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Abstract

We study zero-sum stochastic differential games where the state dynamics of the two

players is governed by a generalized McKean-Vlasov (or mean-field) stochastic differential

equation in which the distribution of both state and controls of each player appears in the

drift and diffusion coefficients, as well as in the running and terminal payoff functions. We

prove the dynamic programming principle (DPP) in this general setting, which also includes

the control case with only one player, where it is the first time that DPP is proved for open-

loop controls. We also show that the upper and lower value functions are viscosity solutions

to a corresponding upper and lower Master Bellman-Isaacs equation. Our results extend the

seminal work of Fleming and Souganidis [15] to the McKean-Vlasov setting.

Keywords: Zero-sum differential game, McKean-Vlasov stochastic differential equation, dy-

namic programming, Master equation, viscosity solutions.
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1 Introduction

McKean-Vlasov (McKV) control problem (also called mean-field type control problem) has been

knowing a surge of interest with the emergence of mean-field game (MFG) theory, see [21],

[5], [22], [10]. Such a problem was originally motivated by large population stochastic control

under mean-field interaction in the limiting case where the number of agents tends to infinity;

now various applications can be found in economics, finance, and also in social sciences for

modeling motion of socially interacting individuals and herd behavior. A crucial assumption in

large population models, as well as in the theory of MFG and McKV control problems, is the

homogeneity of agents with identical outcomes.
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In this paper, we are concerned with generalized McKean-Vlasov stochastic differential equa-

tions controlled by two players with opposite objectives: this problem is then called zero-sum

stochastic differential game of generalized McKean-Vlasov type. A typical motivation arises from

the consideration of two infinite groups of homogenous interacting agents pursuing conflicting

interests that can also interact between each other, like e.g. in pursuit/evasion games.

The seminal paper [15] formulated in a rigorous manner zero-sum stochastic differential

games, with state dynamics governed by standard stochastic differential equations. The for-

mulation in [15] can be described as nonanticipative strategies against open-loop controls. This

distinction of controls type between the two players is crucial to show the dynamic program-

ming principle (DPP) for the upper and lower value functions (which coincide, i.e. the game

has a value, under the so-called Isaacs condition), as it is known that the formulation open-loop

controls vs open-loop controls does not give rise in general to a dynamic game and a fortiori to

a DPP, see for instance Buckdahn’s counterexample in Appendix E of [23].

Zero-sum McKV stochastic differential games were recently considered in [20] and [11] in a

weak formulation where only the drift (but not the diffusion coefficient) depends on controls

and state distribution. Notice that as the authors work on a canonical probabilistic setting,

their game can be seen as a game in the form feedback controls vs feedback controls. We mention

also the recent paper [3], which considers deterministic mean-field type differential games with

feedback controls.

In the present work, we study zero-sum stochastic differential games of generalized McKean-

Vlasov type where all the coefficients of both state dynamics and payoff functional depend upon

the distributions of state and controls (actually, they can also depend on the joint distribution of

state and controls, however under the standard continuity and Lipschitz assumptions, it turns

out that the coefficients only depend on the marginal distributions, see Remark 2.3). As in

[15], we use a strong formulation with nonanticipative strategies against open-loop controls. We

define the lower and upper value functions of this game, and our first contribution (Proposition

3.1) is to show that they can be considered as functions on the Wasserstein space of probability

measures. Notice that this is a nontrivial issue as we do not restrict to feedback controls.

Our second main result (Theorem 4.1) is the proof of the dynamic programming principle

for the lower and upper value functions. The key observation is to reformulate the problem as

a deterministic differential game in the infinite dimensional space Lq of q-th integrable random

variables. Notice that the proof of the DPP is relevant also for the control case (which corres-

ponds to the special case where the space of control actions of the second player is a singleton),

as a matter of fact in the present paper we consider open-loop controls, while in the literature

the DPP has been proved only for feedback controls, see [22]. Let us mention however the paper

[4] which states a randomized DPP for the control case with open-loop controls (but without

dependence on the control distribution). We also show how to recover the standard DPP in the

case without mean-field dependence.

The third contribution of this paper (Theorem 5.1) is the partial differential equation charac-

terization of the value functions. By relying on the notion of differentiability in the Wasserstein

space due to P.L. Lions, we prove the viscosity property of the lower and upper value functions

to the corresponding dynamic programming lower and upper Bellman-Isaacs equations. Unique-

ness is stated when working on the lifted Hilbert space L2 and consequently, existence of a game

value is obtained under a generalized Isaacs condition.
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The outline of the paper is as follows. Section 2 formulates the zero-sum stochastic diffe-

rential game of generalized McKean-Vlasov type. In Section 3 we show that the upper and lower

value functions can be defined as functions on the Wasserstein space of probability measures.

Section 4 is devoted to the rigorous statement and proof of the dynamic programming principle

for both value functions. Finally, in Section 5 we prove the viscosity property of the value

functions.

2 Formulation of the stochastic differential game

Let (Ω,F ,P) be a complete probability space on which a d-dimensional Brownian motion W =

(Wt)t≥0 is defined. Let Fo = (Fo
t )t≥0 be the filtration generated by W , and let F = (Ft)t≥0 be

the augmentation of Fo with the family N of P-null sets of F , so that Ft = Fo
t ∨ N , for every

t ≥ 0. Notice that F satisfies the usual conditions of P-completeness and right-continuity. We

also define, for every t ≥ 0, the filtration Ft = (F t
s)s≥t which is the P-completion of the filtration

generated by the Brownian increments (Ws−Wt)s≥t (notice that, when t = 0, F0 coincides with

F). Finally, we suppose that there exists a sub-σ-algebra G of F which is independent of F∞,

which will be assumed “rich enough”, as explained below.

We fix a positive integer n and a real number q ∈ [1,∞). We denote by Pq(R
n) the

family of all probability measures µ on (Rn,B(Rn)) with finite qth-order moment, i.e. ‖µ‖q :=
( ∫

|x|qµ(dx)
)1/q

<∞. More generally, for any r ∈ [1,∞) and m ∈ N\{0} we denote by Pr(R
m)

the family of all probability measures on (Rm,B(Rm)) with finite rth-order moment. We endow

Pr(R
n) with the topology induced by the Wasserstein metric of order r:

Wr(µ, µ
′) = inf

{(
∫

Rn×Rn

|x−x′|r µ(dx, dx′)

)1/r

: µ ∈ Pr(R
n×Rn) with marginals µ and µ′

}

,

for all µ, µ′ ∈ Pr(R
n). We assume that the sub-σ-algebra G is “rich enough” in the following

sense: G satisfies

P1(R) =
{

Pξ : ξ ∈ L
1(Ω,G,P;R)

}

, Pq(R
n) =

{

Pξ : ξ ∈ Lq(Ω,G,P;Rn)
}

, (2.1)

where Pξ denotes the distribution of ξ. Possibly making G smaller, we can suppose that there

exists a random variable ΓG : (Ω,G) → (G,G ), taking values in some Polish space G with Borel

σ-algebra G , such that ΓG has an atomless distribution and G = σ(ΓG) (see Remark 2.1).

Remark 2.1 It is well-known (see e.g. Theorem 3.19 in [18]) that the probability space

([0, 1],B([0, 1]), λ) satisfies (2.1), with Ω,G,P replaced respectively by [0, 1],B([0, 1]), λ (actu-

ally, every probability space (E, E ,Q), with E uncountable, separable, complete metric space,

E its Borel σ-algebra, Q an atomless probability, satisfies (2.1), this follows e.g. from Corollary

7.16.1 in [6]).

Suppose now that the sub-σ-algebra G satisfies (2.1). Denote by λ the Lebesgue measure on

([0, 1],B([0, 1])). Then, by the left-hand side equality in (2.1), there exists a random variable

ΓG : (Ω,G) → ([0, 1],B(0, 1)) with distribution λ, that is with uniform distribution (so, in partic-

ular, ΓG has an atomless distribution). On the other hand, given µ ∈ P1(R) (resp. µ ∈ Pq(R
n))

it is possible to find a random variable η : [0, 1] → R (resp. η : [0, 1] → Rn) with distribution µ.
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This implies that the random variable ξ = η(ΓG) : Ω → R (resp. ξ = η(ΓG) : Ω → Rn) has also

distribution µ. As a matter of fact, we have:

P(ξ−1(A)) = P((η(ΓG))−1(A)) = P(ΓG ∈ η−1(A)) = λ(η−1(A)),

for every A ∈ B(R) (resp. A ∈ B(Rn)). Then, we see that the sub-σ-algebra Ḡ := σ(ΓG) ⊂ G

satisfies (2.1). In other words, it is enough to replace G by the possibly smaller σ-algebra Ḡ. ♦

Remark 2.2 Let (E, E) and (H,H) denote two Polish spaces endowed with their Borel σ-

algebrae. Notice that the following result, stronger than (2.1), holds true:

Given any probability π on (E, E), there exists ξ : (Ω,G) → (E, E) such that Pξ = π. (2.2)

Moreover, we have the following result (which will be used in the proof of Theorem 5.1):

Given any probability π on the product space (E ×H, E ⊗H) and ζ : (Ω,G) → (E, E),

with distribution Pζ equals to the marginal distribution of π on (E, E), (2.3)

there exists a random variable η : (Ω,G) → (H,H) such that P(ζ, η) = π.

Proceeding along the same lines as in Remark 2.1, we see that statement (2.2) follows from

Theorem 3.19 in [18] when (G,G ) is ([0, 1],B([0, 1])) and ΓG has uniform distribution; in general,

the claim follows simply recalling that all atomless Polish probability spaces are isomorphic (see

for instance Corollary 7.16.1 in [6]).

Statement (2.3) follows from Theorem 6.10 in [18] when (G,G ) is ([0, 1] × [0, 1],B([0, 1] ×

[0, 1])) and ΓG has uniform distribution (proceeding as before, we deduce the result for the

general case). As a matter of fact, given π on (E ×H, E ⊗ H), by Theorem 3.19 in [18] there

exists a random vector (z, w) : ([0, 1] × [0, 1],B([0, 1] × [0, 1])) → (E × H, E ⊗ H) such that

P(z,w) = π. Now, since ζ is G-measurable, by Doob’s measurability theorem there exists a

measurable map z̃ : [0, 1] × [0, 1] → E such that ζ = z̃(ΓG). Notice that z̃, as a random variable

from ([0, 1] × [0, 1],B([0, 1] × [0, 1]), λ ⊗ λ) into (E, E), has the same distribution of ζ, that is

Pζ = Pz̃, which in turn coincides with the marginal distribution of π on (E, E). So, in particular,

Pz = Pz̃. We can now apply Theorem 6.10 in [18], from which it follows the existence of

w̃ : ([0, 1] × [0, 1],B([0, 1] × [0, 1])) → (H,H) such that P(z̃, w̃) = π. Define η := w̃(ΓG). Then, η

is a measurable map from (Ω,G) into (H,H), moreover P(ζ, η) = π, hence (2.3) holds. ♦

Let T > 0 be a finite time horizon and let A (resp. B) be the family of admissible control

processes for player I (resp. II), that is the set of all (Fs∨G)s-progressively measurable processes

α : Ω × [0, T ] → A (resp. β : Ω × [0, T ] → B), where A (resp. B) is a Polish space. We denote

by ρA (resp. ρB) a bounded metric on A (resp. B) (notice that given a not necessarily bounded

metric d on a metric space M , the equivalent metric d/(1 + d) is bounded). Finally, we denote

by P(A × B) the family of all probability measures on A × B, endowed with the topology of

weak convergence.

The state equation of the McKean-Vlasov stochastic differential game is given by:

Xt,ξ,α,β
s = ξ +

∫ s

t
γ
(

Xt,ξ,α,β
r ,PXt,ξ,α,β

r
, αr, βr,P(αr , βr)

)

dr (2.4)

+

∫ s

t
σ
(

Xt,ξ,α,β
r ,PXt,ξ,α,β

r
, αr, βr,P(αr , βr)

)

dWr,
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for all s ∈ [t, T ], where t ∈ [0, T ], ξ ∈ Lq(Ω,Ft ∨ G,P;Rn), α ∈ A, β ∈ B. On the coefficients

b and σ, and also on the payoff functions f and g introduced below, we impose the following

assumptions.

(A1)

(i) The maps γ : Rn×Pq(R
n)×A×B×P(A×B) → Rn, σ : Rn×Pq(R

n)×A×B×P(A×B)→

Rn×d, f : Rn×Pq(R
n)×A×B×P(A×B) → R, g : Rn×Pq(R

n) → R are Borel measurable.

(ii) There exists a positive constant L such that

|γ(x, µ, a, b, ν) − γ(x′, µ′, a, b, ν)| ≤ L
(

|x− x′|+Wq(µ, µ
′)
)

,

|σ(x, µ, a, b, ν) − σ(x′, µ′, a, b, ν)| ≤ L
(

|x− x′|+Wq(µ, µ
′)
)

,

|γ(0, δ0, a, b, ν)| + |σ(0, δ0, a, b, ν)| ≤ L,

|f(x, µ, a, b, ν)| + |g(x, µ)| ≤ h(‖µ‖q)
(

1 + |x|q
)

,

for all (x, µ), (x′, µ′) ∈ Rn × Pq(R
n), (a, b, ν) ∈ A×B × P(A×B).

Remark 2.3 In equation (2.4) we could also consider the case where γ and σ depend on the

joint law P(Xt,ξ,α,β
r , αr, βr)

rather than on the marginals PXt,ξ,α,β
r

and P(αr, βr). So, in particular,

γ = γ(x, a, b, π) and σ = σ(x, a, b, π) for every π ∈ Pq, 0(R
n × A × B), the set of probability

measures π on the Borel σ-algebra of Rn × A × B with marginal π
|Rn

having finite q-th order

moment. Notice however that such a generalization is only artificial, as a matter of fact under

the Lipschitz assumption (A1)-(ii), which now reads

|γ(x, a, b, π) − γ(x′, a, b, π′)|+ |σ(x, a, b, π) − σ(x, a, b, π′)| ≤ L
(

|x− x′|+Wq

(

π
|Rn
, π′

|Rn

))

,

for all (a, b) ∈ A×B and (x, π), (x′, π′) ∈ Rn × Pq, 0(R
n ×A×B), with π

|A×B
= π′

A×B
,

it follows that γ(x, a, b, π) = γ(x, a, b, π′) and σ(x, a, b, π) = σ(x, a, b, π′) whenever π and π′ have

the same marginals on Rn and A × B. In other words, γ = γ(x, a, b, π) and σ = σ(x, a, b, π)

depend only on the marginals of π on Rn and A×B.

Concerning the function f , we get to the same conclusion under the continuity assumption

(A2) stated below. ♦

Lemma 2.1 Under Assumption (A1), for any t ∈ [0, T ], ξ ∈ Lq(Ω,Ft∨G,P;R
n), α ∈ A, β ∈ B,

there exists a unique (up to indistinguishability) continuous (Fs ∨ G)s-progressively measurable

process (Xt,ξ,α,β
s )s∈[t,T ] solution to (2.4), satisfying

E
[

sup
s∈[t,T ]

∣

∣Xt,ξ,α,β
s

∣

∣

q
]

≤ Cq
(

1 + E[|ξ|q]
)

, (2.5)

for some positive constant Cq, independent of t, ξ, α, β. Moreover, the flow property holds: for

every s ∈ [t, T ],

Xt,ξ,α,β
r = Xs,Xt,ξ,α,β

s ,α,β
r , for all r ∈ [s, T ], P-a.s. (2.6)

and consequently

PXt,ξ,α,β
r

= P
X

s,X
t,ξ,α,β
s ,α,β

r

, for all r ∈ [s, T ]. (2.7)

5



Proof. We report the proof only of (2.6)-(2.7), the rest of the statement being standard. Notice

that, by definition, the process (Xs,Xt,ξ,α,β
s ,α,β

r )r∈[s,T ] solves the following stochastic differential

equation on [s, T ] with initial condition Xt,ξ,α,β
s :

Xr = Xt,ξ,α,β
s +

∫ r

s
γ
(

Xz,PXz
, αz, βz ,P(αz, βz)

)

dz +

∫ r

s
σ
(

Xz ,PXz
, αz, βz ,P(αz, βz)

)

dWz,

for all r ∈ [s, T ]. On the other hand, recall from (2.4) that the process Xt,ξ,α,β solves the same

equation on [s, T ], with identical initial condition at time s, that is Xt,ξ,α,β
s . Hence, by pathwise

uniqueness we conclude that (Xs,Xt,ξ,α,β
s ,α,β

r )r∈[s,T ] and (Xt,ξ,α,β
r )r∈[s,T ] are indistinguishable, so

that (2.6) holds. We then deduce the flow property (2.7) on the probability law. ✷

Remark 2.4 Notice that the (open-loop) control processes α ∈ A, β ∈ B, are measurable with

respect to G, hence may depend on ξ ∈ Lq(Ω,Ft∨G,P;Rn), and thus one cannot claim as in the

uncontrolled case or when using feedback control that the law PXt,ξ,α,β
s

of Xt,ξ,α,β
s , for t ≤ s ≤ T ,

depends on ξ only through its distribution. ♦

The stochastic differential game has the following payoff functional:

J(t, ξ, α, β) = E

[
∫ T

t
f
(

Xt,ξ,α,β
r ,PXt,ξ,α,β

r
, αr, βr,P(αr , βr)

)

ds+ g
(

Xt,ξ,α,β
T ,PX

t,ξ,α,β
T

)

]

, (2.8)

for all t ∈ [0, T ], ξ ∈ Lq(Ω,Ft ∨ G,P;Rn), α ∈ A, β ∈ B. Notice that the payoff functional in

(2.8) is well-defined and finite by (2.5) and the growth conditions on f and g in (A1)(ii). We

impose the following additional continuity conditions on the payoff functions f and g.

(A2) The maps g and (x, µ) ∈ Rn×Pq(R
n) 7→ f(x, µ, a, b, ν) are continuous, uniformly with

respect to (a, b, ν) ∈ A × B × P(A × B), i.e. for any sequence (xm, µm)m in Rn × Pq(R
n)

converging to (x, µ) ∈ Rn × Pq(R
n), we have

sup
(a,b,ν)∈A×B×P(A×B)

∣

∣f(xm, µm, a, b, ν)− f(x, µ, a, b, ν)
∣

∣ + |g(xm, µm)− g(x, µ)|
m→∞
−→ 0.

We define the upper and lower value functions of the stochastic differential game as in

Definition 1.4 of [15]. In order to do it, we need to introduce the concept of (non-anticipative)

strategy (see Definition 1.3 in [15]).

Definition 2.1

• A strategy α[·] for player I is a map α[·] : B → A satisfying the non-anticipativity property:

P
(

βr = β′r, for a.e. r ∈ [0, t]
)

= 1 =⇒ P
(

α[β]r = α[β′]r, for a.e. r ∈ [0, t]
)

= 1,

for every t ∈ [0, T ] and any β, β′ ∈ B. We denote by Astr the family of all strategies for

player I.

• A strategy β[·] for player II is a map β[·] : A → B satisfying the non-anticipativity property:

P
(

αr = α′
r, for a.e. r ∈ [0, t]

)

= 1 =⇒ P
(

β[α]r = β[α′]r, for a.e. r ∈ [0, t]
)

= 1,

for every t ∈ [0, T ] and any α,α′ ∈ A. We denote by Bstr the family of all strategies for

player II.
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The lower value function of the stochastic differential game (SDG) is given by

v(t, ξ) = inf
β[·]∈Bstr

sup
α∈A

J(t, ξ, α, β[α]), for all t ∈ [0, T ], ξ ∈ Lq(Ω,Ft ∨ G,P;Rn).

On the other hand, the upper value function of the stochastic differential game is given by

u(t, ξ) = sup
α[·]∈Astr

inf
β∈B

J(t, ξ, α[β], β), for all t ∈ [0, T ], ξ ∈ Lq(Ω,Ft ∨ G,P;Rn).

By estimate (2.5) and the growth conditions in (A1)(ii) on f and g, we easily see that the value

functions v and u satisfy the growth condition

|v(t, ξ)| + |u(t, ξ)| ≤ Cq h
(

Cq(1 + ‖µ‖q )
) (

1 + E|ξ|q
)

, t ∈ [0, T ], ξ ∈ Lq(Ω,Ft ∨ G,P;Rn),

with Cq as in estimate (2.5), and µ = P
ξ
.

3 Properties of the value functions

The main goal of this section is to prove that the lower and upper value functions v and u are

law-invariant, i.e., depend on ξ only via its distribution. We mention that this is a non-trivial

issue, as such property does not hold in general for the payoff functional J , see Remark 2.4.

Proposition 3.1 Under Assumption (A1), for every t ∈ [0, T ] we have

v(t, ξ) = v(t, ξ̃), u(t, ξ) = u(t, ξ̃),

for any ξ, ξ̃ ∈ Lq(Ω,Ft ∨ G,P;Rn), with Pξ = Pξ̃.

Proof. We prove the result only for the lower value function, as the proof for the upper value

function can be done proceeding along the same lines.

Fix t ∈ [0, T ], ξ, ξ̃ ∈ Lq(Ω,Ft ∨ G,P;Rn), with µ := Pξ = Pξ̃. Our aim is to prove that:

Given any α ∈ A and β̃[·] ∈ Bstr, there exist α̃ ∈ A and β[·] ∈ Bstr, with α̃ (resp. β[·])

independent of β̃[·] (resp. α), depending only on ξ, ξ̃, α (resp. ξ, ξ̃, β̃[·]), such that: (3.1)

(ξ, α, β[α],W ) has the same law as (ξ̃, α̃, β̃[α̃],W ), so that J(t, ξ, α, β[α]) = J(t, ξ̃, α̃, β̃[α̃]).

Notice that statement (3.1) is equivalent to the existence of two maps Ψ1 : A → A and Ψ2 : Bstr →

Bstr such that for any α ∈ A and β̃[·] ∈ Bstr, the quadruple (ξ, α, Ψ2(β̃[·])[α],W ) has the same

law as (ξ̃,Ψ1(α), β̃[Ψ1(α)],W ), so that J(t, ξ, α,Ψ2(β̃[·])[α]) = J(t, ξ̃,Ψ1(α), β̃[Ψ1(α)]).

Observe that the claim follows if (3.1) holds true. Indeed, for any fixed β̃[·] ∈ Bstr we have

sup
α∈A

J(t, ξ, α,Ψ2(β̃[·])[α]) = sup
α∈A

J(t, ξ̃,Ψ1(α), β̃[Ψ1(α)]) ≤ sup
α̃∈A

J(t, ξ̃, α̃, β̃[α̃]).

Taking the infimum over β̃[·] in Bstr, we obtain

v(t, ξ) = inf
β[·]∈Bstr

sup
α∈A

J(t, ξ, α, β[α]) ≤ inf
β̃[·]∈Bstr

sup
α∈A

J(t, ξ, α,Ψ2(β̃[·])[α])

≤ inf
β̃[·]∈Bstr

sup
α̃∈A

J(t, ξ̃, α̃, β̃[α̃]) = v(t, ξ̃).
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Interchanging the roles of ξ and ξ̃, we get the other inequality v(t, ξ) ≥ v(t, ξ̃), from which the

claim follows.

It remains to prove statement (3.1). We split its proof into four steps. Notice that Step II

is similar to the proof of Proposition 2.2 in [7], while Step IV can be alternatively addressed

using techniques from the proof of Proposition 3.4 in [7] (see Step IV below for more details).

Step I. Reduction to a canonical setting. Denote by EWt := C0([0, t];R
n) the set of Rn-valued

continuous paths on [0, t] starting at the origin at time 0. We endow EWt with the uniform

topology, so that EWt becomes a Polish space (we denote its Borel σ-algebra by EWt ). We also

denote by PWt the Wiener measure on (EWt , EWt ) (recall that the Wiener measure is atomless).

Now, consider the filtration Fo = (Fo
s )s≥0 generated by the Brownian motion W . Notice that

there exists a random variable ΓWt : (Ω,Fo
t ) → (EWt , EWt ) with distribution PWt and such that

Fo
t = σ(ΓWt ). On the other hand, we recall that, by assumption, there exists a random variable

ΓG : (Ω,G) → (G,G ), taking values in some Polish space G with Borel σ-algebra G , such that

ΓG has an atomless distribution and G = σ(ΓG). Hence, we deduce that there exists a random

variable Γt : (Ω,F
o
t ∨G) → (E, E), taking values in some Polish space E with Borel σ-algebra E ,

such that Γt has an atomless distribution and Fo
t ∨G = σ(Γt). Finally, recalling that all atomless

Polish probability spaces are isomorphic, we can suppose that the probability space (E, E ,PΓt
),

where PΓt
denotes the distribution of Γt, is given by the space ([0, 1],B([0, 1]), λ), where λ is the

Lebesgue measure on [0, 1]. So, in particular, Γt : Ω → [0, 1] and has uniform distribution.

Step II. Canonical representation of ξ and α. Fix α ∈ A and β̃[·] ∈ Bstr.

Representation of ξ. Since ξ is Ft ∨ G-measurable, by Doob’s measurability theorem it follows

that

ξ = χ(Γt), P-a.s.

for some measurable function χ : ([0, 1],B([0, 1])) → (Rn,B(Rn)). The equality ξ = χ(Γt) holds

P-a.s. since Ft = Fo
t ∨N . Notice that we can suppose χ to be surjective. As a matter of fact, if

this is not the case, it is enough to modify χ on the set C \{0, 1} (where C is the Cantor set),

replacing χ for instance by the composition of the Cantor function from C \{0, 1} to (0, 1) with

a continuous map from (0, 1) to Rn. The χ so constructed remains a Borel measurable function.

Moreover, we still have

ξ = χ(Γt), P-a.s.

Representation of α. Similarly, the map α : Ω× [0, T ] → A is Prog(Ft)∨ ((Ft ∨G)⊗{∅, [0, T ]})-

measurable, where Prog(Ft) denotes the progressive σ-algebra on Ω × [0, T ] relative to the

filtration Ft, while {∅, [0, T ]} is the trivial σ-algebra on [0, T ]. Then, by a slight generalization

of Doob’s measurability theorem (which can be proved using the monotone class theorem), it

follows that α has the form αs = as(·,Γt(·)), ∀ s ∈ [0, T ], P-a.s., for some Prog(Ft) ⊗ B([0, 1])-

measurable function a = as(ω, y) : Ω × [0, T ] × [0, 1] → A. As before, the fact that the equality

αs = as(·,Γt(·)), ∀ s ∈ [0, T ], holds P-a.s. (so, in particular, (αs)s and (as(·,Γt(·)))s are P-

indistinguishable) follows from the fact that Ft = Fo
t ∨ N .

Step III. The random variable Γ̃t. Notice that (3.1) follows if we prove the following:

∃ a random variable Γ̃t : (Ω,Ft ∨ G) → ([0, 1],B([0, 1])) such that: (3.2)

Γ̃t has the same distribution of Γt, σ(Γ̃t) ∨N = σ(Γt) ∨ N = Ft ∨ G, and ξ̃ = χ(Γ̃t), P-a.s.
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Observe that Γ̃t is allowed to be Ft ∨ G-measurable (not necessarily just Fo
t ∨ G-measurable).

Suppose that (3.2) holds. Since σ(Γ̃t) ∨ N = Ft ∨ G, we can find a canonical representation of

β̃[·] in terms of Γ̃t. More precisely, since for every α̃ ∈ A we have that β̃[α̃] is an element of B,

proceeding as in Step II for the proof of the canonical representation of α, we deduce that β̃[α̃]

has the form β̃[α̃]s = b̃α̃s (·, Γ̃t(·)), ∀ s ∈ [0, T ], P-a.s., for some Prog(Ft) ⊗ B([0, 1])-measurable

function b̃α̃ = b̃α̃s (ω, y) : Ω× [0, T ]× [0, 1] → B. Now, define

(

Ψ1(α) =
)

α̃ := a·(·, Γ̃t(·)),
(

Ψ2(β̃[·])[·] =
)

β[·] := b̃··(·,Γt(·)).

Notice that α̃ ∈ A and β[·] ∈ Bstr. We also notice that (ξ, α, β[α],W ) has the same law as

(ξ̃, α̃, β̃[α̃],W ). So, in particular, J(t, ξ, α, β[α]) = J(t, ξ̃, α̃, β̃[α̃]), that is (3.1) holds.

Step IV. Proof of (3.2). By the Jankov-von Neumann measurable selection theorem (see for

instance Theorem 18.22 and, in particular, Corollary 18.23 in [1]), it follows that χ admits an

analytically measurable right-inverse, denoted by ζ : Rn → [0, 1], which satisfies:

1) χ(ζ(y)) = y, for any y ∈ Rn;

2) χ−1(ζ−1(B)) = B, for any subset B of [0, 1];

3) ζ−1(B) is analytically measurable in Rn for each Borel subset B of [0, 1]. Recalling that

every analytic subset of Rn is universally measurable (see e.g. Theorem 12.41 in [1]), it

follows that ζ−1(B) ∈ L (Rn), the Lebesgue σ-algebra on Rn. Hence ζ is a measurable

function from (Rn,L (Rn)) into ([0, 1],B([0, 1])).

Now, define

Γ̃t := ζ(ξ̃),

and let us prove that Γ̃t satisfies (3.2) (notice that in the proof of Proposition 3.4 in [7], Γ̃t
is constructed in a different and more direct way, namely by means of the regular conditional

cumulated distribution of Γt given both ξ and (Ws)0≤s≤t, see [7] for all the details).

We begin noting that, since ζ is B([0, 1])/L (Rn)-measurable, and also the σ-algebra Ft ∨ G

is P-complete, it follows that Γ̃t is a measurable function from (Ω,Ft ∨ G) into ([0, 1],B([0, 1])).

Let us now prove that Γ̃t has the same distribution of Γt. Fix a Borel subset B of [0, 1]. Then

P(Γ̃t ∈ B) = P(ζ(ξ̃) ∈ B) = P(ξ̃ ∈ ζ−1(B)).

Recalling that ξ̃ has the same distribution of ξ, and also that ξ = χ(Γt), we obtain

P(ξ̃ ∈ ζ−1(B)) = P(χ(Γt) ∈ ζ−1(B)) = P(Γt ∈ χ−1(ζ−1(B))).

By item 2), we know that χ−1(ζ−1(B)) = B, hence

P(Γ̃t ∈ B) = P(Γt ∈ B).

This proves that Γ̃t has the same distribution of Γt. Moreover, by item 1) we have χ(Γ̃t) =

χ(ζ(ξ̃)) = ξ̃. It remains to prove the equality σ(Γ̃t) ∨ N = σ(Γt) ∨ N .

Similarly to ξ, since ξ̃ is Ft ∨ G-measurable, by Doob’s measurability theorem there exists a

measurable function χ̃ : ([0, 1],B([0, 1])) → (Rn,B(Rn)) such that ξ̃ = χ̃(Γt), P-a.s.. Hence

Γ̃t = ζ(χ̃(Γt)), P-a.s.
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So, in particular, σ(Γ̃t) ⊂ σ(Γt) ∨ N . It remains to prove that σ(Γt) ⊂ σ(Γ̃t) ∨ N . Notice that

ζ ◦ χ̃ is a measurable function from ([0, 1],L ([0, 1])) into ([0, 1],B([0, 1])). Then, it is well-known

that there exists a Borel measurable function φ : [0, 1] → [0, 1] such that ζ ◦ χ̃ = φ, λ-a.e. (we

need to consider a Borel measurable version of ζ ◦ χ̃ in order to use Lemma A.1, which in turn

relies on the Jankov-von Neumann measurable selection theorem). Hence

Γ̃t = φ(Γt), P-a.s.

Then, by Lemma A.1 it follows that there exists a Borel measurable function ρ : [0, 1] → [0, 1]

such that ρ(φ)(y) = y, λ-a.e., so that

Γt = ρ(Γ̃t), P-a.s.,

from which we deduce the inclusion σ(Γt) ⊂ σ(Γ̃t) ∨ N . This concludes the proof. ✷

Definition 3.1 By Proposition 3.1, we define the inverse-lifted functions of v and u, respec-

tively:

V (t, µ) = v(t, ξ), U (t, µ) = u(t, ξ), for every (t, µ) ∈ [0, T ]× Pq(R
n),

for any ξ ∈ Lq(Ω,Ft ∨ G,P;Rn), with Pξ = µ.

We end this section proving the continuity of the value functions.

Proposition 3.2 Let Assumptions (A1)-(A2) hold. The function (t, ξ) 7→ J(t, ξ, α, β) is con-

tinuous on D := {t ∈ [0, T ], ξ ∈ Lq(Ω,Ft ∨ G,P;Rn)}, uniformly with respect to (α, β) ∈ A×B,

and consequently the value functions v, u are continuous on D.

Proof. (1) Fix 0 ≤ t ≤ s ≤ T , ξ, ζ ∈ Lq(Ω,Ft ∨ G,P;Rn), α ∈ A, β ∈ B. By definition of

Wasserstein distance, we have

sup
s≤r≤T

Wq
q

(

P
X

t,ξ,α,β
r

,P
X

s,ζ,α,β
r

)

≤ E

[

sup
s≤r≤T

∣

∣Xt,ξ,α,β
r −Xs,ζ,α,β

r

∣

∣

q
]

. (3.3)

From the state equation (2.4), and using standard arguments involving Burkholder-Davis-Gundy

inequalities, (3.3), and Gronwall lemma, under the Lipschitz condition in (A1)(ii), we obtain

the following estimate similar to the ones for controlled diffusion processes (see Theorem 5.9 and

Corollary 5.10, Chapter 2, in [19]):

E

[

sup
s≤r≤T

∣

∣Xt,ξ,α,β
r −Xs,ζ,α,β

r

∣

∣

q
]

≤ C
(

E|ξ − ζ|q + (1 + E|ξ|q + E|ζ|q)|s− t|
)

, (3.4)

for some constant C (independent of t, s, ξ, ζ, α, β).

(2) Fix t ∈ [0, T ] and ξ ∈ Lq(Ω,Ft ∨ G,P;Rn). Consider a sequence (tm)m ⊂ [0, T ], (ξm)m ⊂

Lq(Ω,Ftm ∨ G,P;Rn) such that tm → t, and ξm → ξ in Lq as m goes to infinity. We then have

for all α ∈ A, β ∈ B,

∣

∣J(tm, ξm, α, β) − J(t, ξ, α, β)
∣

∣

≤ E

[
∫ tm

t

∣

∣f
(

Xt,ξ,α,β
r ,PXt,ξ,α,β

r
, αr, βr,P(αr, βr)

)∣

∣dr
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+

∫ T

t

∣

∣f
(

Xt,ξ,α,β
r ,PXt,ξ,α,β

r
, αr, βr,P(αr , βr)

)

− f
(

Xtm,ξm,α,β
r ,PXtm,ξm,α,β

r
, αr, βr,P(αr, βr)

)
∣

∣dr

+
∣

∣g
(

Xt,ξ,α,β
T ,PX

t,ξ,α,β
T

)

− g
(

Xtm,ξm,α,β
T ,PX

tm,ξm,α,β
T

)∣

∣

]

≤ Cq h
(

Cq(1 + E|ξ|q)
) (

1 + E|ξ|q
)

|tm − t|

+ E

[
∫ T

t
sup

(r,a,b,ν)∈[0,T ]×A×B×P(A×B)

∣

∣f
(

Xt,ξ,α,β
r ,PXt,ξ,α,β

r
, a, b, ν

)

−f
(

Xtm,ξm,α,β
r ,PXtm,ξm,α,β

r
, a, b, ν

)
∣

∣dr

]

+ E

[

∣

∣g
(

Xt,ξ,α,β
T ,PX

t,ξ,α,β
T

)

− g
(

Xtm,ξm,α,β
T ,PX

tm,ξm,α,β
T

)
∣

∣

]

.

From (3.3)-(3.4), and the continuity assumption (A2) on f and g, we deduce that

sup
α∈A,β∈B

|J(tm, ξm, α, β) − J(t, ξ, α, β)| −→
m→∞

0,

which implies

v(tm, ξm) −→
m→∞

v(t, ξ), u(tm, ξm) −→
m→∞

u(t, ξ),

from which the claim follows. ✷

Corollary 3.1 Let Assumptions (A1)-(A2) hold. The inverse-lifted functions V and U are

continuous on [0, T ]× Pq(R
n).

Proof. The claim follows directly from the continuity of the value functions v and u in Propo-

sition 3.2, and also by Skorohod’s representation theorem on the Wasserstein space (see Lemma

A.1 in [4]). ✷

4 Dynamic Programming Principle

The main result of this section is the statement and proof of the dynamic programming principle

(DPP) for the lower and upper value functions of the two-player zero-sum McKean-Vlasov

stochastic differential game.

Theorem 4.1 Under Assumption (A1), we have

v(t, ξ) = inf
β[·]∈Bstr

sup
α∈A

{

E

[

∫ s

t
f
(

Xt,ξ,α,β[α]
r ,P

X
t,ξ,α,β[α]
r

, αr, β[α]r ,P(αr, β[α]r)

)

dr
]

(4.1)

+ v
(

s,Xt,ξ,α,β[α]
s

)

}

and

u(t, ξ) = sup
α[·]∈Astr

inf
β∈B

{

E

[

∫ s

t
f
(

Xt,ξ,α[β],β
r ,P

X
t,ξ,α[β],β
r

, α[β]r, βr,P(α[β]r, βr)

)

dr
]

(4.2)

+u
(

s,Xt,ξ,α[β],β
s

)

}

,

for all t, s ∈ [0, T ], with t ≤ s, and for every ξ ∈ Lq(Ω,Ft ∨ G,P;Rn).
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Proof. We prove the dynamic programming principle (4.1) for the lower value function v, the

proof of (4.2) being similar.

For any t ∈ [0, T ], ξ ∈ Lq(Ω,Ft ∨ G,P;Rn), η ∈ L1(Ω,Ft ∨ G,P;R), α ∈ A, β ∈ B, consider

the stochastic process (X̃t,ξ,η,α,β
s )s∈[t,T ] defined as

X̃t,ξ,η,α,β
s := η +

∫ s

t
f
(

Xt,ξ,α,β
r ,PXt,ξ,α,β

r
, αr, βr,P(αr, βr)

)

dr, t ≤ s ≤ T.

Notice that, from identities (2.6)-(2.7), we deduce the following flow property: for every s ∈ [t, T ],

X̃t,ξ,η,α,β
r = X̃s,Xt,ξ,α,β

s ,X̃t,ξ,η,α,β
s ,α,β

r , for all r ∈ [s, T ], P-a.s. (4.3)

Now, we observe that

J(t, ξ, α, β) = E
[

X̃t,ξ,0,α,β
T + g

(

Xt,ξ,α,β
T ,PX

t,ξ,α,β
T

)]

= G
(

Xt,ξ,α,β
T , X̃t,ξ,0,α,β

T

)

,

where G : Lq(Ω,FT ∨ G,P;Rn)× L1(Ω,FT ∨ G,P;R) → R is defined as

G(ξ, η) := E
[

η + g
(

ξ,Pξ

)]

, ∀ (ξ, η) ∈ Lq(Ω,FT ∨ G,P;Rn)× L1(Ω,FT ∨ G,P;R).

Then, the lower value function of the stochastic differential game is given by

v(t, ξ) = inf
β[·]∈Bstr

sup
α∈A

G
(

X
t,ξ,α,β[α]
T , X̃

t,ξ,0,α,β[α]
T

)

.

Let

V (t, ξ, η) = inf
β[·]∈Bstr

sup
α∈A

G
(

X
t,ξ,α,β[α]
T , X̃

t,ξ,η,α,β[α]
T

)

.

Notice that the following relation holds between v and V :

V (t, ξ, η) = v(t, ξ) + E[η]. (4.4)

By (4.4), we see that the dynamic programming principle (4.1) for v holds if and only if the

following dynamic programming principle for V holds:

V (t, ξ, η) = inf
β[·]∈Bstr

sup
α∈A

V
(

s,Xt,ξ,α,β[α]
s , X̃t,ξ,η,α,β[α]

s

)

, (4.5)

for all t, s ∈ [0, T ], with t ≤ s, and for every (ξ, η) ∈ Lq(Ω,Ft ∨ G,P;Rn) × L1(Ω,Ft ∨ G,P;R).

Hence, it remains to prove (4.5). The following proof of (4.5) is inspired by the proof of the

dynamic programming principle for deterministic differential games, see Theorem 3.1 in [13].

Fix t, s ∈ [0, T ], with t ≤ s, and (ξ, η) ∈ Lq(Ω,Ft ∨ G,P;Rn)× L1(Ω,Ft ∨ G,P;R). Set

Λ(t, ξ, η) := inf
β[·]∈Bstr

sup
α∈A

V
(

s,Xt,ξ,α,β[α]
s , X̃t,ξ,η,α,β[α]

s

)

.

We split the proof of (4.5) into two steps.

Proof of V (t, ξ, η) ≤ Λ(t, ξ, η). Fix ε > 0. Then, there exists β̄ε[·] ∈ Bstr such that

Λ(t, ξ, η) ≥ sup
α∈A

V
(

s,Xt,ξ,α,β̄ε[α]
s , X̃t,ξ,η,α,β̄ε[α]

s

)

− ε

≥ V
(

s,Xt,ξ,α,β̄ε[α]
s , X̃t,ξ,η,α,β̄ε[α]

s

)

− ε, for every α ∈ A. (4.6)
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Now, notice that for every fixed α ∈ A there exists β̄′
,ε,α

[·] ∈ Bstr such that

V
(

s,Xt,ξ,α,β̄ε[α]
s , X̃t,ξ,η,α,β̄ε[α]

s

)

= inf
β′[·]∈Bstr

sup
α′∈A

G
(

X
s,X

t,ξ,α,β̄ε[α]
s ,α′,β′[α′]

T , X̃
s,X

t,ξ,α,β̄ε[α]
s ,X̃

t,ξ,η,α,β̄ε[α]
s ,α′,β′[α′]

T

)

≥ sup
α′∈A

G
(

X
s,X

t,ξ,α,β̄ε[α]
s ,α′,β̄′,ε,α[α′]

T , X̃
s,X

t,ξ,α,β̄ε[α]
s ,X̃

t,ξ,η,α,β̄ε[α]
s ,α′,β̄′,ε,α[α′]

T

)

− ε

≥ G
(

X
s,X

t,ξ,α,β̄ε[α]
s ,α,β̄′,ε,α[α]

T , X̃
s,X

t,ξ,α,β̄ε[α]
s ,X̃

t,ξ,η,α,β̄ε[α]
s ,α,β̄′,ε,α[α]

T

)

− ε. (4.7)

Define βε[·] ∈ Bstr as follows: for every fixed α ∈ A, we set

βε[α]r := β̄ε[α]r 1[0,s](r) + β̄′
,ε,α

[α]r 1(s,T ](r), for all r ∈ [0, T ].

Then, we can rewrite (4.7) in terms of βε as

V
(

s,Xt,ξ,α,β̄ε[α]
s , X̃t,ξ,η,α,β̄ε[α]

s

)

= V
(

s,Xt,ξ,α,βε[α]
s , X̃t,ξ,η,α,βε[α]

s

)

≥ G
(

X
s,X

t,ξ,α,βε[α]
s ,α,βε[α]

T , X̃
s,X

t,ξ,α,βε[α]
s ,X̃

t,ξ,η,α,βε[α]
s ,α,βε[α]

T

)

− ε.

By the flow properties (2.6)-(4.3), we obtain

V
(

s,Xt,ξ,α,βε[α]
s , X̃t,ξ,η,α,βε[α]

s

)

≥ G
(

X
t,ξ,α,βε[α]
T , X̃t,ξ,η,α,βε[α]

s

)

− ε.

Plugging the above inequality into (4.6), we find

Λ(t, ξ, η) ≥ G
(

X
t,ξ,α,βε[α]
T , X̃t,ξ,η,α,βε[α]

s

)

− 2 ε, for every α ∈ A.

The claim follows taking the supremum over A and then the infimum over Bstr.

Proof of V (t, ξ, η) ≥ Λ(t, ξ, η). Fix ε > 0. Then, there exists β̄ε[·] ∈ Bstr such that

sup
α∈A

G
(

X
t,ξ,α,β̄ε[α]
T , X̃

t,ξ,η,α,β̄ε[α]
T

)

≤ V (t, ξ, η) + ε. (4.8)

We also have

Λ(t, ξ, η) ≤ sup
α∈A

V
(

s,Xt,ξ,α,β̄ε[α]
s , X̃t,ξ,η,α,β̄ε[α]

s

)

.

So, in particular, there exists αε ∈ A such that

Λ(t, ξ, η) ≤ V
(

s,Xt,ξ,αε,β̄ε[αε]
s , X̃t,ξ,η,αε,β̄ε[αε]

s

)

+ ε. (4.9)

Now, for every α ∈ A define α̃ε ∈ A by

α̃εr := αεr 1[0,s](r) + αr 1(s,T ](r), for all r ∈ [0, T ]. (4.10)

Then, define βε ∈ Bstr by β
ε[α] := β̄ε[α̃ε], for every α ∈ A. Hence

V
(

s,Xt,ξ,αε,β̄ε[αε]
s , X̃t,ξ,η,αε,β̄ε[αε]

s

)

= inf
β[·]∈Bstr

sup
α∈A

G
(

X
s,X

t,ξ,αε,β̄ε[αε]
s ,α,β[α]

T , X̃
s,X

t,ξ,αε,β̄ε[αε]
s ,X̃

t,ξ,η,αε,β̄ε[αε]
s ,α,β[α]

T

)
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≤ sup
α∈A

G
(

X
s,X

t,ξ,αε,β̄ε[αε]
s ,α,βε[α]

T , X̃
s,X

t,ξ,αε,β̄ε[αε]
s ,X̃

t,ξ,η,αε,β̄ε[αε]
s ,α,βε[α]

T

)

= sup
α∈A

G
(

X
s,X

t,ξ,α̃ε,β̄ε[α̃ε]
s ,α̃ε,β̄ε[α̃ε]

T , X̃
s,X

t,ξ,α̃ε,β̄ε[α̃ε]
s ,X̃

t,ξ,η,α̃ε,β̄ε[α̃ε]
s ,α̃ε,β̄ε[α̃ε]

T

)

,

where the last equality follows from the definitions of α̃ε and βε. By the flow properties (2.6)-

(4.3), we obtain

V
(

s,Xt,ξ,αε,β̄ε[αε]
s , X̃t,ξ,η,αε,β̄ε[αε]

s

)

≤ sup
α∈A

G
(

X
t,ξ,α̃ε,β̄ε[α̃ε]
T , X̃

t,ξ,η,α̃ε,β̄ε[α̃ε]
T

)

.

Consequently, there exists α2,ε ∈ A, and the corresponding α̃2,ε defined as in (4.10), such that

V
(

s,Xt,ξ,αε,β̄ε[αε]
s , X̃t,ξ,η,αε,β̄ε[αε]

s

)

≤ G
(

X
t,ξ,α̃2,ε,β̄ε[α̃2,ε]
T , X̃

t,ξ,η,α̃2,ε,β̄ε[α̃2,ε]
T

)

+ ε.

Finally, using inequalities (4.8) and (4.9), we obtain

Λ(t, ξ, η) ≤ V
(

s,Xt,ξ,αε,β̄ε[αε]
s , X̃t,ξ,η,αε,β̄ε[αε]

s

)

+ ε

≤ G
(

X
t,ξ,α̃2,ε,β̄ε[α̃2,ε]
T , X̃

t,ξ,η,α̃2,ε,β̄ε[α̃2,ε]
T

)

+ 2 ε

≤ sup
α∈A

G
(

X
t,ξ,α,β̄ε[α]
T , X̃

t,ξ,η,α,β̄ε[α]
T

)

+ 2 ε ≤ V (t, ξ, η) + 3 ε,

which concludes the proof. ✷

We immediately deduce the DPP for the inverse-lifted lower and upper value functions.

Corollary 4.1 Under Assumption (A1), we have

V (t, µ) = inf
β[·]∈Bstr

sup
α∈A

{

E

[

∫ s

t
f
(

Xt,ξ,α,β[α]
r ,P

X
t,ξ,α,β[α]
r

, αr, β[α]r ,P(αr, β[α]r)

)

dr
]

(4.11)

+ V
(

s,P
X

t,ξ,α,β[α]
s

)

}

and

U (t, µ) = sup
α[·]∈Astr

inf
β∈B

{

E

[

∫ s

t
f
(

Xt,ξ,α[β],β
r ,P

X
t,ξ,α[β],β
r

, α[β]r , βr,P(α[β]r, βr)

)

dr
]

+U
(

s,P
X

t,ξ,α,β[α]
s

)

}

,

for all t, s ∈ [0, T ], with t ≤ s, µ ∈ Pq(R
n), and any ξ ∈ Lq(Ω,G,P;Rn) such that Pξ = µ.

The case without mean-field interaction

Let us consider the particular case of standard stochastic optimal control problem (for the case

of a standard two-player zero-sum stochastic differential game see Remark 4.1 below), where

G is the trivial σ-algebra and all coefficients depend only on the state and control (of the first

player), but not on their probability laws (as well as on the control of the second player):

(A3) G = {∅,Ω} and γ = γ(x, a), σ = σ(x, a), f = f(x, a), g = g(x), for every (x, a) ∈ Rn×A.
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The assumption that G is trivial implies that the lower and upper value functions v =

v(t, ξ) and u = u(t, ξ) are defined only for all t ∈ [0, T ], ξ ∈ Lq(Ω,Ft,P;R
n) (rather than

ξ ∈ Lq(Ω,Ft ∨ G,P;Rn)). This also reflects on V and U , which now are defined on a possibly

smaller set, given by all pairs (t, µ) ∈ [0, T ]×Pq(R
n) for which there exists ξ ∈ Lq(Ω,Ft,P;R

n)

such that Pξ = µ. Another consequence of the assumption that G is trivial is that A (resp. B)

coincides with the family of all F-progressively (rather than (Fs ∨G)s-progressively) measurable

processes taking values in A (resp. B).

Under Assumption (A3), denote by Xt,ξ,α the solution to (2.4) when there is only the control

process α. By an abuse of notation, we still denote by J = J(t, ξ, α) the payoff functional, which

now depends only on t, ξ, α:

J(t, ξ, α) = E

[
∫ T

t
f
(

Xt,ξ,α
s , αs

)

ds+ g
(

Xt,ξ,α
T

)

]

.

Notice that under (A3), the lower and upper value functions coincide with each other, and are

simply given by:

v(t, ξ) = u(t, ξ) = sup
α∈A

J(t, ξ, α), for all t ∈ [0, T ], ξ ∈ Lq(Ω,Ft,P;R
n).

For any t ∈ [0, T ], x ∈ Rn, α ∈ A, denote by Xt,x,α the solution to (2.4) when the initial condition

at time t is given by a constant ξ = x in Rn. Similarly, let JB(t, x, α) be the payoff functional

when ξ = x, namely (the capital letter B at the top of J refers to “Bellman”)

JB(t, x, α) = E

[
∫ T

t
f
(

Xt,x,α
s , αs

)

ds+ g
(

Xt,x,α
T

)

]

.

So, in particular, JB(t, x, α) coincides with J(t, ξ, α) whenever ξ = x in Rn. Finally, the value

function of the standard stochastic optimal control problem is given by:

vB(t, x) = sup
α∈A

JB(t, x, α),

for all t ∈ [0, T ], x ∈ Rn.

The following result makes the connection between the standard value function vB and our

value functions v = u, or the value functions V = U on the Wasserstein space, and show that

one can retrieve the standard DPP in the non-McKean-Vlasov case from Theorem 4.1.

Proposition 4.1 Under Assumptions (A1) and (A3), we have, for all t ∈ [0, T ], µ ∈ Pq(R
n),

V (t, µ) = v(t, ξ) = u(t, ξ) = U (t, µ) =

∫

Rn

vB(t, x)µ(dx) = E[vB(t, ξ)], (4.12)

for any ξ ∈ Lq(Ω,Ft,P;R
n), with Pξ = µ. Therefore, we have the DPP for vB:

vB(t, x) = sup
α∈A

E

[
∫ s

t
f
(

Xt,x,α
r , αr

)

dr + vB
(

s,Xt,x,α
s

)

]

,

for all t, s ∈ [0, T ], with t ≤ s, and for every x ∈ Rn.
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Proof. If the sequence of equalities (4.12) holds true, the DPP for vB is a direct consequence

of Theorem 4.1. Then, it remains to prove (4.12).

Fix t ∈ [0, T ], µ ∈ Pq(R
n), and ξ ∈ Lq(Ω,Ft,P;R

n) with Pξ = µ. Equalities V = v = u = U

follow directly from Assumption (A3). Therefore, it only remains to prove the following equality:

v(t, ξ) = E[vB(t, ξ)].

Proof of the inequality v(t, ξ) ≤ E[vB(t, ξ)]. We adopt the same notations as in Steps I and

II of the proof of Proposition 3.1. So, in particular, we consider a uniformly distributed random

variable Γt : Ω → [0, 1] such that σ(Γt) = Fo
t . Moreover

ξ = χ(Γt), P-a.s.,

αs = as(·,Γt(·)), ∀ s ∈ [0, T ], P-a.s., (4.13)

for some measurable functions χ : ([0, 1],B([0, 1])) → (Rn,B(Rn)) and a : (Ω × [0, T ] × [0, 1],

P rog(Ft) ⊗ B([0, 1])) → (A,B(A)). For every fixed y ∈ [0, 1], denote αy := a·(·, y). Notice that

αy ∈ A and, in particular, it is Ft-progressively measurable.

Similarly, the controlled state process (Xt,ξ,α
s )s∈[t,T ] is F-progressively measurable, so, in

particular, it is Prog(Ft) ∨ (Ft ⊗ {∅, [0, T ]})-measurable (where {∅, [0, T ]} denotes the trivial

σ-algebra on [0, T ]). Then, Xt,ξ,α has the form

Xt,ξ,α
s = xt,ξ,αs (·,Γt(·)), ∀ s ∈ [0, T ], P-a.s.,

for some Prog(Ft)⊗B([0, 1])-measurable function xt,ξ,α = x
t,ξ,α
s (ω, y) : Ω× [0, T ]× [0, 1] → Rn.

By pathwise uniqueness to equation (2.4), we deduce that there exists a Lebesgue-null set

N ∈ B([0, 1]) such that

xt,ξ,αs (·, y) = Xt,χ(y),αy

s , ∀ s ∈ [t, T ], P-a.s.,

for every y ∈ [0, 1]\N . Hence, using the fact that σ(Γt) = Fo
t is independent of F t

T , by Fubini’s

theorem we deduce that the payoff functional can be written as follows:

J(t, ξ, α) =

∫ 1

0
E

[
∫ T

t
f
(

Xt,χ(y),αy

s , αys
)

ds+ g
(

X
t,χ(y),αy

T

)

]

dy (4.14)

=

∫ 1

0
JB

(

t, χ(y), αy
)

dy ≤

∫ 1

0
vB(t, χ(y)) dy.

Taking the supremum over α in A, we conclude that

v(t, ξ) ≤

∫ 1

0
vB(t, χ(y)) dy = E[vB(t, ξ)].

Proof of the inequality v(t, ξ) ≥ E[vB(t, ξ)]. Recall that

E[vB(t, ξ)] =

∫

Rn

vB(t, x)µ(dx)

and, for every x ∈ Rn,

vB(t, x) = sup
α∈A

JB(t, x, α) = sup
α∈A

E

[
∫ T

t
f
(

Xt,x,α
s , αs

)

ds+ g
(

Xt,x,α
T

)

]

.
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Notice also that the following equality holds:

sup
α∈A

JB(t, x, α) = sup
α∈At

JB(t, x, α), (4.15)

with At ⊂ A denoting the set of all Ft-progressively measurable processes taking values in A.

In order to see that (4.15) holds, we begin noting that supα∈A J
B(t, x, α) ≥ supα∈At JB(t, x, α)

since At ⊂ A, so it remains to prove the other inequality. Given α ∈ A, recalling that α can be

written as in (4.13), we find (proceeding as in (4.14))

JB(t, x, α) =

∫ 1

0
E

[
∫ T

t
f
(

Xt,x,αy

s , αys
)

ds+ g
(

Xt,x,αy

T

)

]

dy

=

∫ 1

0
JB(t, x, αy) dy ≤

∫ 1

0
sup
α̃∈At

JB(t, x, α̃) dy = sup
α̃∈At

JB(t, x, α̃),

where the inequality follows from the fact that αy ∈ At, for every y ∈ [0, 1]. From the arbitrari-

ness of α ∈ A, we deduce the other inequality, from which (4.15) follows.

Given ε > 0, for every x ∈ Rn let αx,ε ∈ At be an ε-optimal control, namely

vB(t, x) ≤ JB(t, x, αx,ε) + ε. (4.16)

Suppose for a moment that the composition αε := αξ,ε belongs to A. Then, from (4.16) we get

vB(t, ξ) ≤ JB(t, ξ, αε) + ε. (4.17)

Notice that JB(t, ξ, αε) is a random variable, indeed it is a function of ξ. We also observe,

similarly as in (4.14), that the expectation of JB(t, ξ, αε) coincides with J(t, ξ, αε). Then,

taking the expectation in (4.17), we obtain

E[vB(t, ξ)] ≤ E[JB(t, ξ, αε)] + ε = J(t, ξ, αε) + ε ≤ v(t, ξ) + ε.

From the arbitrariness of ε, the claim follows. It remains to prove that αξ,ε belongs to A. More

precisely, it is enough to prove that for every x ∈ Rn we are able to find an ε-optimal control

αx,ε ∈ At such that the composition αξ,ε belongs to A. This last statement follows easily when

the random variable ξ is discrete. In the general case, we need to apply a measurable selection

theorem. To this end, we define the following metric on At (see Definition 3.2.3 in [19]):

ρKr(α,α
′) := E

[
∫ T

0
ρA(αs, α

′
s) ds

]

,

for any α,α′ ∈ At, where we recall that ρA is a bounded metric on the Polish space A. We observe

that the metric space (At, ρKr) is complete. Let us now prove that (At, ρKr) is also separable, so

(At, ρKr) is a Polish space. Firstly, notice that if A is equal to some Euclidean space Rm, then At

coincides with the closed subset of the space L1(Ω× [0, T ],FT ⊗B([0, T ]), dP⊗ds; (A, ρA)) of all

Ft-progressively measurable processes; so, in particular, (see page 92 in [12] and the beginning of

Section 2.5 in [25]) the space (At, ρKr) is separable since the σ-algebra F t
T⊗B([0, T ]) is countably

generated up to null sets. When A is a generic Polish space, the same result holds true. As a

matter fact, proceeding as in [12], page 92, we see that the separability of (At, ρKr) follows from

the following facts: since, up to null sets, the σ-algebra F t
T ⊗ B([0, T ]) is countably generated,
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the subfamily of At of all processes which are equal to an indicator function of a measurable set

in F t
T ⊗ B([0, T ]) is separable; it follows that the subfamily of all step processes taking values

in some fixed countable subset of A is separable; given that A is separable, the subfamily of all

step processes is separable; since this latter subfamily is dense in At, it follows that At is also

separable.

We can now apply the Jankov-von Neumann measurable selection theorem, and in particular

Proposition 7.50 in [6]. More precisely, in order to apply Proposition 7.50 in [6], we begin noting

that X, Y , D, f , f∗ in [6] are given respectively by Rn, At, Rn×At, −JB(t, ·, ·) (the minus sign

is due to the presence of the inf in [6]), vB(t, ·). We firstly notice that −JB(t, ·, ·) : Rn×At → R

is a Borel measurable function, so, in particular, it is lower semianalytic. Then, by Proposition

7.50 in [6] it follows that: for any ε > 0, there exists an analytically measurable function

αε : Rn → At such that

vB(t, x) ≤ JB(t, x,αε(x)) + ε, for every x ∈ Rn.

Since every analytic set in Rn belongs to the Lebesgue σ-algebra L (Rn), we see that αε is a

measurable function from (Rn,L (Rn)) into (At,B(At)). Now, it is easy to see that there exists

a measurable function α̃ε : (Rn,B(Rn)) → (At,B(At)) which is equal to αε a.e. (with respect

to the Lebesgue measure on Rn). As a matter of fact, if αε is a sum of indicator functions on a

Lebesgue measurable partition of Rn, the result follows from the fact that if B ∈ L (Rn) then

there exists B̃ ∈ B(Rn) such that the Lebesgue measure of B∆B̃ is zero; for a general Lebesgue

measurable function αε, the result follows by an approximation argument. We thus have

vB(t, x) ≤ JB(t, x, α̃ε(x)) + ε, for a.e. x ∈ Rn.

In order to conclude the proof, we notice that it remains to prove that the composition αε :=

α̃ε(ξ) belongs to A. To this end, suppose firstly that α̃ε is a sum of indicator functions on a

Borel measurable partition of Rn, namely

α̃ε(x) =
∑

i

αεi 1{x∈Bi}, (4.18)

where {αεi}i ⊂ At and {Bi}i ⊂ B(Rn) is a partition of Rn. If α̃ε has the form in (4.18),

then it is clear that the composition α̃ε(ξ) belongs to A, that is α̃ε(ξ) is an F-progressively

measurable process (as a matter of fact, for every i, both αεi and the indicator function 1{ξ∈Bi}

are F-progressively measurable processes). For a general Borel measurable function, the result

follows by an approximation argument. ✷

Remark 4.1 The extension of Proposition 4.1 to the case of two-player zero-sum stochastic

differential games presents some difficulties, as we now explain. Consider a standard two-player

zero-sum stochastic differential game, firstly studied in the seminal paper [15], where all coeffi-

cients depend only on the state and controls, but not on their probability laws:

(A3)game G = {∅,Ω} and γ = γ(x, a, b), σ = σ(x, a, b), f = f(x, a, b), g = g(x), for every (x, a, b)

∈ Rd ×A×B

The lower and upper value functions of this standard stochastic differential game, as consi-

dered in [15], are defined as follows:

vFS(t, x) = inf
β[·]∈Bstr

sup
α∈A

JFS(t, x, α, β[α]),
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uFS(t, x) = sup
α[·]∈Astr

inf
β∈B

JFS(t, x, α[β], β),

for all t ∈ [0, T ], x ∈ Rn, where

JFS(t, x, α, β) := E

[
∫ T

t
f
(

s,Xt,x,α,β
s , αs, βs

)

ds+ g
(

Xt,x,α,β
T

)

]

.

In order to adapt the proof of Proposition 4.1 to this context, we need the following generaliza-

tions of equality (4.15):

inf
β[·]∈Bstr

sup
α∈A

JFS(t, x, α, β[α]) = inf
β[·]∈Bt

str

sup
α∈At

JFS(t, x, α, β[α]), (4.19)

sup
α[·]∈Astr

inf
β∈B

JFS(t, x, α[β], β) = sup
α[·]∈At

str

inf
β∈Bt

JFS(t, x, α[β], β), (4.20)

where At (resp. Bt) denotes the set of Ft-progressively measurable processes taking values in A

(resp. B), while At
str (resp. Btstr) is defined as Astr (resp. Bstr) replacing A and B respectively

by At and Bt. The validity of (4.19) and (4.20) is however, at least to our knowledge, still not

known in the literature, although we conjecture that relations: v(t, ξ) = E[vFS(t, ξ)], u(t, ξ) =

E[uFS(t, ξ)] hold true, see also Remark 5.3. ♦

5 Bellman-Isaacs dynamic programming equations

This section is devoted to the derivation of the Bellman-Isaacs equation from the DPP for the

lower and upper value functions, and the viscosity PDE (partial differential equation) charac-

terization. We shall provide a PDE formulation for the value functions on the Hilbert space

L2(Ω,G,P;Rn) (hence for q = 2) or alternatively via the inverse-lifted (recall Definition 3.1)

identification on the Wasserstein space of probability measures P2(R
n).

We shall rely on the notion of lifted derivative with respect to a probability measure and

Itô’s formula along flow of probability measures that we briefly recall (see [10] for more details).

Firstly, we fix some notations. Given µ ∈ P2(R
n), for any r ∈ [1,∞) and m ∈ N\{0}, we use the

shorthand notation Lrµ(R
m) to denote the space Lr(Rn,B(Rn), µ;Rm) of Rm-valued r-integrable

functions with respect to µ. Similarly, L∞
µ (Rm) denotes the space L∞(Rn,B(Rn), µ;Rm) of

Rm-valued µ-essentially bounded functions.

Let ϑ be a real-valued function defined on P2(R
n). Denote by υ the lifted version of ϑ, that

is the function defined on L2(Ω,G,P;Rn) by υ(ξ) = ϑ(Pξ). We say that ϑ is differentiable (resp.

C1) on P2(R
n) if the lift υ is Fréchet differentiable (resp. continuously Fréchet differentiable)

on L2(Ω,G,P;Rn). In this case, the Fréchet derivative [Dυ](ξ) of υ at ξ ∈ L2(Ω,G,P;Rn),

viewed as an element Dυ(ξ) of L2(Ω,G,P;Rn) by the Riesz representation theorem: [Dυ](ξ)(Y )

= E[Dυ(ξ).Y ] (we denote by . the scalar product on Rn), can be represented as

Dυ(ξ) = ∂µϑ(Pξ
)(ξ), (5.1)

for some function ∂µϑ(µ) : Rn → Rn, with ∂µϑ(µ) ∈ L2
µ(R

n), depending only on the law µ =

P
ξ
of ξ, and called derivative of ϑ at µ. We say that ϑ is partially C2 if it is C1, and one can

find, for any µ ∈ P2(R
n), a continuous version of the mapping x ∈ Rn 7→ ∂µϑ(µ)(x), such that

the mapping (µ, x) ∈ P2(R
n)×Rn 7→ ∂µϑ(µ)(x) is continuous at any point (µ, x) such that x ∈
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Supp(µ), and if for each fixed µ ∈ P2(R
n), the mapping x ∈ Rn 7→ ∂µϑ(µ)(x) is differentiable in

the standard sense, with a gradient denoted by ∂x∂µϑ(µ)(x) ∈ Rn×n, this derivative being jointly

continuous at any (µ, x) ∈ P2(R
n)× Rn such that x ∈ Supp(µ). We say that ϑ ∈ C2

b (P2(R
n))

if it is partially C2, ∂x∂µϑ(µ) ∈ L∞
µ (Rn×n), and for any compact set K of P2(R

n) we have

sup
µ∈K

[
∫

Rn

∣

∣∂µϑ(µ)(x)
∣

∣

2
µ(dx) +

∥

∥∂x∂µϑ(µ)
∥

∥

∞

]

< ∞.

Moreover, when the lifted function υ is twice continuously Fréchet differentiable, its second

Fréchet derivative D2υ(ξ), identified by the Riesz representation theorem as a self-adjoint (hence

bounded) operator on L2(Ω,G,P;Rn), that is D2υ(ξ) ∈ S(L2(Ω,G,P;Rn)), is given by

E
[

D2υ(ξ)(ZN).ZN
]

= E
[

tr
(

∂x∂µϑ(Pξ)(ξ)ZZ
⊺
)]

(5.2)

for every Z ∈ L2(Ω,G,P;Rn×d) and any random vector N ∈ L2(Ω,G,P;Rd), with zero mean

and unit variance, independent of (ξ, Z).

Finally, we say that a function ϕ ∈ C1,2
b ([0, T ]×P2(R

n)) if ϕ is continuous on [0, T ]×P2(R
n),

for every t ∈ [0, T ] the map ϕ(t, ·) belongs to C2
b (P2(R

n)), and for every µ ∈ P2(R
n) the map

ϕ(·, µ) is continuously differentiable on [0, T ]. Moreover, we say that a function φ ∈ C1,2([0, T ]×

L2(Ω,G,P;Rn)) if φ is continuous on [0, T ] × L2(Ω,G,P;Rn), for every ξ ∈ L2(Ω,G,P;Rn) the

map φ(·, ξ) is continuously Fréchet differentiable, for every t ∈ [0, T ] the map φ(t, ·) is twice

continuously Fréchet differentiable.

Remark 5.1 The above definition of differentiability in the Wasserstein space, which is extrinsic

via the lifted identification with the Hilbert space of square-integrable random variables, is due

to P.L. Lions [21] (see also [9]), and turns out to be equivalent to a more intrinsic notion (of

derivative in the Wasserstein space) used by various authors in connection with optimal transport

and gradient flows (see e.g. [2], [16]), as recently shown in [17]. ♦

We also recall Itô’s formula along flow of probability measures for an Itô process

dXt = bt dt+ σt dWt,

where b and σ are (Ft ∨ G)t-progressively measurable processes. Then, for ϑ ∈ C2
b (P2(R

n)), we

have

d

dt
ϑ(P

Xt
) = E

[

bt.∂µϑ(PXt
)(Xt) +

1

2
tr
(

σtσ
⊺

t ∂x∂µϑ(PXt
)(Xt)

)

]

.

Let us now introduce the function defined on Rn×P2(R
n)×A×B×P(A×B)×Rn×Rn×n

by

H(x, µ, a, b, ν, p,M) = γ(x, µ, a, b, ν).p +
1

2
tr
(

σσ⊺(x, µ, a, b, ν)M
)

+ f(x, µ, a, b, ν).

Finally, we denote by L0(Ω,G,P;A) (resp. L0(Ω,G,P;B)) the set of G-measurable random

variables taking values in A (resp. B).
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Lemma 5.1 Suppose that Assumption (A1) holds and fix µ ∈ P2(R
n). Consider two maps

p : Rn → Rn and M : Rn → Rn×n such that p ∈ L2
µ(R

n) and M ∈ L∞
µ (Rn×n), then

sup
a∈L0(Ω,G,P;A)

inf
b∈L0(Ω,G,P;B)

E
[

H
(

ξ,P
ξ
,a,b,P

(a,b)
,p(ξ),M(ξ)

)]

= sup
a∈L0(Ω,G,P;A)

inf
b∈L0(Ω,G,P;B)

E
[

H
(

ξ̃,P
ξ̃
,a,b,P

(a,b)
,p(ξ̃),M(ξ̃)

)]

(5.3)

and

inf
b∈L0(Ω,G,P;B)

sup
a∈L0(Ω,G,P;A)

E
[

H
(

ξ,P
ξ
,a,b,P

(a,b)
,p(ξ),M(ξ)

)]

= inf
b∈L0(Ω,G,P;B)

sup
a∈L0(Ω,G,P;A)

E
[

H
(

ξ̃,P
ξ̃
,a,b,P

(a,b)
,p(ξ̃),M(ξ̃)

)]

, (5.4)

for any ξ, ξ̃ ∈ L2(Ω,G,P;Rn), with Pξ = Pξ̃.

Proof. We only prove (5.3), the proof of (5.4) being analogous. In order to show (5.3), we can

proceed along the same lines as in the proof of Proposition 3.1, even though in this case the

proof turns out to be much simpler (here a and b are random variables rather than controls or

strategies as in Proposition 3.1). For this reason, we skip the details and only report the main

steps of the proof.

Similarly to the proof of Proposition 3.1, our aim is to prove the following:

Given any a ∈ L0(Ω,G,P;A) and b̃ ∈ L0(Ω,G,P;B), there exist ã ∈ L0(Ω,G,P;A)

and b ∈ L0(Ω,G,P;B), with ã (resp. b) independent of b̃ (resp. a), such that:

(ξ,a,b) has the same law as (ξ̃, ã, b̃), so that (5.5)

E
[

H
(

ξ,P
ξ
,a,b,P

(a,b)
,p(ξ),M(ξ)

)]

= E
[

H
(

ξ̃,P
ξ̃
, ã, b̃,P

(ã,b̃)
,p(ξ̃),M(ξ̃)

)]

.

In order to prove (5.5), we recall that, by assumption, there exists a random variable ΓG : (Ω,G) →

(G,G ), taking values in some Polish space G with Borel σ-algebra G , such that ΓG has an atom-

less distribution and G = σ(ΓG). Since all atomless Polish probability spaces are isomorphic, we

can suppose that (G,G ) is ([0, 1],B([0, 1])) and that ΓG has uniform distribution.

Recalling that ξ and a are G-measurable, we have that

ξ = χ(ΓG), a = a(ΓG), P-a.s.

for some measurable maps χ : [0, 1] → Rn and a : [0, 1] → A. We can suppose, without loss of

generality, that χ is surjective. Then, we notice that (5.5) follows if we prove the following:

∃ a G-measurable random variable Γ̃G with values in [0, 1] such that: (5.6)

Γ̃G has the same distribution of ΓG, σ(Γ̃G) ∨ N = G ∨ N , and ξ̃ = χ(Γ̃G), P-a.s.

As a matter of fact, suppose that (5.6) holds. Since σ(Γ̃G)∨N = G ∨N and b̃ is G-measurable,

we have

b̃ = b̃(Γ̃G), P-a.s.

for some measurable function b̃ : [0, 1] → B. Now, define

ã := a(Γ̃G), b := b̃(ΓG).
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Observe that ã ∈ L0(Ω,G,P;A) and b ∈ L0(Ω,G,P;B). We also notice that (ξ,a,b) has the

same law as (ξ̃, ã, b̃), so that (5.5) holds.

It remains to prove (5.6). Proceeding as in Step IV of the proof of Proposition 3.1, by the

Jankov-von Neumann measurable selection theorem we deduce the existence of the analytically

measurable right-inverse ζ of χ. Then, we define

Γ̃G := ζ(ξ̃).

Proceeding as in Step IV of the proof of Proposition 3.1 we see that Γ̃G satisfies (5.6), from

which the claim follows. ✷

In view of the above Lemma, we can define the lower and upper Hamiltonian functions H−,

H+ : P2(R
n)× L2

µ(R
n)× L∞

µ (Rn×n) → R by

H−(µ,p,M) = sup
a∈L0(Ω,G,P;A)

inf
b∈L0(Ω,G,P;B)

E
[

H
(

ξ, µ,a,b,P
(a,b)

,p(ξ),M(ξ)
)]

H+(µ,p,M) = inf
b∈L0(Ω,G,P;B)

sup
a∈L0(Ω,G,P;A)

E
[

H
(

ξ, µ,a,b,P
(a,b)

,p(ξ),M(ξ)
)]

for every (µ,p,M) ∈ P2(R
n) × L2

µ(R
n) × L∞

µ (Rn×n), with ξ ∈ L2(Ω,G,P;Rn) such that P
ξ
=

µ. Then, consider the lower Bellman-Isaacs equation on [0, T ]× P2(R
n):











−
∂ϑ

∂t
(t, µ)− H−(µ, ∂µϑ(t, µ), ∂x∂µϑ(t, µ)) = 0, (t, µ) ∈ [0, T )× P2(R

n),

ϑ(T, µ) =

∫

Rn

g(x, µ)µ(dx), µ ∈ P2(R
n)

(5.7)

and the upper Bellman-Isaacs equation on [0, T ]× P2(R
n):















−
∂ϑ

∂t
(t, µ)− H+(µ, ∂µϑ(t, µ), ∂x∂µϑ(t, µ)) = 0, (t, µ) ∈ [0, T )× P2(R

n),

ϑ(T, µ) =

∫

Rn

g(x, µ)µ(dx), µ ∈ P2(R
n).

(5.8)

The corresponding lifted equation on [0, T ]×L2(Ω,G,P;Rn) is formulated as follows in view

of the relations (5.1)-(5.2) between derivatives in the Wasserstein space and Fréchet derivatives.

We define the functions H−, H+ : L2(Ω,G,P;Rn)×L2(Ω,G,P;Rn)×S(L2(Ω,G,P;Rn)) → R by

H−(ξ, P,Q) = sup
a∈L0(Ω,G,P;A)

inf
b∈L0(Ω,G,P;B)

E

[

γ(ξ,Pξ,a,b,P(a,b)
).P

+
1

2
Q(σ(ξ,Pξ,a,b,P(a,b)

)N).σ(ξ,Pξ,a,b,P(a,b)
)N + f(ξ,Pξ,a,b,P(a,b)

)
]

,

H+(ξ, P,Q) = inf
b∈L0(Ω,G,P;B)

sup
a∈L0(Ω,G,P;A)

E

[

γ(ξ,Pξ,a,b,P(a,b)
).P

+
1

2
Q(σ(ξ,Pξ,a,b,P(a,b)

)N).σ(ξ,Pξ,a,b,P(a,b)
)N + f(ξ,Pξ,a,b,P(a,b)

)
]

whereN ∈ L2(Ω,G,P;Rd), with zero mean and unit variance, is independent of ξ. Then, consider
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the lower Bellman-Isaacs equation on [0, T ] × L2(Ω,G,P;Rn):







−
∂υ

∂t
(t, ξ)−H−(ξ,Dυ(t, ξ),D

2υ(t, ξ)) = 0, (t, ξ) ∈ [0, T )× L2(Ω,G,P;Rn),

υ(T, ξ) = E
[

g(ξ,Pξ)
]

, ξ ∈ L2(Ω,G,P;Rn)

(5.9)

and the upper Bellman-Isaacs equation on [0, T ]× L2(Ω,G,P;Rn):







−
∂υ

∂t
(t, ξ)−H+(ξ,Dυ(t, ξ),D

2υ(t, ξ)) = 0, (t, ξ) ∈ [0, T )× L2(Ω,G,P;Rn),

υ(T, ξ) = E
[

g(ξ,Pξ)
]

, ξ ∈ L2(Ω,G,P;Rn).

(5.10)

Remark 5.2 In the case where the coefficients do not depend on the law of the controls, i.e. γ =

γ(x, µ, a, b), σ = σ(x, µ, a, b), f = f(x, µ, a, b), so that H = H(x, µ, a, b, p,M), the optimization

over a ∈ L0(Ω,G,P;A) and b ∈ L0(Ω,G,P;B) in the Hamiltonian functions H− and H+ reduces

to a pointwise optimization over A and B inside the expectation operator, namely

H−(µ,p,M) = E

[

sup
a∈A

inf
b∈B

H(ξ, µ, a, b,p(ξ),M(ξ))
]

(5.11)

H+(µ,p,M) = E

[

inf
b∈B

sup
a∈A

H(x, µ, a, b,p(ξ),M(ξ))
]

.

Indeed, it is clear that for any a ∈ L0(Ω,G,P;A),

inf
b∈L0(Ω,G,P;B)

E
[

H
(

ξ, µ,a,b,p(ξ),M(ξ)
)]

≥ E
[

inf
b∈B

H
(

ξ, µ,a, b,p(ξ),M(ξ)
)]

Conversely, by the Jankov-von Neumann measurable selection theorem, for any ε > 0, there ex-

ists a measurable function x ∈ Rn 7→ bε(x) ∈B (depending on a) such that inf
b∈B

H(t, x, µ,a, b,p(x),M(x))

≥ H(t, x, µ,a, bε(x),p(x),M(x)) − ε, µ(dx)-a.e.. By considering bε = bε(ξ) ∈ L0(Ω,G,P;B),

we then have

E
[

inf
b∈B

H
(

ξ, µ,a, b,p(ξ),M(ξ)
)]

≥ E
[

H
(

ξ, µ,a,bε,p(ξ),M(ξ)
)]

− ε

≥ inf
b∈L0(Ω,G,P;B)

E
[

H
(

ξ, µ,a,b,p(ξ),M(ξ)
)]

− ε,

and thus, by sending ε to zero, the equality:

inf
b∈L0(Ω,G,P;B)

E
[

H
(

ξ, µ,a,b,p(ξ),M(ξ)
)]

= E
[

inf
b∈B

H
(

ξ, µ,a, b,p(ξ),M(ξ)
)]

.

Next, following the same argument as above, we show that

sup
a∈L0(Ω,G,P;A)

inf
b∈L0(Ω,G,P;B)

E
[

H
(

ξ, µ,a,b,p(ξ),M(ξ)
)]

= E
[

sup
a∈A

inf
b∈B

H
(

ξ, µ, a, b,p(ξ),M(ξ)
)]

Similarly, the optimization over a ∈ L0(Ω,G,P;A) and b ∈ L0(Ω,G,P;B) in the Hamiltonian

functions H− and H+ reduces to a pointwise optimization over A and B inside the expectation

operator. ♦
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Remark 5.3 (Case without mean-field interaction)

Consider the standard zero-sum stochastic differential game as in [15] where all the coefficients

depend only on state and controls. Given a function vFS ∈ C1,2([0, T ] × Rn) with quadratic

growth condition on its derivatives, let us define the function ϑ on [0, T ]× P2(R
n) by

ϑ(t, µ) = E[vFS(t, ξ)], µ ∈ P2(R
n), ξ ∈ L2(Ω,G,P;Rn), P

ξ
= µ.

Then ϑ(t, ·) is partially C2, while ϑ(·, µ) is C1, with

∂µϑ(t, µ) = Dxv
FS(t, ·), ∂x∂µϑ(t, µ) = D2

xv
FS(t, ·),

∂ϑ

∂t
(t, µ) = E

[

∂vFS

∂t
(t, ξ)

]

.

Moreover, we have (recalling also (5.11))

∂ϑ

∂t
(t, µ) + H−(µ, ∂µϑ(t, µ), ∂x∂µϑ(t, µ))

= E

[

∂vFS

∂t
(t, ξ) +HFS

−

(

ξ,Dxv
FS(t, ξ),D2

xv
FS(t, ξ)

)

]

, (5.12)

where HFS
− (x, p,M) = supa∈A infb∈B

[

γ(x, a, b).p + 1
2tr(σσ

⊺(x, a)M
)

+ f(x, a, b)
]

is the lower

Bellman-Isaacs Hamiltonian associated to the zero-sum stochastic differential game as in [15].

The connection (5.12) between the lower Bellman-Isaacs equation on [0, T ] × Rn and the lower

Bellman-Isaacs equation on [0, T ] × P2(R
n) shows that vFS is a (smooth) solution to











−
∂vFS

∂t
(t, x)−HFS

−

(

x,Dxv
FS(t, x),D2

xv
FS(t, x)

)

= 0, (t, x) ∈ [0, T ) × Rn,

vFS(T, x) = g(x), x ∈ Rn,

if and only if ϑ is a (smooth) solution to (5.7). A similar connection holds for the upper

Bellman-Isaacs equation. ♦

We now consider two definitions of viscosity solution for the Bellman-Isaacs equations, on

one hand on the Wasserstein space P2(R
n) and on the other hand on the lifted Hilbert space

L2(Ω,G,P;Rn). In the sequel, the Hamiltonian function H denotes either H− or H+, and H

stands for H− or H+.

Definition 5.1 (Viscosity solution in P2) A continuous function ϑ on [0, T ]×P2(R
n) is a

viscosity solution to (5.7) (or (5.8)) if:

(i) (viscosity supersolution property): ϑ(T, µ) ≥
∫

Rn g(x, µ)µ(dx), µ ∈ P2(R
n), and for any

test function ϕ ∈ C1,2
b ([0, T ] × P2(R

n)) such that ϑ − ϕ has a minimum at (t0 , µ0) ∈

[0, T )× P2(R
n), we have

−
∂ϕ

∂t
(t0 , µ0)− H (µ0 , ∂µϕ(t0 , µ0), ∂x∂µϕ(t0 , µ0)) ≥ 0.

(ii) (viscosity subsolution property): ϑ(T, µ) ≤
∫

Rn g(x, µ)µ(dx), µ ∈ P2(R
n), and for any

test function ϕ ∈ C1,2
b ([0, T ] × P2(R

n)) such that ϑ − ϕ has a maximum at (t0 , µ0) ∈

[0, T )× P2(R
n), we have

−
∂ϕ

∂t
(t0 , µ0)− H (µ0 , ∂µϕ(t0 , µ0), ∂x∂µϕ(t0 , µ0)) ≤ 0.
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Definition 5.2 (Viscosity solution in L2) A continuous function υ on [0, T ]×L2(Ω,G,P;Rn)

is a viscosity solution to (5.9) (or (5.10)) if:

(i) (viscosity supersolution property): υ(T, ξ) ≥ E[g(ξ,Pξ)], ξ ∈ L2(Ω,G,P;Rn), and for any

test function φ ∈ C1,2([0, T ] × L2(Ω,G,P;Rn)) such that υ − φ has a minimum at (t0 , ξ0)

∈ [0, T )× L2(Ω,G,P;Rn), we have

−
∂φ

∂t
(t0 , ξ0)−H(ξ0 ,Dφ(t0 , ξ0),D

2φ(t0 , ξ0)) ≥ 0.

(ii) (viscosity subsolution property): υ(T, ξ) ≤ E[g(ξ,Pξ)], ξ ∈ L2(Ω,G,P;Rn), and for any

test function φ ∈ C1,2([0, T ]× L2(Ω,G,P;Rn)) such that υ − φ has a maximum at (t0 , ξ0)

∈ [0, T )× L2(Ω,G,P;Rn), we have

−
∂φ

∂t
(t0 , ξ0)−H(ξ0 ,Dφ(t0 , ξ0),D

2φ(t0 , ξ0)) ≤ 0.

Remark 5.4 Given these two definitions of viscosity solutions in P2(R
n) and in L2(Ω,G,P;Rn),

a natural question is the connection between the viscosity property of ϑ to the Bellman-Isaacs

equation (5.7) (or (5.8)) and the viscosity property of its lifted function υ to (5.9) (or (5.10)).

Actually, as pointed out in [8] (see their Example 2.1), for a function ϕ ∈ C1,2
b ([0, T ]×P2(R

n))

its lifted function φ may not be in general in C1,2([0, T ]×L2(Ω,G,P;Rn)), which means that we

cannot deduce from the viscosity property of υ to (5.9) (or (5.10)) the viscosity property of ϑ

to (5.7) (or (5.8)). On the other hand, since a test function φ ∈ C1,2
(

[0, T ]×L2(Ω,G,P;Rn)
)

is

in general not necessarily the lifted function of a test function ϕ in [0, T ] × P2(R
n), we cannot

claim that the viscosity property of ϑ to (5.7) (or (5.8)) implies the viscosity property of its

lifted function υ to (5.9) (or (5.10)). This would hold true whenever we restrict in Definition 5.2

to test functions φ ∈ C1,2([0, T ]×L2(Ω,G,P;Rn)) such that φ(t, ξ) depends on ξ only via its law

P
ξ
, hence are lifted from functions in C1,2

b ([0, T ]×P2(R
n)). However, in this case, we could not

rely on general comparison principles for viscosity solutions in Hilbert spaces (see [14]), which

is in fact our main motivation for the introduction of Definition 5.2, see Remark 5.5. ♦

From the DPP, we can now prove the viscosity solution property of the lower and upper

value functions to the lower and upper Bellman-Isaacs equations.

Theorem 5.1 Let Assumptions (A1) and (A2) hold.

1) The inverse-lifted lower (resp. upper) value function V (resp. U ) is a viscosity solution to

the lower (resp. upper) Bellman-Isaacs equation (5.7) (resp. (5.8)) on [0, T ]× P2(R
n).

2) The lower (resp. upper) value function v (resp. u) is a viscosity solution to the lower (resp.

upper) Bellman-Isaacs equation (5.9) (resp. (5.10)) on [0, T ] × L2(Ω,G,P;Rn).

Proof. We only prove result 1), that is the viscosity property in P2(R
n) (as the viscosity

property in L2(Ω,G,P;Rn) has a similar proof), and for the inverse-lifted lower value function

V , as the proof for the inverse-lifted upper value function is analogous. Obviously, V (T, µ) =

E[g(ξ,P
ξ
)] =

∫

Rn g(x, µ)µ(dx), for µ ∈ P2(R
n) and ξ ∈ L2(Ω,G,P;Rn) such that P

ξ
= µ.

(i) Viscosity supersolution property. Fix (t0 , µ0) ∈ [0, T )×P2(R
n), ξ0 ∈ L2(Ω,G,P;Rn) with P

ξ0

= µ0 , and consider any test function ϕ ∈ C1,2
b ([0, T ]×P2(R

n)) such that V −ϕ has a minimum
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at (t0 , µ0), and w.l.o.g. V (t0 , µ0) = ϕ(t0 , µ0). We argue by contradiction, and assume on the

contrary that

sup
a∈L0(Ω,G,P;A)

inf
b∈L0(Ω,G,P;B)

E
[

Fϕ(t0 , ξ0 , µ0 ,a,b,P(a,b))
]

≥ 3 ε,

for some ε > 0, where we set

Fϕ(t, x, µ, a, b, ν) =
∂ϕ

∂t
(t, µ) +H

(

x, µ, a, b, ν, ∂µϕ(t, µ)(x), ∂x∂µϕ(t, µ)(x)
)

. (5.13)

This implies that there exists aε ∈ L0(Ω,G,P;A) such that for all b ∈ L0(Ω,G,P;B)

E
[

Fϕ(t0 , ξ0 , µ0 ,a
ε,b,P(aε,b))

]

≥ 2 ε. (5.14)

By Remark 2.2, it follows that (5.15) holds for any b ∈ L0(Ω,F ,P;B). As a matter of fact, take

b ∈ L0(Ω,F ,P;B) and denote by π the distribution on (Rn × A × B,B(Rn) ⊗ B(A) ⊗ B(B))

of the random vector (ξ0 ,a
ε,b). From Remark 2.2 (with E, H, ζ corresponding respectively to

Rn × A, B, (ξ0 ,a
ε)) we deduce the existence of a measurable map b̄ : (Ω,G) → (B,B(B)) (the

map b̄ corresponds to the map η in Remark 2.2) such that P(ξ
0
, aε, b̄) = π. So, in particular,

E
[

Fϕ(t0 , ξ0 , µ0 ,a
ε,b,P(aε,b))

]

= E
[

Fϕ(t0 , ξ0 , µ0 ,a
ε, b̄,P(aε,b̄))

]

≥ 2 ε.

Hence, (5.15) holds for any b ∈ L0(Ω,F ,P;B). Now, under the continuity assumptions (A1) and

(A2), we easily see that H(x, µ, a, b, ν, p,M) is continuous in (x, µ, p,M) uniformly with respect

to (a, b, ν), from which we deduce, recalling the continuity of ∂µϕ(t, µ)(x) and ∂x∂µϕ(t, µ)(x),

and by Lebesgue’s dominated convergence theorem, the continuity of (t, ξ, µ) ∈ [0, T ]×L2(Ω,FT∨

G,P;Rn)× P2(R
n) 7→ E

[

Fϕ(t, ξ, µ,a,b,P(a,b))
]

uniformly with respect to a ∈ ∈ L0(Ω,G,P;A)

and b ∈ L0(Ω,F ,P;B). From (5.14), there is some δ > 0 such that for all b ∈ L0(Ω,F ,P;B)

E
[

Fϕ(s, ξ, µ,a
ε,b,P(aε,b))

]

≥ ε, ∀s ∈ [t0 , t0 + δ], (ξ, µ) ∈ Bδ(ξ0 , µ0). (5.15)

Here Bδ(ξ0 , µ0) is the ball of center (ξ0 , µ0) and radius δ in the metric space L2(Ω,FT∨G,P;R
n)×

P2(R
n). From (3.3)-(3.4), we have for all s ∈ [t0 , T ], α ∈ A, β ∈ B,

E
∣

∣X
t0 ,ξ0 ,α,β
s − ξ0

∣

∣

2
+W2

2

(

P
X

t
0
,ξ

0
,α,β

s
, µ0

)

≤ C
(

1 + E|ξ0 |
2
)

|s− t0 |.

We can then pick some h > 0 small enough so that for all α ∈ A, β ∈ B

(

s,X
t0 ,ξ0 ,α,β
s ,P

X
t
0
,ξ

0
,α,β

s

)

∈ [t0 , t0 + δ]×Bδ(ξ0 , µ0), for all s ∈ [t0 , t0 + h]. (5.16)

Consider the constant control αε in A equal to aε, and take an arbitrary β[·] ∈ Bstr. By applying

Itô’s formula to ϕ(r,P
X

t
0
,ξ

0
,αε,β[αε]

r

) between t0 and t0 + h, we then get by (5.15)-(5.16)

ϕ
(

t0 + h,P
X

t
0
,ξ

0
,αε,β[αε]

t
0
+h

)

− ϕ(t0 , µ0)

= E

[
∫ t0+h

t0

(

Fϕ
(

s,X
t0 ,ξ0 ,α

ε,β[αε]
s ,P

X
t
0
,ξ

0
,αε,β[αε]

s

,aε, β[αε]s,P(aε, β[αε]s)

)

− f
(

X
t0 ,ξ0 ,α

ε,β[αε]
s ,P

X
t0 ,ξ0 ,αε,β[αε]
s

,aε, β[αε]s,P(aε, β[αε]s)

)

)

ds

]
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≥ εh− E

[
∫ t0+h

t0

f
(

X
t0 ,ξ0 ,α

ε,β[αε]
s ,P

X
t
0
,ξ

0
,αε,β[αε]

s

,aε, β[αε]s,P(aε, β[αε]s)

)

ds

]

.

Recalling that V (t0 , µ0) = ϕ(t0 , µ0), V ≥ ϕ, and that β is arbitrary in Bstr, we obtain

V (t0 , µ0) + εh ≤ inf
β[·]∈Bstr

sup
α∈A

E

[
∫ t0+h

t0

f
(

X
t0 ,ξ0 ,α,β[α]
s ,P

X
t
0
,ξ

0
,α,β[α]

s

, αs, β[α]s,P(α, β[α]s)

)

ds

+V
(

t0 + h,P
X

t
0
,ξ

0
,α,β[α]

t
0
+h

)

]

,

which contradicts the DPP relation (4.11).

(ii) Viscosity subsolution property. Fix (t0 , µ0) ∈ [0, T )×P2(R
n), ξ0 ∈ L2(Ω,G,P;Rn) with P

ξ0

= µ0 , and consider any test function ϕ ∈ C1,2
b ([0, T ]×P2(R

n)) such that V −ϕ has a maximum

at (t0 , µ0), and w.l.o.g. V (t0 , µ0) = ϕ(t0 , µ0). We still argue by contradiction, and assume on

the contrary that

sup
a∈L0(Ω,G,P;A)

inf
b∈L0(Ω,G,P;B)

E
[

Fϕ(t0 , ξ0 , µ0 ,a,b,P(a,b))
]

≤ −3 ε, (5.17)

for some ε > 0, where Fϕ is defined as in (5.13). As for (5.14), by Remark 2.2 it follows that

(5.17) still holds if we take the supremum over all a ∈ L0(Ω,FT ∨ G,P;A) (actually, over all

a ∈ L0(Ω,F ,P;A), but here we take FT ∨ G since it is a countably generated σ-algebra). As a

matter of fact, given a ∈ L0(Ω,FT ∨ G,P;A) and b ∈ L0(Ω,G,P;B), denoting π = P(ξ0 , a,b), by

Remark 2.2 there exists ā ∈ L0(Ω,G,P;A) such that P(ξ0 , ā,b) = π; so, in particular,

E
[

Fϕ(t0 , ξ0 , µ0 ,a,b,P(a,b))
]

= E
[

Fϕ(t0 , ξ0 , µ0 , ā,b,P(ā,b))
]

.

Taking the infimum over b ∈ L0(Ω,G,P;B), and then the supremum over a ∈ L0(Ω,FT∨G,P;A),

by (5.17) we end up with

sup
a∈L0(Ω,FT∨G,P;A)

inf
b∈L0(Ω,G,P;B)

E
[

Fϕ(t0 , ξ0 , µ0 ,a,b,P(a,b))
]

≤ −3 ε. (5.18)

We can now apply the Jankov-von Neumann measurable selection theorem, and in partic-

ular Proposition 7.50 in [6], to deduce the existence of an analytically measurable function

ψ : L0(Ω,FT ∨ G,P;A) → L0(Ω,G,P;B) such that

E
[

Fϕ(t0 , ξ0 , µ0 ,a, ψ(a),P(a,ψ(a)))
]

≤ −2 ε, for every a ∈ L0(Ω,F ,P;A). (5.19)

More precisely, in order to apply Proposition 7.50 in [6], we begin noting thatX, Y , D, f , f∗ in [6]

are given respectively by L0(Ω,FT ∨G,P;A), L0(Ω,G,P;B), L0(Ω,FT ∨G,P;A)×L0(Ω,G,P;B),

E[Fϕ(t0 , ξ0 , µ0 , ·, ·,P(·,·))], and

f∗(a) = inf
b∈L0(Ω,G,P;B)

E
[

Fϕ(t0 , ξ0 , µ0 ,a,b,P(a,b))
]

.

We also introduce the following metric on L0(Ω,FT ∨ G,P;A):

ρL0,A(α,α
′) := E

[

ρA(a,a
′)
]

,

for any a,a′ ∈ L0(Ω,FT∨G,P;A), where we recall that ρA is a bounded metric on the Polish space

A. Notice that the metric space (L0(Ω,FT ∨ G,P;A), ρL0 ,A) is complete. Moreover, proceeding
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as for the metric space (At, ρKr) in the proof of Proposition 4.1, using that by assumption the

σ-algebra FT ∨ G is countably generated, we can prove that (L0(Ω,FT ∨ G,P;A), ρL0,A) is also

separable, so (L0(Ω,FT ∨ G,P;A), ρL0,A) is a Polish space. Analogously, we introduce a metric

ρL0,B on L0(Ω,G,P;B) defined similarly to ρL0,A; so, in particular, (L0(Ω,G,P;B), ρL0,B) is also

a Polish space. Then, we notice that the function (a,b) 7→ E[Fϕ(t0 , ξ0 , µ0 ,a,b,P(a,b))] is Borel

measurable, so, in particular, it is a lower semianalytic function. Then, by Proposition 7.50 in

[6] it follows that: there exists an analytically measurable function ψ : L0(Ω,FT ∨ G,P;A) →

L0(Ω,G,P;B) such that

E
[

Fϕ(t0 , ξ0 , µ0 ,a, ψ(a),P(a,ψ(a)))
]

≤ f∗(a) + ε ≤ −2 ε, for every a ∈ L0(Ω,FT ∨ G,P;A),

where the second inequality follows from (5.18). This concludes the proof of (5.19).

Now, by the continuity of the map (t, ξ, µ) ∈ [0, T ] × L2(Ω,FT ∨ G,P;Rn) × P2(R
n) 7→

E
[

Fϕ(t, ξ, µ,a,b,P(a,b))
]

uniform with respect to a ∈ L0(Ω,FT ∨G,P;A) and b ∈ L0(Ω,G,P;B),

there exists δ > 0 such that, for all a ∈ L0(Ω,FT ∨ G,P;A),

E
[

Fϕ(s, ξ, µ,a, ψ(a),P(a,ψ(a)))
]

≤ −ε, ∀s ∈ [t0 , t0 + δ], (ξ, µ) ∈ Bδ(ξ0 , µ0). (5.20)

As in (5.16), we can take some h > 0 small enough so that, for all α ∈ A, β ∈ B,

(

s,X
t0 ,ξ0 ,α,β
s ,P

X
t
0
,ξ

0
,α,β

s

)

∈ [t0 , t0 + δ]×Bδ(ξ0 , µ0), for all s ∈ [t0 , t0 + h].

Now, define

β̂[α]s := ψ(αs), for every α ∈ A.

Notice that β̂[·] ∈ Bstr. As a matter of fact, this follows from the following items:

1) For every α ∈ A, the map α : s 7→ αs(·), from [0, T ] to L0(Ω,FT ∨ G,P;A), is Borel

measurable.

2) For any analytically measurable map β : [0, T ] → L0(Ω,G,P;B), the process β : Ω×[0, T ] →

B defined as

βs(·) = β(s)(·), for every s ∈ [0, T ],

is G ⊗B([0, T ])-measurable; so, in particular, β is (Fs ∨G)s-progressively measurable, that

is β ∈ B.

Suppose that 1) and 2) hold. Then, by 1) and the measurability property of ψ, for every α ∈ A

the map s 7→ ψ(αs) is analytically measurable from [0, T ] to L0(Ω,G,P;B). Therefore, the fact

that β̂[·] ∈ Bstr follows from item 2). Concerning the proof of item 1), notice that when α

is a step process the result clearly holds; for a generic α the claim follows by an approxima-

tion argument. Similarly, regarding item 2), we begin noting that any analytically measurable

map β : [0, T ] → L0(Ω,G,P;B) is in particular Lebesgue measurable, that is β is a measur-

able map from ([0, T ],L ([0, T ])) into (L0(Ω,G,P;B),B(L0(Ω,G,P;B))). If, for a moment, we

replace (L0(Ω,G,P;B),B(L0(Ω,G,P;B))) by (R,B(R)), then it is well-known that any β can

be approximated by a sequence of step functions {βn}n; since L
0(Ω,G,P;B) is separable, the

same result holds true for a Lebesgue measurable map β taking values in L0(Ω,G,P;B). As a

consequence, it is enough to prove item 2) for β step function, since afterwards the claim follows
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by an approximation argument. When β is a step function, it is easy to see that the map β(·)(·)

is G ⊗ B([0, T ])-measurable, which concludes the proof of item 2).

Now, by applying Itô’s formula to ϕ(r,P
X

t0 ,ξ0 ,α,β̂[α]
r

) between t0 and t0 + h, we get by (5.20)

ϕ
(

t0 + h,P
X

t
0
,ξ

0
,α,β̂[α]

t0+h

)

− ϕ(t0 , µ0)

= E

[
∫ t0+h

t0

(

Fϕ
(

s,X
t0 ,ξ0 ,α,β̂[α]
s ,P

X
t0 ,ξ0 ,α,β̂[α]
s

, αs, β̂[α]s,P(αs, β̂[α]s)

)

− f
(

X
t0 ,ξ0 ,α,β̂[α]
s ,P

X
t
0
,ξ

0
,α,β̂[α]

s

, αs, β̂[α]s,P(αs, β̂[α]s)

)

)

ds

]

≤ −ε h− E

[
∫ t0+h

t0

f
(

X
t0 ,ξ0 ,α,β̂[α]
s ,P

X
t0 ,ξ0 ,α,β̂[α]
s

, αs, β̂[α]s,P(αs, β̂[α]s)

)

ds

]

.

Recalling that V (t0 , µ0) = ϕ(t0 , µ0), V ≤ ϕ, and that α is arbitrary in A, we obtain

V (t0 , µ0)− ε h ≥ sup
α∈A

E

[
∫ t0+h

t0

f
(

X
t0 ,ξ0 ,α,β̂[α]
s ,P

X
t
0
,ξ

0
,α,β̂[α]

s

, αs, β̂[α]s,P(α, β̂[α]s)

)

ds

+V
(

t0 + h,P
X

t
0
,ξ

0
,α,β̂[α]

t
0
+h

)

]

,

which contradicts the DPP relation (4.11). ✷

Remark 5.5 (Uniqueness of viscosity solutions)

Once we have the viscosity property of the value function to the dynamic programming Bellman-

Isaacs equation, the next step is to state a comparison principle for this PDE in order to get

the characterization of the value function as the unique viscosity solution to the Bellman-Isaacs

equation. Comparison principle for PDE in Wasserstein space of probability measures, and more

generally on metric spaces, can be found e.g. in [16], [17], but concern first-order equations, and

to the best of our knowledge, the proof of a comparison principle for second-order equations as in

(5.7) (or (5.8)) remains a challenging issue. On the other hand, there is a well developed theory

of viscosity solutions for second-order equations of Bellman type related notably to stochastic

control in Hilbert spaces, see the recent book [14]. In particular, we can use comparison principle

in Theorem 3.50 of this book, and check that the assumptions of this theorem are satisfied in

our context for the lifted Hamiltonian H− (and H+) under (A1)-(A2). Assuming that the

function h in (A1)(ii) satisfies a polynomial growth condition, we then deduce from Theorem

3.50 in [14] and our Theorem 5.1 that the lower (resp. upper) value function v (resp. u) is a the

unique viscosity solution to the lower (resp. upper) Bellman-Isaacs equation (5.9) (resp. (5.10))

on [0, T ]× L2(Ω,G,P;Rn) satisfying a polynomial growth condition. ♦

Remark 5.6 If the Isaacs condition holds, that is H− = H+ (or equivalently H− = H+), then

the Bellman-Isaacs equations (5.9) and (5.10) coincide, and by uniqueness of viscosity solutions

to these equations (see Remark 5.5), the lower value function v is equal to the upper value

function u (and then the inverse-lifted lower value function V is equal to the inverse-lifted upper

value function U ), which means that the McKean-Vlasov stochastic differential game has a

value. ♦
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Appendix. A technical lemma

Lemma A.1 Consider a complete probability space (Ω,H,P), two random variables Γ, Γ̃ : Ω →

[0, 1] with uniform distribution, and a Borel measurable function φ : [0, 1] → [0, 1]. Suppose that

Γ̃ = φ(Γ), P-a.s.

So, in particular, φ is a uniform distribution preserving map. Then, there exists a Borel mea-

surable function ρ : [0, 1] → [0, 1] such that ρ(φ)(y) = y, λ-a.e., hence

Γ = ρ(Γ̃), P-a.s.

Proof. We split the proof into three steps, which can be summarized as follows:

• in Step I we consider the analytically (hence Lebesgue) measurable right-inverse ψ of φ

given by the Jankov-von Neumann measurable selection theorem; afterwards, we take a

Borel-measurable version ψ̃ of ψ, which coincides with ψ outside a Borel null-set N (we

need ψ̃, rather than ψ, in order to apply once again the Jankov-von Neumann theorem in

Step II); we end Step I proving that, as expected, ψ̃ is a right-inverse of φ outside of

the set N , that is φ(ψ̃)(y) = y, λ(dy)-a.e.; our aim is then to prove that the claim follows

with ρ := ψ̃ (statement (A.2)), namely that ψ̃ is also a left-inverse of φ;

• in Step II we apply the Jankov-von Neumann theorem in order to construct an analytically

measurable right-inverse φ′ of ψ̃, that is ψ̃(φ′)(y) = y, ∀ y ∈ [0, 1]; then, we notice that the

claim follows if we prove that φ = φ′; finally, we show that this latter equality follows if φ′

is a uniform distribution preserving map, namely (A.4) holds;

• in Step III we prove that φ′ is a uniform distribution preserving map using that both Γ

and Γ̃ has uniform distribution.

Step I. Borel measurable right-inverse of φ. Without loss of generality, we can suppose that φ

is surjective (otherwise, we proceed along the same lines as for the function χ in Step II of the

proof of Proposition 3.1). Now, using the Jankov-von Neumann selection Theorem (in particular,

Corollary 18.23 in [1]), we deduce the existence of a measurable function ψ : ([0, 1],L ([0, 1])) →

([0, 1],B([0, 1])) satisfying:

φ(ψ(y)) = y, for any y ∈ [0, 1]; φ−1(ψ−1(B)) = B, for any subset B of [0, 1].

It is well-known (see e.g. Exercise 14, Chapter 2, in [24]) that there exists a Borel measurable

function ψ̃ : ([0, 1],B([0, 1])) → ([0, 1],B([0, 1])) such that

ψ(y) = ψ̃(y), λ(dy)-a.e. (A.1)

So, in particular, there exists a λ-null set N ∈ B([0, 1]) such that ψ(y) = ψ̃(y), for any y ∈

[0, 1]\N .

We conclude this step recalling the following properties of ψ̃, which can be deduced from the

properties of ψ:
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1) φ(ψ̃(y)) = y, for any y ∈ [0, 1]\N (that is, φ(ψ̃(y)) = y, λ(dy)-a.e.);

2) for any subset B of [0, 1] we have φ−1(ψ̃−1(B)) = B̃, for some subset B̃ of [0, 1] such

that: B̃∆B ∈ L ([0, 1]) and B̃∆B is a λ-null set.

Proof of item 2). Fix a subset B of [0, 1]. By (A.1) we deduce that there exists a

subset NB ⊂ N (so, in particular, NB belongs to L ([0, 1]) and is a λ-null set) such that

ψ−1(B)∆ψ̃−1(B) = NB. In other words, there exist two λ-null sets N ′
B
, N ′′

B
∈ L ([0, 1])

such that ψ̃−1(B) = (ψ−1(B)\N ′
B
) ∪N ′′

B
. Hence

φ−1(ψ̃−1(B)) = φ−1((ψ−1(B)\N ′
B) ∪N ′′

B) = (φ−1(ψ−1(B))\φ−1(N ′
B)) ∪ φ−1(N ′′

B)

= (B\φ−1(N ′
B)) ∪ φ−1(N ′′

B) =: B̃.

It remains to prove that φ−1(N ′
B
) (and similarly φ−1(N ′′

B
)) belongs to L ([0, 1]) and is a

λ-null set. We begin noting that since N ′
B

∈ L ([0, 1]), by definition of L ([0, 1]) (see e.g.

Theorem 1.36 in [24]), there exists a λ-null set N̂ ′
B

∈ B([0, 1]) such that N ′
B

⊂ N̂ ′
B
. Since

φ−1(N ′
B
) ⊂ φ−1(N̂ ′

B
), it is enough to prove that φ−1(N̂ ′

B
) belongs to L ([0, 1]) and is a

λ-null set. Actually, φ−1(N̂ ′
B
) belongs to B([0, 1]) (so, in particular, to L ([0, 1])) since

N̂ ′
B ∈ B([0, 1]) and φ is a measurable function from ([0, 1],B([0, 1])) into ([0, 1],B([0, 1])).

Now, recalling that λ is the distribution of Γ and Γ̃, we obtain

λ(φ−1(N̂ ′
B)) = P(Γ ∈ φ−1(N̂ ′

B)) = P(φ(Γ) ∈ N̂ ′
B) = P(Γ̃ ∈ N̂ ′

B) = λ(N̂ ′
B) = 0.

This concludes the proof of item 2).

Finally, as for φ, we can suppose ψ̃ to be surjective (this property will be used in the next step

in order to apply the Jankov-von Neumann theorem).

Our aim is to prove the following:

ψ̃(φ(y)) = y, λ(dy)-a.e. (A.2)

that is ρ := ψ̃ is also a λ-a.e. left-inverse of φ.

Step II. The function φ′. We apply the Jankov-von Neumann measurable selection theorem

to the function ψ̃, so we deduce the existence of a measurable function φ′ : ([0, 1],L ([0, 1])) →

([0, 1],B([0, 1])) satisfying:

ψ̃(φ′(y)) = y, for any y ∈ [0, 1]; ψ̃−1((φ′)−1(B)) = B, for any subset B of [0, 1].

The claim follows (see, in particular, (A.2)) if we prove that

φ = φ′, λ-a.e. (A.3)

In order to prove (A.3), notice that

φ(ψ̃(φ′(y))) = φ(y), for all y ∈ [0, 1]

and, by property 1) above,

φ(ψ̃(φ′(y))) = φ′(y), for all φ′(y) ∈ [0, 1]\N.
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Hence

φ = φ′, on
{

y : φ′(y) /∈ N
}

.

It remains to prove that the set {y : φ′(y) /∈ N} is a λ-null set. This holds true if we show that

φ′ is a uniform distribution preserving map, namely

λ((φ′)−1(B)) = λ(B), for every Borel subset B ⊂ [0, 1]. (A.4)

Step III. φ′ is a uniform distribution preserving map. Suppose for a moment that both random

variables

ψ̃(φ(Γ)) and φ′(ψ̃(φ(Γ)))

have uniform distribution. Then, for any Borel subset B of [0, 1],

λ(B) = P(φ′(ψ̃(φ(Γ))) ∈ B) = P(ψ̃(φ(Γ)) ∈ (φ′)−1(B)) = λ((φ′)−1(B)),

which implies that (A.4) holds true. Finally, we report below the proof that ψ̃(φ(Γ)) and

φ′(ψ̃(φ(Γ))) are uniformly distributed.

The random variable ψ̃(φ(Γ)). Since, by assumption, Γ has uniform distribution, ψ̃(φ(Γ)) also

has uniform distribution, as a matter of fact

P(ψ̃(φ(Γ)) ∈ B) = P(Γ ∈ φ−1(ψ̃−1(B))) = P(Γ ∈ B̃) = λ(B̃) = λ(B),

where we have used the properties of B̃ := φ−1(ψ̃−1(B)) stated in item 2) above.

The random variable φ′(ψ̃(φ(Γ))). Since, by assumption, Γ̃ = φ(Γ) has uniform distribution,

φ′(ψ̃(φ(Γ))) also has uniform distribution, as a matter of fact

P(φ′(ψ̃(φ(Γ))) ∈ B) = P(Γ̃ ∈ ψ̃−1((φ′)−1(B))) = P(Γ̃ ∈ B) = λ(B).

✷
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