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Abstract A new numerical model is proposed to investigate the normal contact 

of multi-layered solids with rough surfaces. The Hankel transform and the 

transfer matrix technique are used to solve the problem of the deformation of a 

multi-layered solid. Then, the normal contact of an asperity is solved with Abel 

transform. Using this solution, an asperity-based contact model of rough 

surfaces is developed considering interactions between asperities. Numerical 

results are presented and compared to finite element calculations. The present 

model provides good results. The effects of interactions and the solid layers 

properties are discussed. 

Keywords Contact analysis · surface roughness · multi-layered solid · Hankel 

transform · transfer matrix technique. 

1 Introduction 

Contact mechanics is of high interest in many engineering systems. For many of 

them, if two solids are in contact the real contact area is much smaller than the 

apparent one due to surface roughness. The interface behavior and the 
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contact area has a great effect on system performance [1]. 

Naturally, the contact interface behavior depends on the roughness of the 

contacting solids and their mechanical properties. A contact model considering 

surface roughness goes first through the description of surface roughness. For 

this purpose, the random process theory is commonly used to compute some 

relevant statistical parameters [2, 3] and fractal techniques are often used to 

characterize the multi-scale nature of rough surfaces [4, 5]. For this purpose, 

statistical parameters are commonly used to characterize the surface [2, 3] and 

fractal techniques are often used to describe the multi-scale nature of rough 
surfaces [4, 5]. 

There is a wide range of normal contact theories with rough surfaces. The 

classical contact theories are based on the concept of asperity which was first 

introduced by [6]. The classical contact theories are based on the concept of 

asperity introduced first in Hertz theory and used by Archard [6] to model multi-

scale rough surfaces. The basic idea of these theories is that contact occurs only 

on the top of these asperities. The well-known theory of Greenwood and 

Williamson [7] represents the basis of all the asperity-based models. This theory 

assumes that roughness can be described as a spatial distribution of spherical 

asperities having the same curvature radius and a randomly distributed heights. 

The asperities deform according to Hertz theory. An improvement of this theory 

has been proposed by Bush et al.[8]. They consider that each asperity is 

approximated by a paraboloid having the same geometric parameters as the 

asperity. The basic idea is to consider a random process of asperity heights and 

curvatures. The basic idea is to consider a random distribution of asperity 
heights and curvatures. 

These models have achieved many results of great interest and have been 

successful for many years. However there is some weaknesses arising from the 

dependency on the statistical parameters and the non-consideration of 

interactions between asperities. Nevertheless, many improvements have been 

proposed by different authors. For instance, interactions have been included 

using semi-analytic approaches [9, 10, 11]. Considering interactions is in 
particular important for the cases close to full contact situation. 

The contact problem can also be solved by means of numerical methods. Using 

the finite element method, the problem is solved with optimization techniques 

and the region near to contact surfaces has to be finely meshed to guarantee a 

good accuracy [12, 13]. In return, the method is very costly in terms of CPU time 
which might be restrictive. 

Another method is to consider the solid as a half space and solve the problem 

using the so-called influence coefficients [14, 15]. Following this approach, only 

the surface is discretized which saves considerably CPU time. Using the Fast 

Fourier Transform (FFT), a fast version of this method, has been developed in 
[16]. 

The various existing models are focused on the contact surface geometry and 

consider that the solid is elastic and homogeneous, which is obviously not 
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always true. Solids could be heterogeneous and could undergo several 

transformations under thermal and mechanical loadings and notably the 

subsurface material is the most exposed to these loadings. Hence, the bulk 

material properties change constantly and could affect the contact interface 

behavior. In several works, the material properties effect have been 

investigated. The plastic contact have been analyzed in [17] using the influence 

matrix coefficients, in [18] with the finite element method and in [19] with an 

improved statistical asperity model. Material heterogeneities have been 
considered in [20] to model fretting problems. 

In many problems, the material beneath the surface can be considered as 

multilayered, such as coating and composites. Moreover, in braking applications 

and hot forging tools, there is material transformations leading to the 

appearance of a gradient of material properties near to contact interfaces. Thus, 

these properties vary in the direction normal to the contact surface. 

Consequently, in some way, the material can be considered as a multi-layered 

system where each layer is homogeneous and perfect continuity is assumed at 
the interface layers. 

To the best of our knowledge, the contact problem involving rough surfaces with 

multi-layered solids has so far received a few attention.The contact between an 
ellipsoid and a layered half space has been studied numerically in [21]. In [22, 
23], a Green function approach has been used to analyze a 2D sliding contact 

problem including friction. In [30, 29], Papkovich-Neuber potentials with a Fast 
Fourier Transform scheme (FFT), have been used to study the rough contact 

problem of elastic and plastic solids. These studies were carried on solids having 
a maximum of three layers. The problem is solved using the influence matrix 
method of which the coefficients are obtained by solving a linear system of 

equations. This system is obtained from the continuity conditions at the 
interface layers. Under such an approach, it is very complicated to extend the 
technique to cover the general case of multi-layers. 

The contact problem involving rough surfaces with multi-layered solids (3 

layers and more) has so far received a few attention. The contact between an 
ellipsoid and a layered half space has been studied numerically in [21]. In [22, 

23], a Green function approach has been used to analyze a 2D sliding contact 

problem including friction. [24] developed a modified version of Hertz theory 

for coated solids and have obtained fitted curves of contact area based on the 

work of [25] who calculate influence coefficients of coated half spaces using 
Fourier transform [26]. Another deterministic technique has been proposed by 

[27] to obtain a closed form solution for an asperity using a perturbation 

technique developed by [28]. In [29, 30], Papkovich-Neuber potentials with a 

Fast Fourier Transform scheme (FFT), have been used to study the rough 

contact problem of elastic and plastic solids. The problem is solved using the 
influence matrix method of which the coefficients are obtained by solving a 

linear system of equations. In most of these works, the analyses were carried on 

solids having a maximum of three layers. Under such approaches, it is very 

complicated to extend the different methods to cover the general case of 

multilayers. Alternatively, the finite element method has also been used to study 
subsurface stresses and deformations within a flat layered medium in contact 
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with a rigid sphere [31] and for the case of a rough surface described by 

Weierstrass fractal function[32]. More recently, with the same method, the 

contact of coated solids has been investigated by [33] and [34] with the 
objective of identifying the location of plastic yielding onset in coated solids. 

Although, this method can give a full description of a multi-layered structure, its 

numerical cost remains very considerable comparing to semi-analytic and 

analytic methods. 

An interesting approach has been proposed by [37] who has investigated the 

contact problem of a multi-layered solid submitted to the indentation of a rigid 
circular plate using the transfer matrix technique([35, 36]) and both the Fourier 

transform and Hankel transform properties [38] to obtain a Fredholm integral 
equation which is solved to obtain a closed-form solution for the contact 
problem. The main advantage of this technique is the ability to relate directly 

surface stresses to surface displacements which is very useful in solving contact 
and surface loading problems. 

For multi-layered solids (3 layers and more), an interesting approach seems to 

be more convenient. It consists of defining a transfer matrix for each solid layer 

and then relating surface stresses to surface displacements with a transfer 

function depending on these matrices [35, 36]. This technique has been used by 

[37] to calculate the stresses in a multi-layered solid submitted to the 
indentation of a rigid circular plate. To do that, He used a technique developed 

by [38] and have obtained a Fredholm integral equation which is solved to 

obtain a closed-form solution for the contact problem as in [39, 40]. Recently, 

the same technique has been used by [41] to solve the axisymmetric indentation 

problem of multi-layered solids. 

In this paper, a rough contact model of multi-layered solids is proposed based 

on the transfer matrix technique [36] and the works of [39, 37]. First, by making 

use of the transfer matrix technique, the surface displacements are expressed in 

terms of surface stresses for a multi-layer problem. Second, a contact model of 

an axially symmetric asperity is developed by extending the solutions proposed 

by [39, 37]. Then a closed form solution is obtained for the same problem. 

Subsequently, by considering the classical multi-asperity surface description, 

the contact asperity model is used to solve the rough contact problem including 

interactions between asperities. Finally, typical results are presented and 

compared to Finite Element calculations. In particular, the effect of the solid 

layers elastic properties and the asperities interactions are discussed. Moreover, 

several calculations are performed on many surface samples with the aim to 

highlight the effect of the surface spectrum breadth. 

2 Surface loading of multi-layered elastic solid : the transfer matrix 

technique 

2.1 General framework 
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Considering an isotropic elastic medium (z ≥ 0) laterally unbounded (see Fig.1). 

There is no body forces, the static equilibrium of the solid can be written as 

follows 

 σij,j = 0 (1) 

where σ is the Cauchy stress tensor and x,j is the 1st order partial derivative of a 

given operand x per the jth component. 

The deformation in the solid is assumed to be infinitesimal, thus, the strains ij are 
related to the displacements ui by 

 ) (2) 

The constitutive based material has elastic properties varying with depth z. 

Thus, one can consider the solid as a multi-layered system of unbounded 
horizontal layers, where each layer has its own local properties (see Fig.1). 

For the kth layer, the constitutive equation between stresses σij and strains ij is 
expressed by Hooke’s law 

  (3) 

where µk is the shear modulus, νk is the Poisson’s ratio and δij is the Kronecker 

symbol. 

Solving the contact problem is to express the displacements and the stresses in 

the contacting regions of the top surface of the solid (z = 0). For that issue, the 

problem is solved through the Hankel integral transform and the transfer matrix 

technique. 

 

Fig. 1 Schematic of a multi-layered elastic solid under surface loads 
2.2 The transfer matrix technique 
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Let us consider the axis of symmetry of an isotropic elastic medium as the z-axis. 

The governing equations are presented as follows in cylindrical coordinates 

(r,θ,z). The problem is solved in the case of axially symmetric deformation and 

all field variables are independent of θ. 

Considering the stress vector defined by Tz = [σrz,σθz,σzz]t and the displacements 

vector u = [ur,uθ,uz]t. Let us introduce the following set of solution representation 

using the Hankel integral transform 

w  

 

where Jn is the nth order Bessel function. 

It is well known that this set of variables satisfies the two decoupled first order 

differential equations 

d 

dz  

d 

d  

The global solution of this system is an eigenvalue extraction problem and can 

be written in the following form 

 and  

where Az , Aη, Bη, Bz, Aξ and Bξ are constants and the matrices Z1 and Z2 are given 

in Appendix A. 

Considering that the medium is an unbounded horizontal layer of which the 

thickness is h (see Fig.2). The superscript (+) (resp. (−)) is used for the top layer 
surface variables (resp. the bottom one). One can show that 
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  and  (4) 

where Tzξ and Tη are the transfer matrices of the layer and are given in Appendix 

A. 

 

Fig. 2 Schematic of an elastic layer of which the deformations and the stresses are given by the transfer 
matrix technique 

Now let us consider a multi-layered body made of N horizontal layers Fig.1. The 

1st layer is on the top of the solid and the Nth layer lies on a homogeneous half 

space that can be either rigid or elastic. Considering the perfect continuity 

between the parallel layers, then the displacement field u and the stress vector 

Tz are both continuous. Using the transfer matrices, one can obtain the following 

set of equations 

  wz(0)   wz(N)  

 (0) (N) 
ρw 

and  (0)ξ  = T(1)zξ 

...T(zξN) τρwz(Nξ)/ρ  

 

 η η τz /ρ 

| {z } 
=R 

From these equations, it can be seen that the transformed stresses and 

displacements of the top surface of the 1st layer can be related directly to those 

of the bottom surface of the Nth layer by the mean of the matrices S and R. These 

matrices are given by a simple product of the transfer matrices of the 
intermediate layers as shown in these equations. 

In order to solve the problem, the boundary conditions in the bottom face are 

used. Following many algebraic operations, one can show that 

" w 
(0) 
η 

τ (0) /ρ 

# 
= T (1) 

η ... T ( N ) 
η 

| { z } 

" w 
( N ) 
η 

τ ( N ) /ρ 

# 

 
τ 

(0) 
ξ 

 
= S  

τ 
( N ) 
ξ 
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  , where F  (5) 

The matrix F is called the transfer matrix of the body. The matrix coefficients 
depend on the bottom surface boundary conditions and are given in Appendix B. 
In Eq.5, one can see that surface displacements are related directly to surface 

loads using the matrix F. More clearly, if a general surface loading is applied to 

the top surface z = 0, one can compute the real displacements automatically 
using the inverse Hankel transform of Eq.5. 

At last, it has to be noticed that the transfer matrix can also be formulated in 
Cartesian coordinates with the use of Fourier integral transform. 

In what follows, the normal elastic contact problem of an axially symmetric 
asperity is solved by making use of the transfer matrix and integral transforms. 

3 Elastic contact of an axially symmetric asperity 

3.1 General contact problem 

Considering a multi-layered solid, the top surface shape of the solid contains an 

asperity which is described by a function z = f (r). The small-slope 

approximation is considered. The asperity is compressed normally against a 

rigid plan with a vertical motion δ. Just as in Hertz theory, a circular contact zone 

appears and has a radius a. Also, no shear stresses are considered. The boundary 
conditions of the problem are : 

– Inside the contact: uz (r) = δ − f (r) , 0 ≤ r ≤ a 

– Outside the contact: σzz (r) = 0, a ≤ r 

As shown in the previous section, using the transfer matrix technique, one can 

show that 

wz = F11 (ρ)(τz/ρ) 

Using inverse Hankel transform, the boundary conditions can be written as 

follows 

– Inside contact: 

  , 0 ≤ r ≤ a (6) 

– Outside contact: 

 

Let us denote 
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One can show that for any given boundary conditions, we have 

 

where µ1 et ν1 are the elastic parameters of the first layer. Consequently, we 

introduce the kernel kz defined by 

kz (ρ) = αF11 (ρ) − 1 

Then Eq.(6) becomes 

 Z +∞ Z +∞ 

α(δ − f (r)) = τz (ρ)J0 (ρr)dρ+ kz (ρ) τz (ρ)J0 (ρr)dρ,0 ≤ r ≤ a 
 0 0 

(7) 

In order to solve this singular integral equation, we will refer to the earlier works 

of [39, 37]. Therefore, the auxiliary function φ is introduced by 

  (8) 

We also introduce the Abel transform A defined by 

 

Knowing that 

J0 (ρr) = A(cos(ρx),r) 

then 

 

and 

 

Hence Eq. (7) may be written as an Abel integral equation 

 

Making use of the inverse Abel transform A−1 and the integration by parts, one 
can obtain 

 

Using Abel integral transform [38, 37], one can obtain from Eq.(7) 
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Introducing the dimensionless variables s = r/a and t = x/a, a Fredholm 
equation of the second order is obtained 

 ) (9) 

where 

 
and 

and  

Solving Eq.(9) is done numerically by a quadrature technique. Indeed, by 

choosing an interpolation base, the equation can be written in a matrix format 

φ + K.φ = G 

where φ, K and G are respectively the discretized form of φ, Ka and G expressed in 

integration points. 

Then φ is found by simple inversion of the matrix equation −1 

 φ = (I + K) G 

Once the auxiliary function φa is computed, one can calculate the total normal 

force P by 

  (10) 

At last, all surface stresses and displacements can be deduced using Hankel 
transform properties. In particular, we have 

– The normal stress 

 

If f is smooth, contact stress vanishes at the edge of contact zone (r = a), 

hence, it comes that φa (1) = 0 and 

 1 (11) 

– Contact radius a in the case where f is smooth 

 (12) – The normal 

displacement outside contact area 
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where s = r/a > 1 

It is important to state that the solution of [39] of elastic half spaces can be 

deduced by considering kz = 0, whereas the solution given by [37] can be 

retrieved by choosing f = 0, which corresponds to the flat contact case. In other 

words, the proposed solution is an extension of both solutions to cover the 

axially symmetric frictionless contact problem of multi-layered solids. 

3.2 Contact solution for a parabolic asperity 

Considering the case of an asperity of parabolic shape. In this case, by taking the 
origin on the symmetry axis, the function f is given by 

 

Hence the Fredholm 

equation (9) becomes 

! 

(13) 

In this equation, the unknown is the contact radius a. Eq.(13) is solved iteratively 
starting from an initial trial value√ a0 which can be chosen for instance 

 

from Hertz theory a0 = R.δ. 

In order to illustrate the results obtained with this model, some calculations 

have been performed on a single asperity model of a two-layered solid (see 

Fig.3(a)). The asperity is in contact with a rigid flat plane that is moved vertically 

against the asperity with a given displacement δ. 
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Fig. 3 (a) Schematic of the single asperity model. The asperity is compressed vertically with a 
displacement δ. The solid is composed of two elastic layers. (b) The finite element mesh of the 

asperity model. The mesh is refined near to the top of the asperity. 

The total height of the solid is H = 1mm and the Young modulus of the first layer 

is E1 = 4GPa. Both of these quantities are fixed in this study, while the first layer 

thickness h is varied as well as the second layer modulus E2. The Poisson ratio ν 

= 0.15 is the same for both layers. 

The obtained results are compared to finite element calculations (FEM) and 

Hertz theory. The latter corresponds to the case of a homogeneous half space. 

The idea is to evaluate the accuracy of the model comparing to FEM calculations 
and to enhance the role of the sub-layers parameters. 

The geometry, boundary conditions and the mesh of the FEM model are shown 

in Fig.3(b). The surface considered in this section is described by a parabolic 

asperity followed by a symmetric parabola having the same curvature. This 
parabola has been used to guarantee the continuity of the surface slope. Besides, 

this curve stands outside the contact area so that it does not affect the system’s 

response. A quadratic hexahedron element type is used and the mesh has been 

refined to capture all the details of the asperity. A convergence test has been 

performed. For example in Fig.3(b), 17.103 elements are used and the element 
size at the top of the asperity is 0.5µm. Axisymmetric boundary conditions are 

applied at the axis of revolution of the asperity (ur = 0) and the displacement is 

fixed on the bottom of the solid (ur = uz = 0). The lateral bounds are free from any 

boundary conditions and the width of the solid is high enough so that the layers 

can be considered as unbounded. Moreover, a perfect adherence is considered 
between the layers to guarantee the continuity of displacement and stresses. 

Regarding the contact interface between the rigid plane and the solid, the 

augmented Lagrangian method is employed. The evolution of the total force P 

with the displacement is presented in Figs.4 -6. In Fig.4, the elastic modulus ratio 

E2/E1 is varied from 0.2 to 5 and the thickness h is fixed at 100µm. As we can see, 
the predicted force deviates from Hertz theory predictions when the ratio E2/E1 

varies. For the unit ratio, there is a slight difference which is due to boundary 

conditions effect. Moreover, comparing the model predictions with finite 

element results (marked by FEM in the figure and drawn by dashed lines) show 

a good consistency. In Fig.5, the effect of the first layer thickness is highlighted. 
The predicted results match FEM results. The less the thickness is, the more the 

results deviate from Hertz theory. Additionally, the curve plotted in Fig.6 shows 

the predicted values for different values of asperity radius and fixed elastic 

parameters. Once again, there is a good consistency between the obtained 

results and FEM values. 

As summary, the proposed contact solution is in good accordance with FEM 

calculations and the force-displacement evolution is affected by the layers 

properties and thicknesses. In the following, the contact solution is simplified 

and used to model the normal contact of rough surfaces considering solid layers. 
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Fig. 4 Variation of the total force with the vertical displacement for the parameters : h = 100µm and 
R = 100µm 

 

Displacement δ(µm) 

Fig. 5 Variation of the total force with the vertical displacement for the parameters : 
E2 = 10GPa and R = 100µm 

4 Contact of rough surfaces 

4.1 An approximate asperity contact model 

In the previous section, a contact model of asperities has been presented. In 

order to make use of this model, some simplifications are proposed. First, let us 
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Fig. 6 Variation of the total force with the vertical displacement for the parameters : E2 = 10GPa and h 
= 100µm 

consider a parabolic asperity. The derivation of the Fredholm integral equation 

Eq.9 gives 

d

 

 ∂Ka dφa 

Since  (0,t) = 0, one can deduce that  (0) = 0 

 ∂s ds 

Hence, by considering that the function φa is a 2nd order polynomial, one can 
write 

 

Using this simplified form and based on Eq.(9) and Eq.(12), φa (0) and δ are 
respectively given by 

  (14) 

  (15) 

Making use of the two last equations, one can write 

Using this simplified form, one can write from Eq.(9) and Eq.(12) 
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) and  

where ζ and χ are functions of a 

 

 

Finally, the following approximated expressions are deduced: 

– The total normal force P 

  (16) 

– The normal stress σzz 

  (17) 

– The normal displacement is then given by 

  if r ≤ a 

 else. 

(18) 

where  

By using this simplified form By using the parameters χ and ζ , one can express 

all the variables as a function of the contact radius a, which is very helpful for 

the case of rough surfaces as it will be presented in the next section. In 

particular, the normal force and the stress and the displacement are given in 

Appendix C. But before tackling the problem of rough surfaces, the parameters 

χ and ζ are plotted in Figs.7-10 for the same configurations studied in the 

previous section. For small values of contact radius a, these parameters are close 

to 1. In this case, the predicted values of the total force is almost the same as 

those predicted by Hertz theory. 

Increased ratio E2/E1 and or decreased h both lead to too much small values of ζ 

corresponding to too much large contact radius for a given displacement, and to 

too much large values of χ resulting in more important force values. Conversely, 
reducing E2/E1 and or raising h lead to contact area and strength lowering. 

These parameters can be seen, in a certain manner, as sub-layer impact 

coefficients. Indeed, if the sub-layers have elastic parameters that are very 

different from those of the first one or if the first layer is very thin, these 

coefficients will influence strongly the contact behavior, which is the case in the 
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predicted curves shown in Figs.4-6. As stated before, this approximate solution 
is ob- 

 

Fig. 7 Evolution of function χ for the case of h = 100µm 

 

Fig. 8 Evolution of function ζ for the case of h = 100µm 

tained using a 2nd order approximation of the auxiliary function. In Figs.1112, 

the relative error between the total force predicted using the approximate 

solution and the one issued from the theory is drawn for the same tested 

configurations. As we can see, the maximum relative error does not exceed 1% 

except for the case of the thinnest layer (h = 50µm) where the value of 4% is 
reached, which is still acceptable. 
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Fig. 9 Evolution of function χ for the case E2 = 10GPa 

 

Fig. 10 Evolution of function ζ for the case E2 = 10GPa 

The approximation introduced in this paragraph is of great importance because 

it significantly simplifies the asperity contact model. Using this approximation a 
multi-asperity contact model is presented in the following section. 
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Fig. 11 The relative error between the theoretical predictions of the total force and those of the 
approximated model for h = 100µm, R = 100µm 

 

Fig. 12 The relative error between the theoretical predictions of the total force and those of the 
approximated model for E2 = 10GPa, R = 100µm 

4.2 A multi-asperity contact model 

In this section, we are dealing with the contact problem between a rough surface 

and a flat one. The following geometric description is similar to the ones given 

in [9, 11]. The body containing the rough surface is elastic and is considered as 
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a multi-layered solid. The flat surface is rigid and is moved normally with a 
displacement δ with respect to the rough surface. Within the frame- 

 

Fig. 13 Geometry of rough contact problem within a multi-asperity approach. Contact occurs only on 
asperities and the contact area shape in an asperity is circular. 

work of a multi-asperity approach, the normal displacement in every point is a 

consequence of all the contact strengths forces applied on surface asperities. 

Taking into account the interactions between asperities, the displacement of 

each asperity is obtained by summing the displacements due to all the 
contacting asperities. 

If N is the number of the supposed contacting asperities, the displacement wk 

of the kth asperity reads   

 N wk = XGi 

(rik) (19) 
i=1 

where 

 ) if 

i = k 

else 

where rik is the horizontal distance between the kth and the ith asperity. This 

expression has been obtained from the simplified asperity contact model developed 
in the last section (see 30 in Appendix C.) 
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Let us denote zM the maximum height of the rough surface and zi the height of 

the ith asperity, the prescribed displacement of the ith asperity is given by: 

 δk = hδ − (zM − zk)i (20) 

where < . > is the positive part of its operand. 

Solving the problem is to find a distribution of contact dimensions a = (a1,a2,...,aN) 
satisfying contact conditions : wk ≥ δk. 

The equality means that the asperity is in contact while the strict inequality 

signifies that the asperity is not in contact, and in this case, the change of the 
asperity height is due to interaction effects. 

Unlike our previous work [11], where the problem has been solved using a direct 

method based on the minimization of an objective function based on contact 

kinematic conditions, the present problem is solved with a variational method 

consisting in minimizing of the total complementary potential energy UE of the 

solid [14] 

  (21) 

where Γc is the contact zone, p is the contact pressure field and δ is the prescribed 
displacement field. 

For a given asperity, using the asperity contact model, the first integral 
corresponds to the internal energy and reads 

 

and the second integral is the prescribed displacements work which is given by 

 

By summing the contribution of all the contacting asperities, the total 
complementary energy reads 

  (22) 

For the special case of homogeneous half spaces χ = ζ = 1, this energy reads 

  (23) 
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The problem is solved by minimizing the system total energy under the 
constraints a ≥ 0. A Newton likewise method is used to minimize this quantity 

[42]. 

Once the optimal contact radius distribution is found, the total force and the real 

contact area are obtained by adding the contribution of all the contacting 

asperities, hence they are respectively given by 

(24) 

(25) 

The normal separation between the two faces is  

gn = (zM − z¯) − δ (26) 

where ¯z is the height of the mean plane. 

As stated before, this model considers the interactions between asperities. A 

simple form can be proposed to cover the case where interactions are not 

considered. Indeed, by neglecting the interaction terms Gj, the contact radius for 

each asperity can be computed from the following equation 

 

This formula can be obtained directly from contact kinematic conditions. 

5 Results 

As an example, the normal contact of a two-layered elastic solid with a rigid plan 

plane is investigated. The surface of the solid is rough (see Fig.14 (a)). For 

instance, surface roughness is kept fixed while the solid layer parameters are 

varied. For each configuration, the obtained results are compared to finite 

element calculations in the same manner as it was done for the single asperity 

problem (see section 3.2). Moreover, the effect of the solid parameters and 
interactions is discussed. 

The dimensions of the surface sample are 1mm × 1mm. A fractal self-affine rough 

surface is considered (see Fig.14 (c)). Roughness is generated numerically using 

numerical tools based on the surface spectral density (PSD). This means that its 
power spectrum density (PSD) is approximately given in the form of a power 

law PSD ∼ |k|−2(4−Df), where Df is the fractal dimension and k is the wave vector. 

In this paper, the fractal dimension of the surface is fixed at Df = 2.4. The self-

affinity is considered between two cut-off wave numbers km and kM. The discrete 

interval [km,kM] defines the breadth of the roughness spectrum and the PSD 
vanishes elsewhere. The cutoff wave numbers have been first fixed at km = 2 and 

kM = 10, but will be varied later to discuss their effect. For the chosen values of 

the cutoff wave numbers, the studied surface corresponds to a narrow band of 

roughness. Using the PSD, the rough surface has been generated numerically 
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using the discrete Fourier Transform [5]. In particular, the height profile z is 

generated by the equation  where z0 is a 
scaling amplitude 

k parameter, L is the root square of the surface area and φ(k) 

are independent random variables which are uniformly distributed in the 

interval [0,2π[. Once the random rough surface is generated, the asperities are 

identified as local maxima and their geometrical properties are computed using 

the finite difference method. The fractal dimension of the surface is 2.4 and the 

root mean square is 3.4µm. The surface asperities are identified as local maxima. 

Their geometrical properties are computed using the finite difference method. 

In the finite element model (FEM model), illustrated in Fig.14, the solid is 

meshed with 6.105 quadratic hexahedron elements (see Fig.14 (b)). At the top of 

the rough surface, there is ∼ 3.104 elements. The convergence of the numerical 

models has been checked and the number of the considered elements is high 

enough to capture all surface details. The contact problem is solved using 

Augmented Lagrangian formulation [13] which guarantees the FEM solving 

efficiency. The finite element analysis is performed with Abaqus/Standard 6.13. 

The results from various models are shown in Fig.15 and Fig.16. The first layer 

thickness is h = 100µm, its Young modulus is fixed at E1 = 4GPa and the ratio 

E2/E1 is varied from 0.2 to 5. 

The variation of the dimensionless contact pressure  (where is 

the equivalent elastic modulus of the first layer and pn is the mean contact 

pressure) with normal separation gn is shown in Fig.15. At first sight, there is a 

good accordance between the proposed model predictions and finite element 

results. One also can see that the impact of the sub-layer properties is 

considerable. It is also noticeable that the evolution between the logarithm of 

 and gn is almost linear except for the case of small loadings, and this 

for the different tested configurations. 

In Fig.16, the evolution of the real contact area fraction A/A0 (where A0 is the 

apparent contact area) with the quantity  is presented. The numerical 

predictions are in good agreement with the model results. The contact area - 

mean pressure relationship is almost linear except for the case of very small 

fractions of contact area (A/A0 ≤ 0.5%). However, the most interesting 

observation that can be made is that this evolution is marginally affected by the 

sub-layer modulus. Indeed, the first layer modulus is the same for all the 
considered configurations and the introduced function χ is equal to 1 (see 
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Fig. 14 (a) Schematic of the model. The first layer thickness is h = 100µm and the following 
parameters are considered : H = 1mm and E1 = 4GPa. (b) Schematic of the finite element model. The 
two-layered solid is meshed with 6.105 hexahedron elements. (c) Illustration of surface roughness. 

Figs.7- 10), independently of the sub-layer modulus. Therefore, the pressure 

level which is controlled by function χ (see Eq.29), is kept fixed with respect to 

contact area. Thus, this evolution is mainly affected by roughness and the first 

layer modulus. Finally, one should expect that the linearity of the area vs 

pressure relationship is only valid for a limited range of contact area, as in the 
classical asperity theories [7, 9]. 

From these examples, it is clear that the elastic properties of the sub-layers have 

a considerable influence on the separation-load relation but marginally effect on 

the contact area-load evolution. It seems that this relationship depends only on 

the first layer modulus which was fixed in this study. 

Another interesting point to be investigated is the interaction effect on the 

system response. Up to now, the complete model considering interactions has 

been tested and results are in good accordance with FEM calculations. In what 

follows, the results from the complete model (that is indicated as ” I model ”) are 

compared to the simplified model which does not consider interaction 

(indicated as ” N model ”). 

The evolution of  with normal separation gn is shown for both models in 

Fig.17. As we can see, the contribution of interactions depends on the solid 

parameters, and in this example, it is the ratio E2/E1. The increase of E2/E1 

attenuates the effect of interactions. For higher values of this ratio, interactions 
has little effect on the studied curve. Indeed, the function g introduced 
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Fig. 15 Evolution of the dimensionless contact pressure with the normal separation. Comparison 
between FEM results and the model predictions. 

in Eq.30 has a great effect on interaction terms. For instance, for the case where 

E2/E1 = 5, these terms almost vanish and there is no need to consider 

interactions. In contrast, if the sub-layer is less rigid than the surface layer 

(E2/E1 ≤ 1), the non-consideration of asperities lead to an overestimation of the 
global stiffness. 

Hence one can conclude that the major influence of the sub-layers properties on 

the interface behavior lies in the interactions between asperities, which affect 

subsequently the contact area and normal stiffness. It is also worth to notice that 

the influence of interactions is not only dependent on the sub-layers properties 

but also on the first layer thickness. 

Regarding the evolution of the real contact area with loading (see Fig.18), we 

observe that interactions do not affect this evolution. This remark have been 

already made in many works studying the effect of interactions on loading-area 
evolution (see [9, 11]). 

With regard to the computational time, the new contact model provides results 

within ten to twenty minutes if interactions are included, and few seconds if not. 

The fully discretized solution obtained with the finite element method is more 

computationally expensive and lasts 6−8 hours using a high-performance 
computer. Thus the present model is numerically efficient. 
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As is aforementioned, the precedent studies were conducted on a narrow band 
rough surface and the results have been verified with the finite element method. 

In what follows, we present the results obtained with this model using different 
Fig. 16 Evolution of the fraction of the contact real area with the dimensionless contact pressure. 
Comparison between FEM results and the model predictions. 

kinds of roughness. Indeed, the upper cut-off wave number kM has been varied 

from 10 to 20 and then to 40. For each value of kM, 20 surface samples have been 

studied. The purpose is to investigate the dependency of the effects of 

interactions and the sub-layer parameters on the surface spectrum bandwidth. 
Moreover, from this study the deviation from one result to another can be 

assessed and the global tendencies can be analyzed if they exist. 

In Fig. 19 is shown the evolution of the dimensionless contact pressure with the 
normal separation for the case where E2/E1 = 1 and considering the two models 

: ” I model ” if interactions are considered and ” N model ” if not. As can be seen 

from this figure, the spectrum breadth have a considerable influence on the 

predictions of the model if interactions are not considered (see the red curves 

in the same figure). However, interestingly the gap between the same curves 
decrease if interactions are considered especially for small separations (see the 

blue curves). For large separations, a considerable scatter is observable which 

can be due to the dependency of the results at this stage on the arrangement of 

asperities. Once again, this study confirms that interactions tend to reduce the 

slope of the pressure vs separation relationship despite the spectrum 
bandwidth value. As regards the contact area vs pressure curve (see Fig. 20), 
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one can see that this curve depends considerably on the spectrum breadth. The 
contact area decreases with the increase of kM. This behavior is predictable since 

the asperities become much smaller when kM increases. Interestingly, one can 

also remark that interactions do not modify these curves 
Fig. 17 Evolution of the dimensionless contact pressure with the normal separation. Comparison 
between the complete model (” I model ”) and the one which does not consider interactions (” N 
model ”) 

and this for the different surface samples. 

Similarly, we have conducted the same study considering E2/E1 = 5. The 
evolution of the pressure vs separation is shown in Fig.21. Comparing to the 

previous case, it is clear that interactions become less influent on this 

relationship especially for the narrow band surfaces kM = 10. As kM increases, 

interactions still have an impact on this relationship. This can also be explained 

by the fact that the increase of kM leads to decreasing the contact spots size with 
respect to the surface layer thickness which remains fixed at 100µm. Moreover, 

for the same configurations, Fig.22 shows the area vs pressure curve. Once 

again, the same results can be seen, namely the considerable influence of kM and 

conversely the non-dependence on interactions. 

From the different studies, it is clear that the prediction of the pressure vs 

separation curve depends on the spectrum bandwidth and the solids layers 

properties. As we have shown, the consideration of interactions is proved to be 

necessary for many cases, in particular, if the surface spectrum bandwidth is 
enough large and / if the surface layer is enough thick or if the solid sub-layers 
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are less stiff. Moreover, if interactions are considered, the predictions of the 
model seems to be less dependent on the upper wave number especially for the 

case of small separations. Furthermore, the contact area vs pressure curve 

seems to be marginally affected by all these features, except the spectrum 

bandwidth, and the linearity is predicted for limited range of contact areas. In 

particular, the increase of the surface bandwidth leads to a decrease of the 
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Fig. 18 Evolution of the fraction of the contact real area with the dimensionless contact pressure. 
Comparison between the complete model (” I model ”) and the one which does not consider 
interactions (” N model ”) 

contact area with respect to the load. This is a classical result and was already 
predicted in many theories such as Bush et al. theory [8] and Persson’s theory 

[43]. 

Conclusion 

In this work, a contact model of rough surfaces and multi-layered solids has 

been proposed. The model is based on a multi-asperity surface description. The 

transfer matrix technique has been used to express surface displacements as 

functions of the surface loads. Then, making use of Abel and Hankel transforms, 

a contact model of parabolic asperities has been developed. At the asperity scale, 

results show that the sub-layer properties affect clearly the load-displacement 
curve. 

By making use of a second order approximation of the asperity model, a contact 

model of rough surfaces has been developed. The obtained results have been 

compared to finite element calculations. A good agreement has been observed 
between the two methods. 

As an example, a two-layered solid with a rough surface has been studied. 

Results show that the sub-layer properties strongly affect the contact interface 
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stiffness but much less the load-area evolution. The latter depends essentially 
on surface roughness and the first layer properties. With regard to stiffness, 
Fig. 19 Evolution of the dimensionless contact pressure with the normal separation. Comparison 
between the complete model (” I model ”) and the one which does not consider interactions (” N 
model ”) for different values of the upper wave number kM (10, 20 and 
40), E2/E1 = 1 and 20 surface samples 

the sub-layers properties have a great influence on interaction terms which 

affects the load-separation evolution. Indeed, it has been shown that in some 

cases, the interactions between asperities can be neglected, while in the 

homogeneous case, interactions must be considered even in the case of small 

loads and contact areas. Moreover, the effect of the surface bandwidth has been 

investigated over many surface realizations. The obtained results highlight the 

role of interactions which increase if the surface is a large band while the contact 

area decreases since the scale of asperities decreases with the upper wave 
vector increasing. 

Finally, this model can be used to embed large scale numerical models with the 

aim to consider the effect of roughness and a normal gradient of properties 
using the approach presented in our work [11]. 
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Fig. 20 Evolution of the fraction of the contact real area with the dimensionless contact pressure. 
Comparison between the complete model (” I model ”) and the one which does not consider 
interactions (” N model ”) for different values of the upper wave number kM (10, 20 and 40), E2/E1 = 
1 and 20 surface samples 

References 

[1] Hetzler, H. & Willner, K. On the influence of contact tribology on brake squeal. Wear, 2012, 46, 
237-246 

[2] Longuet-Higgins, M. S. The statistical analysis of a random, moving surface. Philosophical 
Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 
1957, 321-387 

[3] Nayak, P. R. Random process model of rough surfaces. Journal of Tribology, American Society of 
Mechanical Engineers, 1971, 93, 398-407 

[4] Majumdar, A., & Tien, C. L. Fractal characterization and simulation of rough surfaces. Wear, 
1990, 136(2), 313-327 

[5] Persson, B., Albohr, O., Tartaglino, U., Volokitin, A. & Tosatti, E. On the nature of surface 
roughness with application to contact mechanics, sealing, rubber friction and adhesion. Journal 
of Physics: Condensed Matter, IOP Publishing, 2005, 17, R1-R62 

[6] Archard, J. F. Elastic deformation and the laws of friction. Proceedings of the Royal Society of 
London. Series A. Mathematical, Physical and Engineering Sciences, The Royal Society, 1957, 
243, 190-205 

[7] Greenwood, J. & Williamson, J. Contact of nominally flat surfaces. Proceedings of the Royal 
Society of London. Series A. Mathematical and Physical Sciences, The Royal Society, 1966, 295, 
300-319 



A new contact model for multi-layered solids with rough surfaces 31 

[8] Bush, A., Gibson, R. & Thomas, T. The elastic contact of a rough surface. Wear, 1975, 35, 87-111 
[9] Ciavarella, M., Delfine, V. & Demelio, G. A re-vitalized Greenwood and Williamson model of elastic 

contact between fractal surfaces. Journal of the Mechanics and Physics of Solids, 2006, 54, 
2569-2591 

[10] Saha, S., Xu, Y., & Jackson, R. L. Perfectly elastic axisymmetric sinusoidal surface asperity contact. 
Journal of Tribology, 2016, 138(3), 031401. 

Fig. 21 Evolution of the dimensionless contact pressure with the normal separation. Comparison 
between the complete model (” I model ”) and the one which does not consider interactions (” N 
model ”) for different values of the upper wave number kM (10, 20 and 40), E2/E1 = 5 and 20 surface 
samples 

[11] Waddad, Y. , Magnier, V. , Dufr´enoy, P. & De Saxc´e, G. A multiscale method for frictionless 
contact mechanics of rough surfaces. Tribol. int., 2016, 96, 109-121. 

[12] Pei, L., Hyun, S., Molinari, J. F. & Robbins, M. O.Finite element modeling of elastoplastic contact 
between rough surfaces. Journal of the Mechanics and Physics of Solids, 2005, 53, 2385-2409 

[13] Wriggers, P. Computational contact mechanics. 2nd ed., Springer, 2006. 
[14] Johnson, K. L. Contact mechanics. Cambridge university press, 1987 
[15] Willner, K. Fully coupled frictional contact using elastic halfspace theory. Journal of Tribology, 

American Society of Mechanical Engineers, 2008, 031405, 1–8. 
[16] Gallego, L., Nelias, D. & Deyber, S. A fast and efficient contact algorithm for fretting problems 

applied to fretting modes I, II and III. Wear, 2010, 268, 208–222. 
[17] Wang, Z., Jin, X., Liu, S., Keer, L. M., Cao, J., & Wang, Q. A new fast method for solving contact 

plasticity and its application in analyzing elasto-plastic partial slip. Mechanics of Materials, 
2013, 60, 18-35. 

[18] Kogut, L., & Etsion, I. Elastic-plastic contact analysis of a sphere and a rigid flat. Journal of 
applied Mechanics, 2002, 69(5), 657-662 

[19] Jackson, R. L., & Green, I. A statistical model of elasto-plastic asperity contact between rough 
surfaces. Tribology International, 2006, 39(9), 906-914 



32 Yassine Waddad et al. 

[20] Leroux, J., Fulleringer, B. & Nelias, D. Contact analysis in presence of spherical inhomogeneities 
within a half-space. International Journal of Solids and Structures, 2010, 47, 3034–3049. 

[21] Plumet, S. & Dubourg, M. C. A 3-D model for a multilayered body loaded normally and 
tangentially against a rigid body: Application to specific coatings. Journal of tribology, 1998, 

120(4), 668-676. 
[22] Cole, S. J., & Sayles, R. S. A numerical model for the contact of layered elastic bodies with real 

rough surfaces. Journal of tribology, 1992, 114(2), 334-340. 
Fig. 22 Evolution of the fraction of the contact real area with the dimensionless contact pressure. 
Comparison between the complete model (” I model ”) and the one which does not consider 
interactions (” N model ”) for different values of the upper wave number kM (10, 20 and 40), E2/E1 = 
5 and 20 surface samples 

[23] Mao, K., Bell, T., Sun, Y., & Sayles, R. S. Effect of sliding friction on contact stresses for multi-
layered elastic bodies with rough surfaces. Journal of tribology, 1997, 119(3), 476-480. 

[24] Liu, S. B., Peyronnel, A., Wang, Q. J., & Keer, L. M. An extension of the Hertz theory for three-
dimensional coated bodies. Tribol. Lett., 2005, 18(3), 303-314. 

[25] Nogi, T., & Kato, T. Influence of a hard surface layer on the limit of elastic contactPart I: Analysis 
using a real surface model. Journal of Tribology, 1997, 119(3), 493-500. 

[26] O’sullivan, T. C., & King, R. B. Sliding contact stress field due to a spherical indenter on a layered 
elastic half-space. Journal of Tribology, 1988, 110(2), 235-240. 

[27] Pasaribu, H. R., & Dirk J. Schipper. Application of a deterministic contact model to analyze the 
contact of a rough surface against a flat layered surface. Journal of Tribology, 2005, 127(2), 
451-455. 

[28] Huajian, G., Cheng-Hsin, C., & Jin, L. Elastic contact versus indentation modeling of multi-layered 
materials. International journal of Solids and Structures, 1992, 29(20), 2471-2492. 

[29] Cai, Shaobiao & Bhushan, Bharat A numerical three-dimensional contact model for rough, 
multilayered elastic/plastic solid surfaces. Wear, 2005, 259, 1408-1423. 

[30] Peng, Wei & Bhushan, Bharat Three-dimensional contact analysis of layered elastic/plastic solids 
with rough surfaces. Wear, 2001, 249, 741-760. 



A new contact model for multi-layered solids with rough surfaces 33 

[31] Kral, E. R., & K. Komvopoulos.Three-dimensional finite element analysis of subsurface stress and 
strain fields due to sliding contact on an elastic-plastic layered medium. Journal of Tribology, 
1997, 119(2), 332-341. 

[32] Komvopoulos, K. & Ye. N. Three-dimensional contact analysis of elastic-plastic layered media 
with fractal surface topographies. TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL 
ENGINEERS JOURNAL OF TRIBOLOGY, 2001, 123(3), 632-640. 

[33] Goltsberg, R., I. Etsion, & G. Davidi. The onset of plastic yielding in a coated sphere compressed 
by a rigid flat. Wear, 2011, 271(11), 2968-2977. 



34 Yassine Waddad et al. 

[34] Song, W., Li, L., Ovcharenko, A., Jia, D., Etsion, I., & Talke, F. E. Plastic yield inception of an 
indented coated flat and comparison with a flattened coated sphere. Tribology International, 
2012, 53, 61-67. 

[35] Singh, Sarva Jit Static deformation of a transversely isotropic multilayered half-space by surface 
loads. Physics of the earth and Planetary Interiors, 1986, 4, 263–273. 

[36] Ernian, Pan Static response of a transversely isotropic and layered half-space to general surface 
loads. Physics of the Earth and Planetary Interiors, 1989, 54, 353–363. 

[37] Yue, Z. Q. Elastic field for eccentrically loaded rigid plate on multilayered solids. International 
Journal of Solids and Structures, 1996, 33, 4019-4049. [38] Sneddon, I. N. Fourier transforms. 
Courier Corporation, 1995. 

[39] Sneddon, I. N. The relation between load and penetration in the axisymmetric boussinesq 
problem for a punch of arbitrary profile. International Journal of Engineering Science, 1965, 
3(1):47-57. 

[40] Yu, H. Y., Sanday, S. C., & Rath, B. B. The effect of substrate on the elastic properties of films 
determined by the indentation testaxisymmetric boussinesq problem. Journal of the Mechanics and 
Physics of Solids, 1990, 38(6), 745-764. 

[41] Constantinescu, A., Korsunsky, A. M., Pison, O., & Oueslati, A. Symbolic and numerical 
solution of the axisymmetric indentation problem for a multilayered elastic coating. International 
Journal of Solids and Structures, 2013, 50(18), 2798-2807. 

[42] Nash, S. G. A survey of truncated-Newton methods. Journal of Computational and Applied 
Mathematics, 2000, 124, 45-59 

[43] Persson, B., Bucher, F. & Chiaia, B. Elastic contact between randomly rough surfaces: 
comparison of theory with numerical results. Physical Review-Series B-, American Physical Society, 
2002, 65, 184106 

Appendix A 

- Elastic matrices 

Z  

and Z

 

and exp() is the exponential function. 

- Transfer matrices of a layer 

T
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and 

 T )) (27) 

where 

T  & T  

and cosh() and sinh() are the hyperbolic sine and cosine functions. 

Appendix B 

The transfer matrix that relates surface displacements to surface loads can be 
expressed as follows 

F  

The matrix coefficients are obtained from boundary conditions. Two cases are 
examined here : 

- Case of an elastic half space 

The multi-layered solid lies on an elastic half space. Thus, the half space pa- 

rameters  and  vanish. It follows that 

and  

where N ) and M  and zN is the total height of 

the solid. 

- Case of a rigid half space 

If the multi-layered solid lies on a rigid half space, the displacements  ,  

and  are set to be zero. One can deduce that 
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and  

Appendix C 

Using the closed form of φa and the parameters χ and ζ, the following 

approximated expressions can be deduced : 

– The total normal force P 

  (28) 

– The normal stress σzz 

  (29) 

– The normal displacement uz reads 

  if r ≤ a 

 else. 

(30) 

where  


