
HAL Id: hal-01737032
https://hal.science/hal-01737032

Submitted on 19 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reliable motion planner evaluated on a mobile robot
Elise Crépon, Adina M Panchea, Alexandre Chapoutot

To cite this version:
Elise Crépon, Adina M Panchea, Alexandre Chapoutot. Reliable motion planner evaluated on a mobile
robot. International Workshop on New Frontiers in Computational Robotics, Jan 2018, Laguna Hills,
California, United States. �10.1109/IRC.2018.00085�. �hal-01737032�

https://hal.science/hal-01737032
https://hal.archives-ouvertes.fr

Reliable motion planner evaluated on a mobile robot
Pierre-André Crépon

ENSTA ParisTech,
Palaiseau, France

crepon.pierre.andre@gmail.com

Adina M. Panchea
LIX, École Polytechnique,

Palaiseau, France
panchea@lix.polytechnique.fr

Alexandre Chapoutot
U2IS, ENSTA ParisTech,

Palaiseau, France
alexandre.chapoutot@ensta-paristech.fr

Abstract—Autonomous mobile robots need to be equipped with
appropriate planification and control navigation systems in order
to obtain safe behaviours. This study aims at implementing on
a two wheeled mobile robot a robust autonomous navigation
planning algorithm, which guarantees a safe and reliable path.
First, making use of all the facilities that robot operating
systems (ROS) middleware and the open motion planning library
(OMPL) can offer an autonomous architecture is implemented
on a mobile robot, with planning and control navigation systems
adapted to the investigated problem. The planning navigation
system make use of the widely-used Rapidly-exploring Random
Tree (RRT) algorithm, while the control navigation level is based
the go-to-goal strategy. As a novelty, a reliable and safe navigation
planning algorithm based on RRT principles, e.g., BoxRRT, and
solved in an interval analysis framework, proposed in a one of
our recent study is tested on a mobile robot platform. Through
experiments, we demonstrate the utility of using such robust
navigation planner in an autonomous navigation architecture,
where uncertain localization is considered.

I. INTRODUCTION

Autonomous navigation of mobile robots has attracted con-
siderable attention of researchers in the areas of robotics
and autonomous systems in the past decades [20]. One of
the interests in the field of the autonomous navigation of
mobile robot is the development of mobile platforms that
robustly operate in complex or populated environments and
offer various services without human interactions. For these
reasons, the autonomous navigation problematic remains quite
a challenge and it supposed to have navigation planning and
control algorithms that will make mobile robots successfully
accomplish a given mission while avoiding stationary or/and
moving obstacles. Also, robust real-time visual tracking and
objects detection algorithms may be considered for localiza-
tion purposes.

Related work

Many planning algorithms have been proposed in the lit-
erature. In this study, more attention is given to approaches
such as stochastic sampling which discretise the configuration
space. More precisely, we focus on the Rapidly-exploring
Random Trees (RRT) ([7], [9], [5], [8]) navigation planning
algorithm, which covers the whole configuration space and
easily integrates complex robot models.

A challenge for the navigation planners is related to the
guarantee of the system’s safety. This means that while plan-
ning, uncertainties usually resulting from: approximate local-
ization, imperfect embedded sensors or approximate models

used to describe the behaviour of the mobile robot devices
should be taken into account. Considering uncertainties in the
navigation planning level has been considered using several
representations such as set-membership ([13], [15], [17]) or
covariance matrices ([6], [16], [3]). While the latter is able to
find paths with a collision probability under a given threshold,
set-membership approaches can guarantee safe trajectories
under a bounded noise assumption.

The localization information provided by imperfect pro-
prioceptive sensors, while represented by Gaussian functions
([6], [16]) can guarantee the safety of the path at a certain
confidence threshold.

Recently, some studies provided the guarantee of a safe
path to imperfect proprioceptive sensors and/or localization
information, while considering the uncertainties bounded with
know bounds ([14], [17]). Under the latter uncertainty repre-
sentation, [15] and [17] introduced reliable and robust naviga-
tion planners algorithms based on RRT principles and solved
using interval analysis tools ([10], [4]).

The navigation control algorithms are also important in the
autonomous navigation and must be developed to ensure that
the mobile robots achieves the given mission by going towards
the waypoints (ex. go to goal strategy) or following the path
(pure pursuit algorithm) provided by the navigation planning
level with any risk of collision with obstacles. Moreover, an
interesting survey on some navigation control algorithms is
proposed in [20].

Contributions

The main focus of this research study is to apply an
autonomous navigation architecture, as reported in Fig. 1, on
an easy to reproduce robotic platform with static obstacles
and composed of a navigation planning level (to ensure a path
with given initial and final configurations), a navigation control
level (to achieve the desired goal configuration) and visual
localisation provided by a low-cost camera. The navigation
planning problem, as addressed in this paper, consists in
finding waypoints, trajectory or a sequence of control policy
to drive a mobile robot from a given initial to a given
goal configuration while avoiding collision with given sets of
obstacles. For the navigation planning level will make use,
firstly, of a classical and well known planning algorithm (RRT)
provided by the the open motion planning library (OMPL
[19]). Secondly, a planning algorithm which can guarantee
safe paths in an uncertain configuration space, where all

Figure 1. Autonomous navigation architecture

approximate initial and final mobile robot localisation are
bounded with known bounds, e.g., BoxRRT [17], will be
considered. As in this paper the main focus is at the navigation
planning algorithm, as stated previously, the navigation control
level, i.e, the low-level one of the autonomous navigation
architecture, will be based on PID controller along with the
go-to-goal strategy, which can easily be formulated or found in
the literature [18]. Finally the robotic platform is composed of
low-cost hardware components, while the entire autonomous
navigation achitecture is implemented using robot operating
systems (ROS), C++ (through roscpp dependency) and the
interval analysis library e.g. DynIBEX [2], used for the first
time in an autonomous navigation architecture. Moreover,
the DynIBEX library provides operators to deal with con-
straint satisfaction problems embedding differential equations.
Briefly, the main contribution of this paper is twofold: (i) first,
the safe and robust navigation planning algorithm e.g BoxRRT
is formulated to underline and understand its practical usage
in our defined framework and (ii) second, is implemented
on a easy to reproduce mobile robot application by making
use of ROS along with the DynIBEX library, while visual
localisation information and round-off errors are bounded with
known bounds.

II. PROBLEM STATEMENT

Context Given a mission, which consists in sending initial
and goal configurations provided by a visual sensor (camera)
to the navigation planning level, waypoints are then sent to
the controller level so that a mobile robot to achieve while
avoiding static obstacles.
Environment The mobile robot has to be driven in a two-
dimensional static environment from an initial state to a
desired one while avoiding obstacles, with known positions,
represented by polygons shapes.
Problem Given unique initial and goal positions, find
collision-free paths and drive the mobile robot from the initial
to the goal position.
Solution First a two-wheeled mobile robot localised by a
visual sensor is created to receive control informations via
radio transmission, sent by the navigation planning level. The
control informations consists in:

• waypoints provided by the OMPL - RRT algorithm
adjusted to our case and

• sequence of control policy or waypoints given by the
robust navigation planner, namely BoxRRT

which drives the mobile robot to the desired configuration,
while making use of the architecture illustrates on Fig. 1.

Moreover, the used middleware witch connects the levels
proposed in the autonomous navigation architecture from
Fig. 1 is ROS.

III. PROBLEM FORMULATION

The configuration space S= Sfree∪Sobs is composed of two
subsets: the free region subset Sfree = S\Sobs where the mobile
robot is allowed to move and the obstacle region subset Sobs
which the mobile robot needs to avoid.

Consider the differential system which can describe the
evolution of a mobile robot system:

ṡ(t) = f(s(t),u(t)) (1)

where s ∈ S is considered to be the measurable state of the
system, while u(t) ∈ U is the admissible control input. The
exact solution of (1) from the initial condition s0 is denoted
by s(t;s0).

A. Navigation planner

From an initial state s0 which belongs to the free configu-
ration space s0 ∈ Sfree the system needs to reach a given goal
states sgoal ⊂ Sfree while avoiding the obstacle configuration
space:

∃K > 0 such that
∀s0 ∈ Sfree, ∀ s(K∆t;s0) ∈ Sfree and
∀t ∈ [0,K∆t], s(t;s0) = sgoal,

(2)

with s(t) the solution of (1).

B. Robust navigation planner

From an initial state s0 which belongs to a known set s0 ∈
Sinit ⊂ Sfree the system needs to reach a given set of goal states
Sgoal ⊂ Sfree.

The purpose of the robust navigation planner is to provide
a sequence of control inputs u∈U∆t

[u] bounded over intervals of
time [K∆t,(K+1)∆t[, with ∆t > 0 and K ∈N, which will drive
the system to reach Sgoal while avoiding the non-admissible
states Sobs whatever the initial state [s] ∈ Sinit are. If such a
sequence of control input u∈U∆t

[u] is proved to drive the system
from any initial state [s]∈ Sinit to a final state in Sgoal then the
found robust planned path is reliable.

The formulation of such a robust navigation planner for
which there exists a sequence of control input u∈U∆t

[u] to drive
the system from an uncertain initial state to a set of goal states
Sgoal. The formulation comes from [15] and is as follows:

∃K > 0 and u ∈ U such that
∀[s0] ∈ Sinit, ∀ [s](K∆t;s0) ∈ Sgoal and
∀t ∈ [0,K∆t], [s](t;s0) ∈ Sfree,

(3)

with [s](t) the solution of (1). If a solution for (3) exists then
the reliability of the robust path’s reliability will be guaranteed.

Moreover, uncertainties related to its initial and final posi-
tions and orientation w.r.t. a frame attached to the environment
are considered.

C. Interval analysis and Validated numerical integration

This section recalls notations deployed in this study regard-
ing interval vectors or boxes ([4]) which are being used to
represent the environment uncertainties.

A scalar (real) interval [x] = [x, x] is a closed and connected
subset of R, where x represents the lower bound and x
represents the upper bound. Two intervals [u] and [v] are equal
if and only if u = v and u = v. An interval vector (or box)
[x] is a subset of Rn which is the Cartesian product of scalar
intervals [x] = [x1]×[x2]×·· ·× [xn], where the ith component is
the projection of [x] onto the ith axis. The interval hull of a set
A is the smallest box which contains A, denoted by Hull(A).
The inner approximation of a set A, denoted Int(A), is a box
included in A, i.e., Int(A) ⊂ A. The Hausdorff distance [12]
of two intervals [x1] and [x2] is

d([x1], [x2]) = sup{|x1− x2|, |x1− x2|}. (4)

Validated numerical integration methods are interval coun-
terpart of numerical integration methods. A validated numer-
ical integration of a differential equation, as defined in (1)
assuming piece-wise constant input, consists in a discretization
of time, such that t0 6 · · · 6 tend, and a computation of
enclosures of the set of states of the system s0, . . . , send,
by the help of a guaranteed integration scheme. In details,
a guaranteed integration scheme is made of:
• an integration method Φ(f ,s j, t j,h), starting from an

initial value s j at time t j and a finite time horizon
h (the step-size), producing an approximation s j+1 at
time t j+1 = t j + h, of the exact solution s(t j+1;s j), i.e.,
s(t j+1;s j)≈Φ(f ,s j, t j,h);

• a truncation error function lteΦ(d,s j, t j,h), such that
s(t j+1;s j) = Φ(f ,s j, t j,h)+ lteΦ(f ,s j, t j,h).

Our validated numerical integration method is a two step
method starting at time t j and for which i) it computes an
enclosure [s̃ j] of the solution of (1) over the time interval
[t j, t j+1] to bound lteΦ(d,s j, t j,h); ii) it computes a tight
enclosure of the solution of (1) for the particular time instant
t j+1. There are many methods for these two steps among
Taylor series and Runge-Kutta methods see [11] and the
references therein for more details.

As a result, validated numerical integration methods pro-
duce two functions depending on time

R :
{

R 7→ IRn

t→ [s] (5)

with for a given ti, R(ti) = {s(ti;s0) : ∀s0 ∈ [s0]} ⊆ [s], and

R̃ :
{

IR 7→ IRn

[t, t]→ [s̃] (6)

with R̃([t, t]) = {s(t;s0) : ∀s0 ∈ [s0]∧∀t ∈ [t, t]} ⊆ [s̃].

IV. NAVIGATION PLANNING ALGORITHMS

Let’s start by formulating and briefly describing both navi-
gation algorithms.
Global description:

First, the navigation planner samples a random state in the
state space. Then finds the state among the ones in the tree of
states which is closest to it. Next, the latter found closest state
expands towards the random one, until a new state is reached.
If the new state is reached without collision it will be added
to the exploration tree of states, as suggested by Algorithm 1.

input : {stateinit,stategoal} ⊂ Sfree,∆t ∈ R+,K ∈ N
output: G

1 G.init(stateinit);
2 i ← 0;
3 repeat
4 staterand← random(i);
5 G←EXTEND(G,staterand,stategoal);
6 until i++ < MaxIter;
7 return G or Failure if no such path exists;

Algorithm 1: RRT and BoxRRT planner algorithm

Next, each of the two planning algorithms are introduced.

A. OMPL - RRT navigation planner algorithm : brief recall

The first algorithm used in the navigation planner level
is an adapted version of the geometric planner algorithm
RRT, which accounts for geometric constraints of a system.
Moreover, the interface and the structure for the path planning
is provided by OMPL, which was adapted with further func-
tionalities for path analysis and visualization.
Description:

First the given initial configuration sinit is added to the
exploration tree G (Algo. 1 Line 1). Then, a random state
srand ⊂ Sfree is chosen by the procedure random (Algo. 1
Line 4). The nearest-neighbor procedure from Procedure 2
Line 1 returns the closest vertex snear to srand in the tree
G, according to a certain metric. The closest vertex snear
expands towards the random one, until a new state snew is
reached (Procedure 2 Line 2). If it can be proved that the edge
(typically a straight lines) between snear and snew is a collision
free path, then snew is added to G as a new vertex G.add-
vertex procedure and connected to its parent snear though the
G.add-edge procedure.

1 snear← nearest-neighbor(G,srand);
2 snew← new-state(srand,snear,sgoal);
3 if collision-free-path (snear,snew) then
4 G.add-vertex(snew);
5 G.add-edge(snear, snew);
6 return /0;
7 return G

Algorithm 2: EXTENDRRT procedure

B. BoxRRT navigation planner algorithm

Several versions of BoxRRT can be found in [15], [14], [17]
for the case where the uncertainties related to the configuration
space are considered on the final and the initial states. In this
paper, we have interest in using as the navigation planner level
the version of BoxRRT proposed in one of our recent study
[17], which also presents the differences between the robust
motion planners. In the followings the planner algorithm and
the used procedures are introduced.
Description:

First the given initial configuration [sinit] is added to the
exploration tree G (Line 1). Then, a state [srand] ⊂ Sfree
is randomly chosen by the procedure random-box-GoalBias
(Line 4). The nearest-neighbor procedure from Line 5 returns
the closest vertex [snear] to [srand] in the tree G, according to
a certain metric d as in (4). A control input u ∈ [u] is chosen
according to a specified criterion or randomly through the
select input procedure. Then, in the prediction procedure, (1)
is integrated over a fix time interval ∆t with the initial condi-
tion [snear] and a constant control input u (given at Line 6) and
will result in a new state [snew] (Line 7). If it can be proved that
all state values along the trajectory between [snear] and [snew]
lie in Sfree being a collision free path, then the path between
[snear] and [snew] is considered reliable and [snew] is added to
G as a new vertex and connected to its parent [snear] though
the G.add-guaranteed-vertex procedure. Otherwise, [snew] is
not added to G. Lines 4 to 11 are repeated until a chosen
number of iterations K is reached or until a path is found
meaning [snew] = [sgoal], or most likely when [snew] ⊂ [sgoal].
Note that we have [sinit] = Hull(Sinit), [sobs] = Hull(Sobs) and
[sgoal] = Int(Sgoal) to ensure the soundness of the proposed
algorithm.

1 [snear]← nearest-box-neighbor(G, [srand]);
2 [snew]← new-box-state([srand], [snear],u,∆t, [sgoal]);
3 if collision-free-path ([snear], [snew],u,∆t) then
4 G.add-guaranteed-vertex([snew]);
5 G.add-guaranteed-edge([snear], [snew], u, ∆t);
6 return /0;
7 return G

Algorithm 3: EXTENDBoxRRT procedure

Random procedure: This procedure, previously proposed
in [15], consists in choosing the random state in the final
configuration state [srand] ⊂ [sgoal] with a probability p > 0
which is also known as the Random GoalBias procedure.
Nearest box neighbor procedure: Finds the closest vertex
to the [srand] one according to a chosen metric d, here the
Hausdorff distance between two intervals as defined in (4).
New box state procedure: Finds a new state [snew] while
integrating (1) with the selected control input, given by the
select input procedure, over an interval of time ∆t. This step is
based on validated numerical integration methods as explained
in Section III-C and using function R(t).
Collision free path procedure: If [sinit] and [sgoal] are, respec-

tively, the imperfect initial and final states, one has to show
before starting the path planner that both sets of states belong
to Sfree. When it is proved that no collision occurs between any
two consecutive vertices of the tree, one proves by induction
that the path between [sinit] and [sgoal] is robustly reliable, if
it exists.
The techniques used in this procedure are based on new
tool and functions proposed by [1], which are capable of
testing during the integration procedure if a collision occurred.
Therefore this procedure differs from the previously BoxRRT
proposed in [15], [14] which uses wrap techniques. More
precisely, using the enclosure R̃(t) of the trajectory of (1),
checking that no collision occurs is simply an interval test
which checks if R̃(t) does not intersect [sobs] for all t, being
more elegant and improving the wrapping effect produced by
the wrap techniques.

V. RESULTS

This section presents the results obtained after implementing
the autonomous navigation achitecture, reported on Fig. 1, the
two types of navigation planners described in Sect. IV. The
autonomous architecture corresponds to the experimentation
protocol, presented in Sect. V-A for which the configuration
space size is 1.2m × 1.8m × 2πrad.

Three initial configurations are considered (illustrated on
fig. 2), on the same map, with the same goal position
(0.72m;0.34m;−0.04rad). The initial configurations change
in such a way that the difficulty and distance between the
initial and goal configurations increase from one configura-
tion to another, such as: Config. (1) has no obstacles be-
tween the mobile robot and the goal configuration. For this
case the initial position size is (0.71m;−0.46m;−0.003rad).
Config. (2) has static obstacles between the mobile robot
and the goal configuration, where the initial position size
is (0.03m;0.01m;−0.01rad). Config. (3) corresponds to a
labyrinth map with static obstacles, in which the initial po-
sition size is (−0.77m;−0.44m;−0.004rad).

The initial and goal configurations boxes, for the BoxRRT
planner case, are build by choosing as boxes middles the
values states previously (the ones used for the RRT planner)
to which we add: ±0.02cm of error on both x, y position and
±0.01 rad for the orientation for the initial case and ±0.05
cm of error on both x, y position and the orientation being
allowed between [−π/2;π/2].

All simulations and experimental tests were performed on
an Intel Core m7-6Y75 CPU at 1.20GHz×4. We recall that
the used library for implementing the guaranteed BoxRRT
planner, as stated in the introduction section, consists in
DynIBEX.

A. Platform architecture and description

The mechanical design of the mobile robot was kept as
simple as possible, which can be spotted on Fig. 1 in the
navigation control level. As the base of the physical system,
we used a two-wheeled chassis, motor drivers with encoders,
a ball caster as a passive wheel element and the following

devices: power supply (7V battery), Arduino uno and the
motor shield, communication (radio transmission at 2.4 Gz
based ZigBee via Xbee modules) and localization marker
(necessary for the AR tag tracking library used with ROS).
Motors receive the information via the Xbee modules and
the rosserial ROS package makes sure that the connection
between the communication and Arduino is correctly made.
The planners send a list of waypoints to the navigation control
level, which utilises the go-to-goal strategy and ensures the
mobile robot achieves the given goal location. The robot’s
two motors allow for simple longitudinal speed and steering
control. This project was written in ROS environment and a
brief description of the experimental architecture is as follows:
First, a map file (ppm format), in which the free and the
non-admissible configuration, respectively are specified with
colour codes: whiter for the admissible places and darker for
the non-admissible ones. A ROS AR tag tracking package,
which requires the use of a camera and specific QR codes,
is used to specify the configurations at which the mobile
robot will begin and end its path. Then, the latter information
is supplied to the planner, which generates waypoints for a
collision-free path which the mobile robot needs to achieve.
The map, the waypoints and the QR codes can be visualized
through the camera, and one can easily use the Rviz visualiser.
Finally, the waypoints are sent to the Arduino board via radio
communication server based Xbee modules which will make
the mobile robot to go towards the desired configuration.

B. Robot mobile modeling

The differential system which describes the evolution of
the mobile robot is represented by the kinematic model of an
unicycle robot type:

ẋ = vcosθ , ẏ = vsinθ , θ̇ = ω, (7)

with (x,y) the position and θ the orientation w.r.t. a frame
attached to the environment. The control input u = [vω] is
represented by the linear v ∈ [−0.4;0.4] m/s and the angular
ω ∈ [−10;10] rad/s velocities respectively. The latter values
were determined experimentally.

C. Performance analysis

Each navigation planner used for the experimental protocol
is first performed 100 times, in simulation, in order to verify
the computational time. For the geometric RRT navigation
planner, which is widely used and provided by the OMPL,
a benchmark [21] can be performed locally or online on
plannerarena.org. The obtained CPU obtained was less than 1 s
for all of the performed 100 simulations. On the other hand, the
BoxRRT navigation planner algorithm being at the beginning
of its use, and not integrated in an online library (which will
be part of a future work) a CPU analysis is required. The
robust navigation planner increases the computational time
while the desired configurations are changing as follows: 21s
for Config. 1, 38s for Config. 2 and 65 s for Config. 3.
The reported CPU values are the mean of the CPU obtained
after simulating it 100 times. It is not surprising to obtain

a larger computational time for the BoxRRT algorithm as
it always requires numerical guaranteed integration of the
system, which is not the case for the RRT one which here
is easily formulated as a geometric navigation planner only
based on geometric constraints. Still, a benchmark between
these two navigation planners cannot be done due to the
differences among them, as stated previously one is based
on geometrical metrics and the other utilises interval analysis
to provide a numerical guaranteed integration. This study is
not focusing on comparing the two navigation algorithms, the
purpose being to introduce the BoxRRT navigation algorithm
for real application and to presents the advantages of this
planner usage, which was never reported before.

Figure 2. Planned waypoints (on the left side) by the RRT planner and
planned trajectory tube (on the right side) by the BoxRRT planner.

Fig. 2 presents the waypoints planned by the RRT planner
via OMPL and the trajectory tube obtained by the BoxRRT
one. For the RRT case the waypoints information are sent to
the controller level, for which a go to goal strategy is applied
and moves the robot towards the goal why passing through
the waypoints provided by the planner. In the case of the
BoxRRT we decide to send the middle of the obtained boxes
along the path, but any other position belonging to the boxes of
waypoints can be selected or one can provide trajectory for the
exhibited tube of trajectories. Once the middles are provided,
the controller level will act as for the RRT planner algorithm
case. In both navigation planner cases, the controller level
sends motor commands which moves the mobile robot from
the initial configuration to the desired one. One illustrative
example of the mobile robot’s behaviour with the commands
received by the controller level is reported on Fig. 3 for the
third configuration.

Both navigation planners found waypoints for free-collision
paths. Even so, the mobile robot localization provided by

(a) time = 0s (b) time = 5s

(c) time = 12s (d) time = 19s

(e) time = 24s (f) time = 26s

(g) time = 29s (h) time = 33s

Figure 3. An illustration of the mobile robot going towards and achieving
the labyrinth configuration.

visual means and which depends on QR code can be perturbed
due to some external perturbations. In the latter hypothesis and
by using the RRT planner the user need to physically place
the mobile robot at the precise desired location. While for the
BoxRRT planner an imprecise initial position can be fixed by
defining an initial region and a tube is provided which takes
into consideration the uncertain locations. Moreover, as long
as the robot stays inside the provided boxes of waypoints or
tube of trajectories it is guaranteed that the robot achieves the
task with no collision.

VI. CONCLUSIONS AND FUTURE WORKS

Though this study an implementation of an autonomous nav-
igation schema is presents on a two-wheeled mobile robot.
The navigation level is composed of planners based sampling-
based planners, namely RRT. The proposed planners for the
autonomous schema are already reported in the literature,
while one of them, the RRT, being widely used. Even so, the
second one which considers uncertainties on initial and final
configurations belonging to boxes, i.e., the BoxRRT, is used
and implemented on a real mobile robot application for the
first time.
In future work we plan to provide the BoxRRT by attaching it

to an online library. Also some growth of the boxes can occur
due to numerical round-off and errors and due to the over-
approximation used in the guaranteed integration which may
increase the imprecision at each new uncertain configuration.
For this reason in a future version of BoxRRT planner the
localization information will be update from time to time and
the planner will piecewise plan new collision free path along
the initially plan path.

ACKNOWLEDGMENT

This work was supported by DGA MRIS. Pierre-André
Crépon was a student at Lycée Hoche, Versailles, France
during his internship at ENSTA ParisTech.

REFERENCES

[1] J. Alexandre dit Sandretto, A. Chapoutot, and O. Mullier. Formal
Verification of Robotic Behaviors in Presence of Bounded Uncertainties.
In Conference on Robotic Computation. IEEE, 2017.

[2] J. Alexandre dit Sandretto and A. Chapoutot. DynIBEX: a differential
constraint library for studying dynamical systems (poster). In Conference
on Hybrid Systems: Computation and Control. ACM, 2016.

[3] A. Censi, D. Calisi, A. De Luca, and G. Oriolo. A bayesian framework
for optimal motion planning with uncertainty. In Proc. IEEE Int. Conf.
Robotics and Automation, pages 1798–1805, May 2008.

[4] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis.
Springer-Verlag, 2001.

[5] J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to
single-query path planning. In Conference on Robotics and Automation,
volume 2, pages 995–1001. IEEE, 2000.

[6] A. Lambert and D. Gruyer. Safe path planning in an uncertain-
configuration space. Conference on Robotics and Automation, 2003.

[7] S. M. LaValle. Rapidly-exploring random trees: a new tool for path
planning. Technical report, Iowa State University, 1998.

[8] S. M. LaValle. Planning Algorithms. Cambridge Univ. Press, 2006.
[9] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress

and prospects. In Workshop on the Algorithmic Foundations of Robotics,
2000.

[10] R. E. Moore. Interval Analysis. Prentice-Hall, 1966.
[11] N.S. Nedialkov, K.R. Jackson, and G.F. Corliss. validated solutions

of initial value problems for ordinary differential equations. Applied
Mathematics and Computation, 105:21–68, 1999.

[12] A. Neumaier. Interval Methods for Systems of Equations. Cambridge
University Press, 1990.

[13] L. A. Page and A. C. Sanderson. Robot motion planning for sensor-
based control with uncertainties. In Int. Conf. Robotics and Automation,
volume 2, pages 1333–1340 vol.2, May 1995.

[14] R. Pepy, M. Kieffer, and E. Walter. Reliable robust path planner. In Int.
Conf. Intelligent Robots and Systems. IEEE, 2008.

[15] R. Pepy, M. Kieffer, and E. Walter. Reliable robust path planning with
application to mobile robots. Int. J. Appl. Math. Comput. Sci., 19(3):413
– 424, 2009.

[16] R. Pepy and A. Lambert. Safe path planning in an uncertain-
configuration space using rrt. In Int. Conf. Intelligent Robots and Systems,
pages 5376–5381. IEEE, 2006.

[17] A. M. Panchea, A. Chapoutot and D. Filliat. Extended Reliable Robust
Motion Planners. In International Conference on Decision and Control,
pp 1112–1117, 2017.

[18] M. Egerstedt. Control of mobile robots. 2013.
[19] I.A. Şucan, M. Moll and L.E. Kavraki. The Open Motion Planning

Library. IEEE Robotics & Automation Magazine, 18(4):72–82, 2012.
[20] B. Paden, M. Cap, S. Z. Yong, D. Yershov, E. Frazzoli A Survey

of Motion Planning and Control Techniques for Self-Driving Urban
Vehicles. IEEE Transactions on intelligent vehicles, 1(1):33–55, 2016.

[21] M. Moll, I.A. Şucan and L.E. Kavraki. Benchmarking Motion Planning
Algorithms: An Extensible Infrastructure for Analysis and Visualization.
IEEE Robotics & Automation Magazine, 2015.

	Introduction
	Problem Statement
	Problem Formulation
	Navigation planner
	Robust navigation planner
	Interval analysis and Validated numerical integration

	Navigation planning algorithms
	OMPL - RRT navigation planner algorithm : brief recall
	BoxRRT navigation planner algorithm

	Results
	Platform architecture and description
	Robot mobile modeling
	Performance analysis

	Conclusions and future works
	References

