕ̂(g, tk) = ∑
P
p=1 FgkpΦ̂gp = ∑

L
`=2(Rgk`−RgK`)Λ̂g` and,180

following again (4) and (10), an unbiased estimator of s2
α(tk) is:181

ŝ2
α(tk) = s2

α̂
(tk)−

1
G

G

∑
g=1

 σ̂2
νg

Mg

(
L

∑
`=2

(
Rgk`−RgK`

)2Vg``

+2
L

∑
`=2

∑
`′>`

(
Rgk`−RgK`

)(
Rgk`′−RgK`′

)
Vg``′

)]
(15)
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When all modeling chains g have the same covariate matrix R and the same number of members182

M, the expression again simplifies to:183

ŝ2
α(tk) = s2

α̂
(tk)−

σ̂2
ν

M

(
L

∑
`=2

(Rk`−RK`)
2V``+2

L

∑
`=2

∑
`′>`

(Rk`−RK`)(Rk`′−RK`′)V``′

)
(16)

where σ̂2
ν is given by (13). Finally, as η(g,m, t) = ν(g,m, t)−ν(g,m, tC), for each g, an unbiased

estimator of σ2
ηg

is σ̂2
ηg = 2σ̂2

νg and an unbiased estimator of the mean of the estimates σ̂2
ηg is:

σ̂2
η = 2σ̂2

ν

3. Particular cases184

In this section, we give the simplified expressions of ŝ2
α(tk) obtained for specific analysis185

configurations, including the QEANOVA approach considered in Hingray and Saı̈d (2014) and the186

local-QEANOVA approach considered in (Hingray et al. submitted). We additionally recall the187

expressions for the single time approach considered in Yip et al. (2011).188

a. When climate responses are linear functions of time over a transient period189

We detail here the derivation of ŝ2
α(tk) in a particular case of climate responses, similar190

to that considered in Hingray and Saı̈d (2014). The climate response function λ (g, t) fitted to the191

raw variable Y is here assumed to be a linear function of time over [tS, tF ]. The climate response192

function for a given chain therefore reads:193

λ (g, t) = Λg1 +Λg2(t− tS). (17)

We have thus λ (g, t) = Λg1r1(t)+Λg2r2(t) with r1(t) = 1 and r2(t) = t− tS. For all modeling194

chains, L = 2, Rg = R and considering t1, . . . , tT regularly spaced on [tS, tF ] every dt units (i.e.195

dt = (tF − tS)/(T −1), e.g. dt = 10 for decadal values), the matrix R reads:196

R=

 1 0 line 1 (t = t1)
...

...
1 (T −1)dt line T (t = tT )

(18)

We have then the following expression for V= (R′R)−1:197

V=
1

(dt)2T (T 2−1)

(
2(dt)2(T −1)(2T −1) −6dt(T −1)
−6dt(T −1) 12

)
. (19)
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When the QEANOVA analysis applies on the raw variable Y (g,m, t) as in section 2.c,198

we have, for any time tk in [tS, tF ]:199

Fgk` = Rgk` =

{
rg1(tk) = 1 if `= 1
rg2(tk) = tk− t1 if `= 2 (20)

and using (12) and (18), an unbiased estimator of s2
α(tk) at tk is200

ŝ2
α(tk) = s2

α̂
(tk)−

(
V11 +(tk− t1)2V22 +2(tk− t1)V12

) 1
G

G

∑
g=1

σ̂2
νg

Mg


where V11,V12 and V22 are the elements (1,1), (1,2) and (2,2) of V and where σ̂2

νg is given by (9).201

With the expressions of V11,V12 and V22 in (19), this expression simplifies to202

ŝ2
α(tk) = s2

α̂
(tk)−

1
T

(
1+12

T −1
T +1

(
tk− t?

tT − t1

)2
) 1

G

G

∑
g=1

σ̂2
νg

Mg

 (21)

where t? = (t1 + tT )/2.203

When the QEANOVA analysis is applied on the change variable X(g,m, t) =Y (g,m, t)−204

Y (g,m, tC) with tC ≥ tS, using the same notations as in section 2.d, we have P = 1 and Fk1 =205

Rk2−RK2 = r2(tk)− r2(tK) = tk− tK if `= 2.206

Using (15) and (19), an unbiased estimator of s2
α(tk) at tk is207

ŝ2
α(tk) = s2

α̂
(tk)− (tk− tK)2V22

 1
G

G

∑
g=1

σ̂2
νg

Mg


= s2

α̂
(tk)−

12
T

T −1
T +1

(
tk− tK
tT − t1

)2
 1

G

G

∑
g=1

σ̂2
νg

Mg

 . (22)

b. When climate responses are locally linear in time208

This case corresponds to the local QEANOVA configuration presented in (Hingray et al.209

submitted). We still consider the change variable X(g,m, t) =Y (g,m, t)−Y (g,m, tC) where tC ≥ tS210

and the regression model is fitted on Y but λ (g, t) is only locally linear in time, in the neighbor-211

hoods Ω(t) of t and Ω(tC) of tC respectively. When prediction lead time tE is of interest, two212

local linear models are thus considered, one on [tC−ω, tC +ω] and one on [tE −ω, tE +ω]. The213
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response function for Y can thus be expressed as:214

λ (g, t) =
{

Λg1,C +(t− tC)Λg2,C for tC−ω ≤ t ≤ tC +ω

Λg1,E +(t− tE)Λg2,E for tE −ω ≤ t ≤ tE +ω
(23)

If each interval [tC−ω, tC +ω] and [tE −ω, tE +ω] is discretized into T ? regular times,215

with T ? odd, and provided both intervals do not overlap, an unbiased estimator of the sample216

variance of α at tk = tE is (see Appendix B for details):217

ŝ2
α(tk) = s2

α̂
(tk)−

2
T ?

 1
G

G

∑
g=1

σ̂2
νg

Mg

 (24)

Note that the total number of time steps considered for the analysis is T = 2T ?.218

c. When single time steps are considered219

We still consider the change variable X(g,m, t) = Y (g,m, t)−Y (g,m, tC) where tC ≥ tS
but the analysis is a single time step analysis. That is, the analysis for a given future period t = tE
only accounts for data available for tC and for tE respectively. The response function for Y here
simply reduces to:

λ (g, t) =
{

Λg1,C for t = tC
Λg1,E for t = tE

The regression reduces to the estimation of the mean values of Y at tC and tE respectively. This is220

a particular case of section 3.b with ω = 0, T ? = 1 (i.e. T = 2), thus an unbiased estimator of s2
α221

at tk = tE is222

ŝ2
α(tk) = s2

α̂
(tk)−2

 1
G

G

∑
g=1

σ̂2
νg

Mg

 (25)

with σ̂2
νg given by (9). When all models have moreover the same number of runs M, it reads:223

ŝ2
α(tk) = s2

α̂
(tk)−

2σ̂2
ν

M
. (26)

Note that 2σ̂2
ν = σ̂2

η , where σ2
η is the internal variability of the change variable X . Substituting224

σ̂2
η to 2σ̂2

ν , the above expression thus corresponds to that of a classical 1-way ANOVA applied225

on some variable Z, as presented for instance in Montgomery (2012), where Z corresponds here226

directly to the change variable X . This case corresponds to that described in Yip et al. (2011).227
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4. Bias in empirical estimates of model uncertainty228

As highlighted by the different expressions derived previously, the mean sum s2
α̂
(tk) is229

a biased estimator of the sample variance s2
α(tk) of the α’s at time tk. The expressions show that230

the bias obtained when using s2
α̂

in place of the unbiased estimator ŝ2
α increases with the value231

of the internal variability variance. It conversely decreases with the size of the dataset used for232

the estimation. The more members for each chain and/or the more time steps considered in the233

analysis, the lower the bias.234

In the following, we illustrate and discuss the importance of the bias for the case where235

the analysis is applied on the change variable X(g,m, t) = Y (g,m, t)−Y (g,m, tC). We do not236

discuss the case of an analysis applied to the raw projections. Results are actually very similar due237

to the similar forms obtained for the unbiased estimators in both cases (see equations 21 and 22).238

We consider in turn the three specific analysis configurations presented in sections 3.a,239

3.b and 3.c: the single time ANOVA, the local QEANOVA and the full QEANOVA. For simplifi-240

cation, the number of members is assumed to be the same for all modeling chains (Mg = M). We241

also only consider the theoretical bias, that is the bias that would be obtained in the case of a per-242

fect estimate of the internal variability variance. The quality of this estimator is further discussed243

in Hingray et al. (submitted).244

For each variable, we consider the relative bias (RB) for s2
α at time t, expressed as:245

RB(t) =
s2

α̂
(t)− ŝ2

α(t)

ŝ2
α(t)

(27)

Following the expressions of ŝ2
α(t) derived in equations (22), (24) and (26) and using σ̂2

η = 2σ̂2
ν ,246

the RB can be expressed as:247

RB(t) =
A(t,C )

M
σ̂2

η(t)

ŝ2
α(t)

=
A(t,C )

M
Fη(t)

1−Fη(t)
(28)

where A(t,C ) is a constant, function of future period t and of the configuration analysis C , and248

where Fη(t) = σ̂2
η(t)/σ̂2

X(t) is the estimated fractional variance associated to internal variability,249

i.e. the estimated proportion of total variance σ̂2
X(t) = ŝ2

α(t)+ σ̂2
η(t) explained by the estimated250

internal variability variance.251

In the case of the single time step ANOVA discussed in section 3.c, and according to252

equation (26), we have A(t,C ) = 1. The relative bias RB(t) thus only depends on M and Fη(t).253

As shown in Figure 1, RB(t) is logically a decreasing function of M and an increasing function of254

Fη(t). The empirical mean sum of squares s2
α̂
(t) overestimates the true model uncertainty variance255

ŝ2
α(t) by 100% (i.e. RB(t) ≥ 1) or even more in the most critical configurations, i.e. when the256

number of members is small (M ≤ 3) and when internal variability explains the main part of total257
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uncertainty variance (Fη(t)≥ 75%). For small numbers of members (M ≤ 3), the overestimation258

is actually greater than 25% as soon as Fη(t) ≥ 40%. It remains relatively moderate (+10%)259

only when internal variability explains a small to very small part of total uncertainty (i.e. when260

Fη(t)≤ 20%). When only 2 members are available, the overestimation is larger than 50% as soon261

as Fη(t)≥ 50%; it exceeds +200% when Fη(t)≥ 80%.262

[ FIGURE 1 HERE ]263

Let now consider the case where the uncertainty analysis is carried out with a time series264

analysis as described in the general case in section 2. In this case, the relative bias expected for a265

given (Fη ,M) configuration is simply A(t,C ) times the one obtained for the same configuration in266

the case of the single time ANOVA. As shown in the following, A(t,C ) is actually always smaller267

or equal to 1 using the local QEANOVA analysis and the specific QEANOVA analysis described268

in section 3. In those cases, the relative bias is thus always smaller or equal to that obtained with269

the single time ANOVA. The importance of the bias reduction factor A(t,C ) is discussed below.270

Let consider first the local QEANOVA analysis (section 3.b). According to equation
(24) and because σ̂2

η(t) = 2σ̂2
ν (t), A(t,C ) is independent on the projection lead time t and simply

reads:
A(t,C ) = 1/T ?

with T ? the number of time steps considered around each tC and tk. Thus the higher the value of271

T ?, the smaller the bias. Using two time steps around each tC and tE (T ? = 3), the relative bias is272

already one third of that with the single time ANOVA. It drops to one fifth when four time steps273

are considered around tC and tE (T ? = 5). Despite this significant reduction, the relative bias is274

still high in the critical (Fη ,M) configurations: it amounts 33% for T ? = 3 (resp. 20% for T ? = 5)275

with M = 3 and Fη = 75%. This is much less than the 100% of the single time case, but still too276

high for the empirical variance s2
α̂
(t) to be used in practice. The unbiased variance estimator ŝ2

α(t)277

is thus here again required.278

Let now consider the full QEANOVA case when it is applied over a transient period279

with effects expressed as linear functions of time (section 3.a). According to equation (22) and280

reminding that σ̂2
η(t) = 2σ̂2

ν (t), A(t,C ) now reads:281

A(t,C ) =
6(T −1)
T (T +1)

τ(t)2 (29)

where τ(t) = (t− tK)÷ (tT − t1). τ(t) increases with the temporal distance of t to the reference282

period tK considered for the change variable. As both t and tK belong to [t1, tT ], τ(t)2 is always283

smaller than 1. τ(t) is actually zero when tk = tK . It is maximal when t = tT . Whatever the value284

for T , the relative bias is thus zero when the considered lead time corresponds to the reference285

period and it is maximal when t corresponds to the last time step of the transient period used for286

the regression. The first term of equation 29 is a function of T , the total number of time steps in287
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[tS, tF ]. It amounts 1 for both T = 2 and T = 3. It is a decreasing function of T for T ≥ 3, with an288

asymptotic behavior as 6/T for large T values.289

With the full QEANOVA analysis, A(t,C ) is thus smaller or equal to 1 whatever the290

length of the transient period and whatever the projection lead time tk for which model uncertainty291

is estimated. When compared to the relative bias obtained from the single time ANOVA approach,292

the bias with this QEANOVA approach can be much smaller, as illustrated in Figure 2 for the293

case where the first time step of the period used for the regression is also the reference period (i.e.294

tK = t1). The value of A(tk,C ) is presented as a function of τ(tk) and T , and also, for clarity, as295

a function of k and T . It has to be compared to the value A(t,C ) = 1 obtained in the single time296

ANOVA approach. Let consider for instance an analysis applied on 1980-2100 transient climate297

projections, with tC = 1980. If the analysis applies for some decadal climate variable, we have298

dt = 10, T = 13. If the target prediction lead time is the 2040’s decade, we next have τ(tk) = 0.5,299

so A(t,C )' 0.1. As a consequence, the relative bias obtained when using s2
α̂
(t) instead of ŝ2

α(t) is300

relatively moderate in this case, even in the most critical (Fη(t),M) configurations. For instance,301

s2
α̂
(t) at t = 2040 overestimates the true model uncertainty variance ŝ2

α(t) by only 10% when M = 3302

and Fη(t) = 75%, which is still significant but much lower than the 100% overestimation in the303

single time ANOVA case. It is also lower than the 33 or 20% obtained with the local QEANOVA304

approach when T ? = 3 or 5 respectively.305

As mentioned above, the bias increases when the target prediction lead time gets further306

the reference period (i.e. when τ(tk) increases). A(t,C )' 0.39 for instance when t = 2100 in the307

previous configuration, giving an overestimation of 39% of the true model uncertainty variance308

when M = 3 and Fη(t) = 75%. In this case, the overestimation is rather large even if still much309

lower than the 100% overestimation of the single time ANOVA case. It is similar to the overesti-310

mation of the local QEANOVA approach when T ? = 3 but becomes larger to the local QEANOVA311

overestimation when T ? = 5. In the QEANOVA approach also, the unbiased variance estimator312

ŝ2
α(t) is thus here again required, instead of the biased s2

α̂
(t).313

[ FIGURE 2 HERE ]314

5. Discussion and conclusions315

Numerous studies have been recently presented for partitioning model uncertainty and316

internal variability variance in climate projections. Most of them are based on a single time317

ANOVA analysis, the other being based on a time series approach such as the QEANOVA ap-318

proach. In most cases, the estimate of model uncertainty is obtained from the empirical variance319

of the main effects in the different climate responses obtained respectively for the different mod-320

eling chains.321

In the present work, we recall the expressions for unbiased estimates of model uncer-322

tainty in the single time ANOVA case and derive these expressions in the general case of a time323

series ANOVA approach where the climate responses of the different chains are linear combina-324
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tions of functions of time. We next discuss the importance of the bias when empirical estimates325

are used instead of unbiased estimates. The bias is shown to be always positive. The empirical es-326

timates thus systematically overestimate model uncertainty. The contribution of model uncertainty327

to total uncertainty as well as the total uncertainty are in turn also systematically overestimated.328

The positive bias of empirical estimates can be especially high with the single time329

ANOVA analysis. Its largest values are obtained for small numbers of members and/or large con-330

tribution of internal variability variance to total uncertainty. In recent climate impact studies, very331

different values have been obtained for Fη(t), depending on the climate variable under considera-332

tion. Fη tend to be larger for higher spatial and/or temporal resolution data and for closer prediction333

lead times. For instance, for decadal mean precipitation projections in the 2050’s, the Fη value334

obtained by Hawkins and Sutton (2011) was lower than 5% at the global scale, but greater than335

50% for the European region. Even higher values can be obtained when annual and/or local scale336

data are considered, as illustrated by the 80% value obtained for annual precipitation in Southern-337

France by Hingray and Saı̈d (2014). Whatever the value for Fη , the number of members available338

for any given modeling chain is classically lower than three, as a consequence of the small number339

of runs classically available for climate models. In a large number of climate impact studies, the340

contribution of model uncertainty to total variance estimated from a single time ANOVA analysis341

is thus likely to be significantly overestimated if the empirical variance s2
α̂

is not corrected for bias,342

i.e. if it is used instead of the unbiased estimator ŝ2
α .343

The bias of empirical estimates is considerably smaller with a time series approach,344

owing to the multiple time steps accounted for in the analysis. The larger the number of time345

steps accounted for, the smaller the bias. With a local QEANOVA approach, the bias is inversely346

proportional to the size of the temporal neighborhood considered for the analysis. The bias is for347

instance reduced by a factor of 3 (resp. 5) when the 2 (resp. 4) time steps adjacent to both the348

reference and the future lead time are considered. The size of the neigborhood actually acts as349

a multiplier of the number of members M available for each modeling chain. Let for instance350

consider a MM2E with 2 members for each modeling chain. The bias obtained for an analysis351

with 3 time steps in the neigbhorhood would be the same as the bias obtained for a MM2E with352

3×2 members for each chain.353

A full time series analysis leads to an even smaller bias of the model uncertainty vari-354

ance. When a QEANOVA approach (with responses functions being linear function of times) is355

used for decadal data covering the whole 1980-2100 period, the bias is 2.5 to 20 times smaller356

than that of the single time ANOVA analysis, depending on the lead time under consideration.357

Again the time series approach acts as a multiplier of the number of members available for each358

individual chain. A time series analysis allows thus having smaller biases in empirical estimates359

of model uncertainty in climate projections. In the two specific cases studied here however, the360

bias potentially remains not negligible, calling in that case also for the unbiased estimators instead361

of the empirical ones.362

The work presented here is based on different simplifications and hypotheses that may363

not always fit to the MM2E under consideration. The expressions presented previously correspond364
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for instance to the case where the differences in the climate responses obtained for the different365

modeling chains are due to only one factor, this factor being for instance the climate model. In366

practice, the differences in climate responses obtained for the different climate experiments of the367

considered MM2E are often due to multiple factors including emission scenarios and the different368

models chained in cascade to derive the required projections (e.g. G different global climate mod-369

els× R different regional climate models×H different hydrological models). In this more general370

case, the different components of model uncertainty, associated respectively to the different factors371

of uncertainty, can be also partitioned with a single time or a time series ANOVA analysis. The372

empirical variance of the main effects of the different models for each factor are again classically373

used for estimating the corresponding model uncertainty components (see e.g. Yip et al. 2011;374

Hingray and Saı̈d 2014). These expressions lead logically also to biased estimates. It is easy to375

show that these empirical expressions can also be corrected for bias with the same terms as those376

derived in the present work where only one factor is accounted for.377

Our work finally highlighted the large systematic errors that may obtained in uncertainty378

partitioning when empirical variance are used to estimate the model uncertainty component. A379

relevant uncertainty analysis obviously requires unbiased estimators of the different uncertainty380

components, such as those proposed here. To discuss the importance of the bias, we considered381

the idealistic configuration where a perfect estimate of the internal variability variance is known. A382

poor estimate of this uncertainty component is also expected to lead to a poor estimate of the model383

uncertainty component. Evaluating the quality of these estimates, and especially their robustness,384

would be also required, at least worthwhile. A more relevant interpretation of estimated uncer-385

tainty components likely requires knowing the confidence interval associated to each estimate.386

The robustness of model uncertainty and internal variability estimates is explored in Hingray et al.387

(submitted).388

The empirical approaches presented above are very commonly used to assess the dif-389

ferent components of uncertainty in ensembles of climate projections. The main advantage of390

those approaches is that they give simple and non-iterative estimators of variance components.391

An alternative for estimating uncertainty components is to rely on more modern likelihood-based392

methods such as maximum likelihood and restricted maximum likelihood or Bayesian methods393

(see e.g. Northrop and Chandler 2014). They demand much more computational efforts but they394

are expected to give unbiased estimates of uncertainty components. They allow moreover having395

a estimate of the precision of the uncertainty components estimates (see e.g. Geinitz et al. 2015;396

Evin and Hingray submitted) which may be especially relevant in configurations where the con-397

tribution of internal variability to total variance is large and/or when the number of members for398

each simulation chain is small (see e.g. Hingray et al. submitted).399
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APPENDIX A401

Decomposition of s2
α(tk)402
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We here present the main steps followed for the decomposition of s2
α(tk) presented in403

equation 4. We have404

s2
α(tk) =

G

∑
g=1

(α(g, tk))
2

=
G

∑
g=1

(
P

∑
p=1

FgkpΦgp−
1
G

P

∑
p=1

G

∑
g=1

FgkpΦgp

)2

=
G

∑
g=1

{ P

∑
p=1

FgkpΦgp

}2

+
1

G2

{
P

∑
p=1

G

∑
g=1

FgkpΦgp

}2

− 2
G

{
P

∑
p=1

FgkpΦgp

}{
P

∑
p=1

G

∑
g=1

FgkpΦgp

}
=

G

∑
g=1

{
P

∑
p=1

FgkpΦgp

}2

+
1
G

{
P

∑
p=1

G

∑
g=1

FgkpΦgp

}2

− 2
G

{
P

∑
p=1

G

∑
g=1

FgkpΦgp

}2

=
G

∑
g=1

{
P

∑
p=1

FgkpΦgp

}2

− 1
G

{
P

∑
p=1

G

∑
g=1

FgkpΦgp

}2

=
G

∑
g=1

{
P

∑
p=1

F2
gkpΦ

2
gp +2

P

∑
p=1

∑
p′>p

FgkpFgkp′ΦgpΦgp′

}

− 1
G

{
P

∑
p=1

G

∑
g=1

F2
gkpΦ

2
gp +2

P

∑
p=1

∑
p′>p

G

∑
g=1

FgkpFgkp′ΦgpΦgp′

+2
P

∑
p=1

G

∑
g=1

∑
g′>g

F2
gkpΦgpΦg′p +2

P

∑
p=1

∑
p′>p

G

∑
g=1

∑
g′ 6=g

FgkpFgkp′ΦgpΦg′p′

}

= (1− 1
G
)

G

∑
g=1

{
P

∑
p=1

F2
gkpΦ

2
gp +2

P

∑
p=1

∑
p′>p

FgkpFgkp′ΦgpΦgp′

}

− 2
G

G

∑
g=1

{
∑

g′>g

P

∑
p=1

F2
gkpΦgpΦg′p + ∑

g′ 6=g

P

∑
p=1

∑
p′>p

FgkpFgkp′ΦgpΦg′p′

}

APPENDIX B405

Local QEANOVA406

The local-QEANOVA analysis presented in section (3.b) is applied on the change vari-407

able X(g,m, t) = Y (g,m, t)−Y (g,m, tC) where tC ≥ tS and the regression model is fitted on Y (we408

have thus Z = X). The response function for the raw variable Y is assumed to be only locally a409

linear function of time. Following the notations of (23), the response function for Y can be written410

as: λ (g, t) = Λg1,Cr1(t)+Λg2,Cr2(t)+Λg1,Er3(t)+Λg2,Er4(t) with r1(t) = 1 and r2(t) = t − tC411
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for t ∈ [tC −ω, tC + ω], r1(t) = r2(t) = 0 otherwise and with r3(t) = 1 and r4(t) = t − tE for412

t ∈ [tE −ω, tE +ω], r3(t) = r4(t) = 0 otherwise.413

Thus L = 4 and the functions rg`(t) in (6) are the same for all modeling chains g.414

We consider T ≥ 2 such that T = 2T ? where T ? is odd (i.e. T ∈ {2,6,10, . . .}). Discretiz-
ing each [tC−ω, tC +ω] and [tE −ω, tE +ω] into T ? regular periods of length dt = 2ω/(T ?−1)
and writing n = (T ?−1)/2, Rg in (7) is given by

Rg = R=





1 −ndt 0 0 line 1 (t = tC−ω)
...

...
...

...
1 0 0 0 line n+1 (t = tC)
...

...
...

...
1 ndt 0 0 line 2n+1 = T/2 (t = tC +ω)
0 0 1 −ndt line 2n+2 (t = tE −ω)
...

...
...

...
0 0 1 0 line 3n+2 (t = tE)
...

...
...

...
0 0 1 ndt line 4n+2 = T (t = tE +ω)

Then V = (R′R)−1 is diagonal with V11 = V33 = 2/T and V22 = V44 = 96/{T (T 2−415

4)(dt)2}.416

Let consider tk, the kth time of the discretization with k ≥ T/2, i.e. tk ∈ [tE −ω, tE +417

ω] (namely tk = tE −ω + 4ω(k− T/2− 1)/(T − 2) if k > T/2). Focusing on the uncertainty418

components for X at tk, we have:419

ϕ(g, tk) = λ (g, tk)−λ (g, tC)
= (Λg1,E −Λg1,C)+(tk− tE)Λg2,E

= Fk1Φg1 +Fk2Φg2

with Fk1 = 1, Fk2 = tk− tE , Φg1 = Λg1,E −Λg1,C and Φg2 = Λg2,E .420

Following (10), an unbiased estimator of Φ2
g2 is Φ̂2

g2 − σ̂2
νgM−1

g V44 and as (Λg1,E −421

Λg1,C)
2 = Λ2

g1,E + Λ2
g1,C − 2Λg1,EΛg1,C, an unbiased estimator of Φ2

g1 is (Λ̂g1,E − Λ̂g1,C)
2 −422

σ̂2
νgM−1

g (V11 +V33). Using equation (4), an unbiased estimator of the sample variance of α at423
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tk is finally:424

ŝ2
α(tk) = s2

α̂
(tk)−

{
V11 +V33 +(tk− tE)2V44

} 1
G

G

∑
g=1

σ̂2
νg

Mg


= s2

α̂
(tk)−

4
T

{
1+

24(tk− tE)2

(dt)2(T 2−4)

} 1
G

G

∑
g=1

σ̂2
νg

Mg


A special case of using the local QEANOVA approach is when time tk = tE at which we have the
following unbiased estimator:

ŝ2
α(tk) = s2

α̂
(tk)−

4
T

 1
G

G

∑
g=1

σ̂2
νg

Mg

 .

425
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Figure 2. Reduction factor A(tk,C ) when the estimate is obtained with a QEANOVA approach when it

applies over a single transient period with effects expressed as linear functions of time (equation 29). Left

: A(tk,C ) values are given as a function of T , the total number of time steps of the transient climate period used

for fitting the linear regression model of the climate response functions, and as a function of k, where k ≤ T is

the time step corresponding to the time tk for which the uncertainty component are considered. Right : A(tk,C )

values are given as a function of T , and as a function of τk =
tk−tK
tT−t1

. Figures correspond to the case where the

time step of the reference period (tK) corresponds to the first time step (t1) of the transient time period used for

the regression ([t1, tT ]). In this case, τk is the proportion of time-steps separating tk and the reference period tC:

τ(tk) = 0 if tk = t1 (and thus k = 1) and τ(tk) = 1 if tk = tT (and thus k = T ).
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