Brexit and CDS spillovers across UK and Europe
Jamal Bouoiyour, Refk Selmi

To cite this version:
Jamal Bouoiyour, Refk Selmi. Brexit and CDS spillovers across UK and Europe. The European Journal of Comparative Economics, European Association for Comparative Economic Studies and Universita Carlo Cattaneo, 2019, 16 (1), pp.105-124. 10.25428/1824-2979/201901-105-124. hal-01736525

HAL Id: hal-01736525
https://hal.archives-ouvertes.fr/hal-01736525
Submitted on 17 Mar 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Brexit and CDS spillovers across UK and Europe

Jamal Bouoiyoura and Refk Selmiaa,b,1

aCATT, University of Pau, France
bERNA, University of Tunis El Manar, Tunisia

Abstract: Understanding the transmission process between markets is critical for risk management and economic policy. The objective of this paper is twofold. First, it identifies when UK and European (France, Germany, Italy and Spain) Credit Default Swaps (CDSs) exhibit explosivity with respect to their past behaviors. Second, it quantifies the dynamics of CDS volatility spillover effects surrounding the UK’s EU membership referendum commonly known as “Brexit”. Using a recursive identification algorithm and new spillover measures suggested by Diebold and Yilmaz (2012), quite interesting results were drawn. We detect significant build-ups in CDS prices for all countries under study soon after the day relative to the announcement of Brexit. Besides, we show that the great uncertainty over Brexit generates significant volatility spillovers across the underlined CDS. In particular, we find that UK, Italy and Spain are the “net volatility transmitters”, while France and Germany seem the “net volatility receivers”. Such information can help policy makers in undertaking decoupling policies to (1) insulate the economy from risk spillovers effects, (2) lighten the spread of the damage done by Brexit and (3) preserve the stability of financial system. To attenuate the risk transmission across CDS markets over Brexit, regulators can, for example, put forth preventive strategies by foregrounding the most influential volatility senders (UK, Italy and Spain).

Keywords: Brexit; Credit Default Swaps; Explosivity; Volatility spillover effects; UK; Europe.
JEL Classification: G12; G13; C13; C22.

1 Corresponding authors: Address: Avenue du Doyen Poplawski, 64000 Pau, France; Tel: +33 (0) 5 59 40 80 01, Fax: +33 (0) 5 59 40 80 10, E-mail: jamal.bouoiyour@univ-pau.fr; s.refk@yahoo.fr
1. Introduction

In the wake of the UK vote to leave the European Union (EU), capital markets face a period of great uncertainty with unknown consequences. Notably, the cost of buying protection against a default on British sovereign debt using Credit Default Swaps (hereafter, CDS) widened to a three-year high following the week’s vote to withdraw the EU. Thomson Reuters indicates that CDS cost now $48,500 a year to protect $10 million of U.K. sovereign debt for five years, compared with levels near $32,000 prior to the June 23rd referendum. In addition, the credit risk increased in a number of European countries. France experienced a rise of its five-years CDS spread by about 49% (with less extent Germany by approximately 31%). Peripheral Europe, Italy and Spain saw their five-years CDS spread widen 24% and 25%, respectively. The sharp growth in CDS means that the latter has become crucial to help investors and traders to avoid credit risks. Compared to corporate bond spread, CDS spread were often viewed as a good proxy of inherited credit risk (Forte and Levretta 2009); it provides “insurance” against a credit event that might destroy value in a corporation’s or a financial institution’s debt (Berndt et al. 2007). In addition, CDS markets incorporate new information more quickly than bonds (Blanco et al. 2005; Zhu 2006; Bouoiyour et al. 2016 a). Interestingly, the credit default swap contracts have made a big impact recently in the financial crisis. Even though they may not be the cause of the crisis, they contributed largely to spread distress across companies and financial institutions (for example, Acharya and Johnson 2007; Saygun 2014; Bouoiyour et al. 2016 b). However, the recent stand of research does not examine the impact of Brexit the spillovers of the Credit Default Swap. The goal of this study is to address how and to what extent the Brexit affect the volatility co-movements among UK and European CDSs. Given of the excessive fluctuations of CDS over the last two years, a better understanding of the interconnectedness among UK and European (in particular, France, Germany, Italy and Spain). The present study tries to detect changes among CDSs correlations that reflect the market reactions to the uncertainty and enable us to predict, to a certain extent, the severity of Britain leaving the European Union. To the best of our knowledge, it remains underexplored in recent empirical research. Understanding the transmission process between markets is of paramount importance for risk management and economic policy. A lack of the transmission process between markets could prompt inadequate and counterproductive regulatory policies. Overall, central bankers and other financial policy-makers would benefit from this line of research and may become more equipped to deal with contagion effects of shocks among CDS markets.

Doing that, this study makes important contributions to the existing literature. First, we do not impose any structural breakpoint and reach beyond the comparison of selected periods (for instance, prior to and post the Brexit vote) towards the examination of gradual structural change. Accurately, using CDS spreads as proxy of credit risk, this paper sets out to capture periods of explosive behavior of UK and EU CDS spreads. For empirical purpose, we carry out a generalized sup ADF (GSADF) test procedure proposed by Phillips, et al. (2013) aimed at identifying stable and bubble-episodes in the investigated time series. Second, during crises a prominent topic discussed by academics, regulators and market participants in general is that of spillovers. This research attempts to investigate volatility linkages between UK and European CDS spreads, which remain up to now not researched over Brexit looms. To provide reliable information about CDS risk spillovers and to
take efficient policy actions, there is a need for effective measures. This study conducts a generalized VAR in variance decomposition developed by Diebold and Yilamz (2012) to measure the total volatility spillover effects, and to shed some light on the net directional spillovers among UK and European CDS spreads. We should mention that relatively few empirical researches have examined the dynamic volatility spillovers across CDS indexes in European countries (Alter and Beyer 2013; Heinz 2014; Alemany 2015). By combining ARMA-FIGARCH skewed Student-t distribution as measure of volatility and Diebold and Yilamz (2012)' procedure, we carry out a full-sample spillover analysis and a rolling-sample analysis allowing for time-varying spillovers. With the increased Brexit fears, we capture explosive periods in the prices of UK and European CDS with respect their past attitudes with the onset of the Brexit vote. Besides, we show that the uncertainty over UK’s EU membership withdrawal resulted in significant volatility spillover effects across UK and EU CDS. Specifically, UK, Italy and Spain are the stress volatility exporters, whereas France and Germany are the net receivers of volatility spillovers. These findings may help in formulating appropriate regulatory policies and designing effective hedging strategies.

The structure of the article is as follows: Section 2 includes a brief discussion of the theory. Section 3 presents a description of the data used along with the methodology followed, while Section 4 reports the main empirical results. Section 5 looks at their robustness. Section 6 concludes.

2. Theoretical Considerations

The past several years have witnessed noticeable research concerning how CDS risk spillovers across countries become wider during turbulent times, and much has been written on both the theoretical and empirical sides of the issue. Specifically, the credit default swap contracts have made a big impact recently in the financial crisis. Even though they may not be the cause of the crisis, they contributed largely to spread distress across companies and financial institutions (Saygun 2014).

Some works assessed the response of CDS spreads to credit events over the last decade, by concentrating on cross-border spillover effects, addressing whether the effect of rating events extends to other countries beyond the respective economy. Accordingly, Caporin et al. (2012) analyzed the sovereign risk spillovers within the euro area. They concluded that the common shift in CDS spreads is the outcome of the usual interconnection and that the strength in the transmission mechanism has not changed over the global financial collapse. Besides, by analyzing sovereign CDS spreads in the US and Europe, Ang and Longstaff (2011) claimed that systemic sovereign risk seems strongly associated to financial markets than to country-specific macro-features. Additionally, Beirne and Fratzscher (2012) showed that global financial markets (in particular, CDS markets) are more affected by economic fundamentals during turbulent rather than tranquil times. Nevertheless, they demonstrated that regional spillovers are less able to explain risks. Ejsing and Lemke (2011) empirically gauged the dynamic dependencies across CDS spreads of European countries and banks with a common risk factor and find that sovereign CDS indexes are likely to be more vulnerable to the common risk factor than banks’
CDS spreads. Likewise, Kalbaska and Gatwoski (2012) investigated contagion among several European CDS markets. They corroborated that countries under distress (including Greece, Ireland, Portugal, Spain and Italy) tend to trigger slight contagion across the Euro area countries. Claey and Vašíček (2012) carried out different spillover measures following Diebold and Yilmaz (2012)’s procedure for a sample of EU sovereign bond and CDS spreads. They concluded that the return and volatility spillover among sovereign yields and CDS rose substantially since 2007 but their strength is not uniform across the investigated countries. Also, Alter and Schüler (2012) argued for contagion from banks to sovereign CDS prior to the achievement of public rescue programs for the financial sector, while sovereign CDS spreads do spill over to bank CDS series thereafter. Moreover, Gande and Parsley (2005), Ferreira and Gama (2007) and Afonso et al. (2012) evaluated the cross-border effect of sovereign credit ratings on international sovereign bond spreads and stocks and European sovereign bond and CDS spreads. All these studies deeply suggested the occurrence of asymmetric spillovers, with the impact of downgrades being the most influential. Böninghausen and Zabel (2015) sustained the previous evidences, by examining the influence of sovereign rating events on international sovereign bond market. They argued that such impact is more pronounced for countries within the same region. Furthermore, Wengner et al. (2015) explored the impact of rating events on the CDS spreads for both the event and non-event companies. They indicated that there exist significant risk spillover effects across the major competitors. More recently, Apérías et al. (2016), using Diebold and Yilmaz (2012) total spillover index as the dependent variable, showed quite interesting findings with respect the the impact of newswire messages on intensity of spillovers across CDS spreads. In particular, they showed that the news variable generates significant spillover effects among the underlined GIIPS CDS markets during the European debt crisis.

The research complements the existing literature by analyzing the role that may play the Brexit fears in exacerbating the risk spillovers among UK and European CDS spreads. We investigate not only the effect over the dayrelative to the Brexit announcement; rather investigates the spillover effects prior to and after the decision of the UK’ EU referendum.

3. Methodology and data
To properly measure the risk spillovers among UK and European CDS spreads, we conduct a three-stage empirical methodology. First, we analyze the behaviors of UK and European CDS spreads over Brexit via a novel econometric technique developed by Phillips et al. (2013), dubbed the generalized form of the SADF (GSADF). This technique is suited to capture the stable- and bubble-periods in time series. Second, we analyze the descriptive statistics of the conditional variances, and search for preliminary evidence of the volatility process of CDS spreads for each country by utilizing an ARMA-FIGARACH skewed Student-t distribution. Third, we investigate the total and directional volatility spillovers across the underlined CDS markets following the Diebold and Yilmaz (2012)’s procedure (i.e., a generalized VAR variance decomposition).
3.1. The generalized SADF technique

To label periods of price explosivity, we use a new econometric method pioneered by Phillips and Yu (2011) and Phillips et al. (2011), and then extended in a generalized form of the sup Augmented Dickey Fuller (GSADF) by Phillips et al. (2013). The main consideration in defining explosive periods are controlling for structural breaks that may yield to the non-rejection of the unit-root hypothesis (Perron 1989). To resolve this problem, Gil-Alana (2003) assumed well known structural break dates in their examination, whereas Gil-Alana (2008) applied a residuals sum squared approach where a single structural break date is accounted for at an unknown time. This study recursively determines, via a flexible moving sample test procedure (GSADF test), periods where the lower bound of the fractional order exceeds unity (bubble periods), and subsequently return to levels below unity (stable periods), enabling us to adequately capture and date-stamp explosive periods. Briefly, this approach considers multiple structural breaks at unknown dates (Balcilar et al. 2015). Based on this method, bubbles are detected in a consistent manner even with smaller sample sizes (Phillips et al. 2013; Caspi et al. 2015).

The Phillips et al. (2013)'s test procedure performed throughout this research recursively implements an ADF-type regression test through a rolling window procedure.

Suppose the rolling interval starts with a fraction \(r_1 \) and ends with a fraction \(r_2 \) of the total number of observations, with the size of the window \(rw=r_2-r_1 \), then let:

\[
y_t = \mu + \delta y_{t-1} + \sum_{i=1}^{p} \phi^i y_{t-i} + \varepsilon_t (1)
\]

where \(\mu, \delta \) and \(\phi \) are the parameters to be estimated via OLS regression, and the usual \(H_0: \delta = 1 \) then tested against the right sided alternative \(H_1: \delta > 1 \). The number of observations under consideration is \(T_w = [r_1, T] \), where \([.]\) is the integer part. The ADF statistic corresponding to 1 is expressed by \(ADF^{r_1}_{r_2} \).

Phillips et al. (2013) proposed a backward sup ADF test where the end point of the subsample is fixed at a fraction \(r_2 \) of the whole sample and the window size is extended from the fraction \(r_0 \) to the fraction \(r_2 \). Thus, the backward sup ADF statistic is denoted as:

\[
SADF^{r_0}_{r_2}(r_0) = \sup_{r_1 \in [r_0, r_2]} ADF^{r_1}_{r_2} (2)
\]

The key reason behind using a sup ADF statistic is the fact that CDS price bubbles may collapse temporarily, and thus the standard unit root tests may have a restricted power in capturing bubble-periods (Caspi et al. 2015). In this context, Homm and Breitung (2012) claimed that the sup ADF test procedure seems suitable in bubble-detection purpose, especially when dealing with one or two bubble episodes.

The GSADF is constructed by re-testing the SADF test procedure for each \(r_2 \in [r_0, T] \). The GSADF can therefore be expressed as following:

\[
GSADF^{r_0} (r_0) = \sup_{r_2 \in [r_0, T]} SADF^{r_0}_{r_2}(r_0) (3)
\]

In brief, GSADF corresponds to a sequence of ADF statistics. The supremum value of this sequence (SADF) is utilized to test the null hypotheses of unit root against its right-tailed (mildly explosive) alternative while comparing it to its corresponding critical values. Generally speaking, the testing procedure discussed above is pursued to test whether UK and European CDS spreads exhibit bubble
patterns within a specific sample. When we note significant ADF statistics (i.e., \(\delta_{r_2, \tau_2} > 1 \)), we can deduce that there exist explosive (or bubble) periods. If the null hypothesis of no bubbles is rejected, the Phillips et al. (2013)’s test allows to date-stamping the beginning and the ending points of the explosive episodes. The starting point of a bubble corresponds to the date, expressed as \(T_r \) at which the backward sup ADF sequence crosses the critical value from below. Likewise, the ending point of a bubble is also defined as the date, written as \(T_r \) at which the backward sup ADF sequence crosses the critical value but from above. Ultimately, based on GSADF, the explosive periods can be denoted as:

\[
\begin{align*}
\hat{r}_r &= \inf_{r \in [r_0, 1]} \left\{ r_2 : \text{BSADF}_{r_2} > c \nu_{r_2}^{r_t} \right\} \quad (4) \\
\hat{r}_r &= \inf_{r \in [r_0, 1]} \left\{ r_2 : \text{BSADF}_{r_2} > c \nu_{r_2}^{r_t} \right\} \quad (5)
\end{align*}
\]

where \(c \nu_{r_2}^{r_t} \) is the 100(1− \(\beta_t \))\% critical value of the sup ADF statistic based on \([T_{r_2}]\) observations. We set \(\beta_t \) to a constant value, 5%, as opposed to letting \(\beta_t \rightarrow 0 \) as \(T \rightarrow 0 \). Note that the BSADF \(\langle r_0 \rangle \) for \(r_2 \in [r_0, 1] \) is the backward sup ADF statistic that relates to the GSADF statistic, and denoted as:

\[
\text{GSADF}(r_0) = \sup_{r_2 \in [r_0, 1]} \left\{ \text{BSADF}_{r_2} \right\} \quad (6)
\]

3.2. The conditional variance process via ARMA-FIGARCH model

The long memory and fractional integration methods have received a particular attention in recent years as the power of familiar tests for unit roots are decreasing. This paper focuses on the long memory aspects of the cyclical component of CDS markets in turbulent times via ARMA-FIGARCH. This technique is jointly based on the Fractionally Integrated ARCH (FIGARCH) model (Baillie et al., 1996), and an autoregressive fractionally integrated moving average model (ARFIMA) to account for both short and long term persistence (Sowell 1992). Although the short-run behavior of the variable is modeled via the ARMA parameters, the fractional differencing parameter \(d \) accounts for the long-run dependence (Bollerslev and Mikkelsen 1996).

Previous empirical works have generally claimed that fractionally integrated models to fit the data better than standard volatility models including GARCH (p,q), Exponential-GARCH(p,q), and Integrated-GARCH(p,q). Accurately, a fractionally integrated process in ARMA and GARCH (in particular, ARFIMA-FIGARCH) is more suited for adequately modeling the behaviors of financial variables. The advantage of this model is that it enables a finite persistence of the return and volatility shocks. The econometric specification of the ARFIMA \((p_m,d_m,q_m) \)-FIGARCH\((p_v,d_v,q_v) \) that will be fitted to each CDS return series can be expressed as follows:

\[
\begin{align*}
\phi(L)(1-L)^{d_m} (r_t - \mu) &= \beta(L) \epsilon_t \quad (7) \\
\epsilon_t &= n_t \sqrt{h_t} \\
\alpha(L)(1-L)^{d_v} \epsilon_t^2 &= \omega \left(1 - \theta(L) \right) v_t \quad (8)
\end{align*}
\]
where \(d_m \) and \(d_v \) capture the presence of long memory in the conditional mean and variance of the series, respectively. \(v_t \) represents the skedastic innovation as measured by \(\varepsilon_t^2 - h_t \). \(\mu \) corresponds to the constant term; \(\alpha \) and \(\beta \) refer to the ARCH and GARCH terms, respectively.

This conducted empirical approach takes into account the long memory in both the mean and variance dynamics of a financial time series. In other words, it helps to test long memory against structural breaks in order to see if the long memory captured in the CDS returns is real or is owing to the occurrence of structural breaks.

3.3. Measuring the volatility spillover effects

A further step consists of incorporating the conditional volatility series to a generalized VAR framework (Diebold and Yilmaz 2012). This spillover investigation covers four aspects. First, we determine the total volatility spillover index which measures what proportion of the volatility forecast error variances comes from spillovers. Let:

\[
x_t = \phi x_{t-1} + \varepsilon_t \tag{9}
\]

where \(x_t = (x_{1t}, x_{2t}) \) and \(\phi \) is a 2x2 parameter matrix; \(x \) will be considered as a vector of CDS volatilities.

By covariance stationarity, the moving average representation of the VAR is denoted:

\[
x_t = \Theta(L)\varepsilon_t \tag{10}
\]

where \(\Theta(L) = (I - \phi L)^{-1} \).

Second, we consider 1-step-ahead forecasting. The optimal forecast is given by:

\[
x_{t+1,t} = \phi x_t \tag{11}
\]

with corresponding 1-step-ahead error vector:

\[
e_{t+1} = x_{t+1} - x_{t+1,t} = A_0 \mu_{t+1} = \begin{bmatrix} a_{0,11} & a_{0,12} \\ a_{0,21} & a_{0,22} \end{bmatrix} \begin{bmatrix} \mu_{1,t+1} \\ \mu_{2,t+1} \end{bmatrix} \tag{12}
\]

In particular, the variance of the 1-step-ahead error in forecasting \(x_{1,t} \), is \(a_{0,11}^2 + a_{0,12}^2 \), and the variance of the 1-step-ahead error in forecasting \(x_{2,t} \), is \(a_{0,21}^2 + a_{0,22}^2 \).

There exist two possible spillovers in our example: \(x_{1,t} \) shocks that exert influence on the forecast error variance of \(x_{2,t} \) (with contribution \(a_{0,21}^2 \)), and \(x_{2,t} \) shocks that affect the forecast error variance of \(x_{1,t} \) (with contribution \(a_{0,12}^2 \)). Hence the total spillover effect is equal to \(a_{0,12}^2 + a_{0,21}^2 \). Having outlined the Spillover Index in a first-order two-variable VAR, it is easier to generalize this to a dynamic framework for a \(p^{th} \)-order N-variable case.

Third, we quantify the net directional volatility spillover indices for CDS, in order to identify which of the considered countries are net volatility importers, and which of them are stress volatility exporters. At this stage, we decompose the total spillover index for CDS volatilities into all of the forecast error variance components for variable \(i \) coming from shocks to variable \(j \), for all \(i \) and \(j \).
Fourth, a volatility spillover plots are constructed from the rolling-samples of the spillover indices to examine the extent and the nature of volatility spillover variation over time.

3.4. Data

This study examines the volatility transmission between UK and four European (France, Germany, Italy and Spain) CDS spreads over the period from January 01, 2014 to July 28, 2016, which includes 136 weeks, particularly surrounding the Brexit turmoil. Even though there is no clear consensus in the existing literature on which measure or indicator effectively represents sovereign default risk, the fact that CDS spreads reflect the expectations on the extent of the creditworthiness of sovereign economies is meaningful for our task as it will help us better understand the differences in individual countries exposures to risk spillovers under uncertain markets circumstances. Given this consideration, we use CDSs as a credit risk measure. We look at changes in CDS spreads rather than levels (Campbell 1996; Blanco et al. 2005; Ang et al. 2006) because we want to investigate the transmission of “news” or “information” about credit risks. The choice of this period is motivated by the degree of attention given to Brexit via Google Trends and social networking (in particular, Twitter). Before 2014, the interest to Brexit was negligible. However, millions of internet users start since January 2014 to interact with search engines, creating valuable sources of data regarding the information related to “Brexit” (see Figure A, Appendix). To investigate the costs of uncertainty over Brexit, this paper introduces the concept of internet concern as quantitative measure to test whether extracting public moods related to Brexit exerts a significant influence on UK and European CDSs. Recent literature evaluated how online information predicts Grexit (for example, Mitchell et al. 2012, Bouoiyour and Selmi 2015, 2016, among others). Millions of users daily interact with search engines, creating valuable sources of data with respect to various aspects of the world. In brief, the Internet search becomes day-to-day a potential tie helping to analyze the investors’ behaviors in times of stress. We prefer use weekly instead of daily data, given that we hoped to properly characterize the underlying dependence structure. Daily or high-frequency data may be influenced by drifts and noise that could mask or did not efficaciously and properly reflect the dynamic co-movements between the investigated variables. In short, the weekly data is less sensitive to the excessive fluctuations of time series compared to the daily data, and this helps focus more on the trend rather than its sensitivity. The data of UK, German, French, Italian and Spanish CDS were collected from Datastream database. The investigated CDS spreads were transformed by taking natural logarithms to correct for heteroskedasticity and dimensional differences. Descriptive statistics for return series (first logarithmic differences) are reported in Table 1. We note that UK CDS spreads have the most sizeable volatility. All-time series display positive skewness (except Italy) and excess kurtosis (above 3). Hence, most CDS indexes have flatter tails than the normal distribution. The Jarque-Bera test statistic rejects the hypothesis of normality for all cases. Before quantifying the risk spillovers among the focal CDSs markets, we first test for a unit root in UK and European CDS indexes series using familiar tests including the Augmented Dickey-Fuller (1979), the Phillips-Perron (1988), and the Kwiatkowski et al. (1992) unit root tests. The results displayed in Table 1 indicate that we cannot reject the null hypothesis of a unit for none of the series at the 1% significance level.
Table 1. Some statistical properties of the CDS returns

<table>
<thead>
<tr>
<th></th>
<th>UK</th>
<th>France</th>
<th>Germany</th>
<th>Italy</th>
<th>Spain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>-0.0010</td>
<td>-0.0002</td>
<td>0.0006</td>
<td>-0.0001</td>
<td>-0.0011</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.0926</td>
<td>0.0488</td>
<td>0.0721</td>
<td>0.1978</td>
<td>0.0917</td>
</tr>
<tr>
<td>Skew</td>
<td>1.3358</td>
<td>0.4971</td>
<td>1.2229</td>
<td>-3.4612</td>
<td>0.5504</td>
</tr>
<tr>
<td>Kurt</td>
<td>27.927</td>
<td>5.6098</td>
<td>11.555</td>
<td>13.452</td>
<td>9.2572</td>
</tr>
<tr>
<td>J-B</td>
<td>513.42</td>
<td>647.95</td>
<td>505.07</td>
<td>438.29</td>
<td>711.23</td>
</tr>
<tr>
<td>KPSS</td>
<td>0.321+</td>
<td>0.186+</td>
<td>0.166+</td>
<td>0.218+</td>
<td>0.207+</td>
</tr>
</tbody>
</table>

Notes: ADF, PP and KPSS are the empirical statistics of the Augmented Dickey-Fuller (1979), and the Phillips-Perron (1988) unit root tests, and the Kwiatkowski et al. (1992) stationarity test, respectively. + denotes the rejection of the null hypotheses of non-stationarity at the 1% significance.

4. Empirical results

4.1. Test of explosivity

The GSADF results are graphically displayed in Figure 1. Remarkably, the CDS spreads have continued to rise from January 2014 with the growing attention given to Brexit, reaching its highest level in the day relative to the announcement of Brexit (i.e., June 23rd, 2016). The Brexit event sparked the most turbulent times for bond and CDS markets, with the UK and European bonds trending widely downward (Bouoiyour and Selmi 2016). In addition, the prices of government bonds increased substantially with the deep anxiety over the UK and European economic prospects, threatening the credit rating. Indeed, the Brexit fears feed back into the financial sector by significantly impacting balance sheets of financial institutions and thereby harming banks’ ratings. In fact, just a week after the Brexit, UK has been stripped of its top AAA rating. Similarly, the EU’s rating was cut from AA+ to AA. Commenting on the reason for the change, the credit agency Standard & Poor’s warned of the economic, fiscal and constitutional risks UK and EU’s bloc face with the Brexit vote to leave Europe. The announcement of Brexit raised the CDS spreads for all of the sampled groups of countries, especially for UK, Italy and Spain. This bubble period identified for all the markets should be interpreted with caution. The fact that the cost of purchasing protection against a default on sovereign debts jumped markedly in these markets suggest that investors and traders wary of the ability of these countries to mitigate the harmful Brexit costs and to service their debts in the face of uncertainty coupled with the global slowdown. Also remarkable is the fact that CDS spreads on the Germany and France are elevated in the day of Brexit vote but then fell, may reflect that these countries were be seen after the event as fiscally sound. However, for UK and Italy, the fact that these spreads have continued to increase or to be volatile (as is the case of Spain) does not bode well for these countries. This means that investors’ concerns about dealing with the uncertainty over the Brexit costs continue to persist. In brief and based on GSADF findings, we can deduce that during times of panic where the viability of most
investments are damaged, and CDS are strongly influenced, diversifying away risk across countries does not appear beneficial.

Figure 1. A detection of bubble-periods in UK and European CDS prices
4.2. The volatility spillovers across UK and European CDS spreads

The results derived from ARMA-FIGARCH model are reported in Table 2. A long memory process in the cyclical components is found for all the CDSs studied. The LM parameters (μ_v and d_m) in the conditional volatility processes are all positive and highly significant. Their relatively large values suggest that these CDS’ volatility processes for all the countries under study display little tendency to revert towards the volatility mean. Furthermore, we show that the estimated ARCH and GARCH coefficients (α and β) are significant and their sums (i.e., the duration of persistence) are close or superior to one. This means that the volatility of CDS for UK and the European countries over Brexit period tend towards a long memory process.
Table 2. The ARMA-FIGARCH with skew t estimates

<table>
<thead>
<tr>
<th></th>
<th>UK</th>
<th>France</th>
<th>Germany</th>
<th>Italy</th>
<th>Spain</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_m</td>
<td>0.0034***</td>
<td>0.0612***</td>
<td>-0.0453***</td>
<td>-0.0289*</td>
<td>-0.0001</td>
</tr>
<tr>
<td>p-values</td>
<td>0.0000</td>
<td>0.0003</td>
<td>0.0000</td>
<td>0.0678</td>
<td>0.3415</td>
</tr>
<tr>
<td>AR(1)</td>
<td>0.9067***</td>
<td>0.9743***</td>
<td>0.3474*</td>
<td>0.0522**</td>
<td>0.1567**</td>
</tr>
<tr>
<td>p-values</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0512</td>
<td>0.0013</td>
<td>0.0029</td>
</tr>
<tr>
<td>MA(1)</td>
<td>-0.8944***</td>
<td>-1.0000***</td>
<td>-0.2721</td>
<td>0.0513</td>
<td>-0.2870</td>
</tr>
<tr>
<td>p-values</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.5717</td>
<td>0.9055</td>
<td>0.2478</td>
</tr>
<tr>
<td>μ_v</td>
<td>1.9452***</td>
<td>1.4052</td>
<td>1.7913</td>
<td>1.8303</td>
<td>1.7923</td>
</tr>
<tr>
<td>p-values</td>
<td>0.0000</td>
<td>0.3425</td>
<td>0.1916</td>
<td>0.7023</td>
<td>0.5595</td>
</tr>
<tr>
<td>σ_m</td>
<td>0.5123***</td>
<td>0.4310***</td>
<td>0.4672**</td>
<td>0.4069</td>
<td>0.2984**</td>
</tr>
<tr>
<td>p-values</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0046</td>
<td>0.3150</td>
<td>0.0037</td>
</tr>
<tr>
<td>α</td>
<td>0.1205***</td>
<td>0.1182***</td>
<td>0.2038</td>
<td>0.0391</td>
<td>0.1352</td>
</tr>
<tr>
<td>p-values</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.1628</td>
<td>0.8347</td>
<td>0.7470</td>
</tr>
<tr>
<td>β</td>
<td>0.8729***</td>
<td>0.6509*</td>
<td>0.6921***</td>
<td>0.6072</td>
<td>0.6990*</td>
</tr>
<tr>
<td>p-values</td>
<td>0.0000</td>
<td>0.0544</td>
<td>0.0000</td>
<td>0.5816</td>
<td>0.0109</td>
</tr>
<tr>
<td>σ_v</td>
<td>-0.0310</td>
<td>0.0098</td>
<td>0.0835</td>
<td>-0.0339</td>
<td>0.0869</td>
</tr>
<tr>
<td>p-values</td>
<td>0.2493</td>
<td>0.8706</td>
<td>0.1462</td>
<td>0.4693</td>
<td>0.1500</td>
</tr>
</tbody>
</table>

Notes: This table summarizes the quasi-maximum likelihood estimation of the ARFIMA-FIGARCH class model for the weekly CDS returns. μ_m, μ_v, σ_m, and σ_v refer to the constant terms and LM parameters of the mean and variance equations, respectively. α and β***, ** and * imply significance at the 1%, 5% and 10%, respectively. With respect to the results of AIC and BIC information criteria, we select one lag for all the specifications.

Table 3 provides an approximate “input-output” decomposition of the total volatility spillover index. In particular, based on the study of Diebold and Yilmaz (2012), we decompose the spillover index into all of the forecast error variance components for variable i coming from shocks to variable j, for all i and j. The ijth entry is the estimated contribution to the forecast variance of market i, resulting from innovations to market j. The sum of variances in a row (column), excluding the contribution to its own volatilities (diagonal variances), indicates the impact on the volatilities of other CDS markets. The last row in the table is the contribution to the volatilities of all markets from this particular market. We show that for total volatility spillovers to others (128.7%) is stronger than total volatility spillovers from others (121.1%). Remarkably, UK, Italy and Spain (in this order) are the net volatility transmitters (i.e., risk spillovers to others). Specifically, these CDS markets contribute by around 46.9%, 39.8% and 27.2% of the forecast error variances, respectively, to the French and German CDSs. Nevertheless the volatility spillovers from others appear stronger for Germany, (51.4%) and France (45.6%).
Table 3. Volatility spillover among UK and European CDS markets (in %)

<table>
<thead>
<tr>
<th></th>
<th>UK</th>
<th>France</th>
<th>Germany</th>
<th>Italy</th>
<th>Spain</th>
<th>Contribution from others</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>76.3</td>
<td>13.1</td>
<td>9.6</td>
<td>1.9</td>
<td>1.3</td>
<td>8.2</td>
</tr>
<tr>
<td>France</td>
<td>0.8</td>
<td>59.5</td>
<td>1.0</td>
<td>0.6</td>
<td>0.9</td>
<td>45.6</td>
</tr>
<tr>
<td>Germany</td>
<td>0.5</td>
<td>1.4</td>
<td>69.6</td>
<td>0.9</td>
<td>1.7</td>
<td>51.4</td>
</tr>
<tr>
<td>Italy</td>
<td>4.8</td>
<td>10.2</td>
<td>3.4</td>
<td>72.1</td>
<td>2.7</td>
<td>6.8</td>
</tr>
<tr>
<td>Spain</td>
<td>2.7</td>
<td>9.8</td>
<td>5.2</td>
<td>2.5</td>
<td>76.8</td>
<td>9.1</td>
</tr>
<tr>
<td>Contribution to others</td>
<td>46.9</td>
<td>6.7</td>
<td>8.1</td>
<td>39.8</td>
<td>27.2</td>
<td>121.1</td>
</tr>
<tr>
<td>Contribution including own</td>
<td>113.2</td>
<td>66.2</td>
<td>77.7</td>
<td>101.9</td>
<td>104.0</td>
<td>12.1</td>
</tr>
</tbody>
</table>

Notes: The values are calculated from variance decompositions based on 1-step-ahead forecasts. The optimal lag length for the VAR models is 3 determined by Bayesian Information Criterion.

Figure 2 depicts the volatility spillover between the UK and the European CDS markets. The spillover from the UK and Germany markets to the rest of European markets became more and more evident after the Brexit. In particular, the volatilities of the UK and German markets were reinforced by the UK’s European Union membership referendum on 23 June 2016. The other markets were also very volatile, and their massive volatilities were transmitted back to the UK market but with less importance. This highlights a financial market fragmentation within the Eurozone between more distressed and less distressed Eurozone countries. Since CDS volatility spillovers is viewed as potential proxy for risk, there are lessons for both individual and institutional investors in terms of carefully assessing trading strategies and framing regulatory policies. The information drawn from this figure is important for policy-makers in the sample countries for understanding the markets’ co-movements and designing appropriate policies to locate possible sources of imbalances and propagation channels in the financial system.

Figure 2. The directional CDS volatility spillovers by country
Then, we determine the “average net directional spillovers” which is the difference between the “contribution to others” and the “contribution from others”. This task permits to identify which from the investigated CDS markets seems the most influential in exporting volatilities to the other countries during the Brexit fallout. The results summarized in Table 4 confirm that with an average net directional return spillover of 38.7%, the UK CDS market appears the strongest transmitter of risk, followed by Italy (33%) and Spain (18.1%). This means that investors in UK, Italy and Spain wary more intensely of the ability of these countries to deal with the great uncertainty over the Brexit consequences and its implications for the performance of their markets and their economies. However, the French and the German CDS spreads –with negative volatility spillover indexes (-38.9% and -43.3%, respectively) – can be viewed as “potential net receivers”. These findings are of particular interest of both regulators and investors. Investors can enhance their hedging and portfolio diversification by exploiting its knowledge with respect the way the CDS risks over Brexit fears can be transmitted from one market to another.

Table 4. The average net directional volatility spillovers by country (in %)

<table>
<thead>
<tr>
<th></th>
<th>Contribution from others</th>
<th>Contribution to others</th>
<th>Average net directional spillover</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>8.2</td>
<td>46.9</td>
<td>38.7</td>
</tr>
<tr>
<td>France</td>
<td>45.6</td>
<td>6.7</td>
<td>-38.9</td>
</tr>
<tr>
<td>Germany</td>
<td>51.4</td>
<td>8.1</td>
<td>-43.3</td>
</tr>
<tr>
<td>Italy</td>
<td>6.8</td>
<td>39.8</td>
<td>33.0</td>
</tr>
<tr>
<td>Spain</td>
<td>9.1</td>
<td>27.2</td>
<td>18.1</td>
</tr>
</tbody>
</table>
To better understand how the uncertainty surrounding the Brexit affect the volatility spillovers across UK and European CDS markets, we tried to identify the structural breaks in volatility. To this end, we apply a multiple structural change models proposed by Bai and Perron (1998, 2003) to properly detect break points in volatility for each CDS market. Table 5 reports the break points in volatility for the five CDS markets over the entire period under study (i.e., from January 01, 2014 to July 28, 2016). We detect four, one, one, two and three break points in volatility for the CDS markets of UK, France, Germany, Italy and Spain, respectively, which suggests that a higher volatility market has more break points. Note that most of the break points happen in the post-Brexit period (after 23 June 2016), implying that the Brexit exerted a strong impact on UK and European CDS markets.

Table 5. Break points in volatility for UK and European CDS from January 01, 2014 to July 28, 2016

<table>
<thead>
<tr>
<th>Breaks</th>
<th>UK</th>
<th>France</th>
<th>Germany</th>
<th>Italy</th>
<th>Spain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16 June 16</td>
<td>30 June 16</td>
<td>7 July 2016</td>
<td>30 June 2016</td>
<td>9 June 2016</td>
</tr>
<tr>
<td>2</td>
<td>30 June 16</td>
<td>14 July 2016</td>
<td>7 July 2016</td>
<td>30 June 2016</td>
<td>9 June 2016</td>
</tr>
</tbody>
</table>

Notes: The break points are determined by the sequential L+1 breaks vs. L method of Bai and Perron (1998, 2003). Parameters of the break test are set as follows: Trimming 15%, Maximum breaks 5, and Significant level 5%. Statistics of the break test use the HAC covariance estimation, including pre-whitening with lag one, Quadratic-Spectral kernel, and Andrews bandwidth. The break test allows heterogeneous error distributions across breaks. The detailed estimates are available for readers upon request.

5. Robustness check

We carried out a series of robustness checks. First, we re-examine whether bubble periods can be detected in the prices of UK and European CDS regarding their past behaviors, and then the interdependence among CDS markets by replacing the overall CDS spreads by a sector-specific CDS. As companies have many financing needs and rely profoundly on banks and financial institutions, we expect that the financial sector in the countries studied would be harmfully influenced by the Brexit event. Hence, it may be important to evaluate if the considered CDSs often exhibit sharp build-ups during the referendum vote, and whether the net volatility transmitters remain the same when using Financials-related CDS. Second, to see whether our findings seem sensitive to the sample periods, we conduct the same steps ((1) testing for explosivity, (2) measuring the CDS volatility via ARMA-FIGARCH model and (3) following the Diebold and Yilmaz (2012)’s testing procedure to determine the directional volatility spillovers) but for a different period from January 01, 2015 to July, 28 2016. The results appear fairly robust to the use of an alternative CDS proxy and to changes in time periods. Using a generalized form of the sup Augmented Dickey Fuller proposed by Phillips et al. (2013), we usually detect bubble period from the end of June 2016 (i.e., post-Brexit vote). This holds

\(^2\)We thank the reviewer for bringing this critical point to our attention.

\(^3\)To keep the presentation simple, detailed results are available for readers upon request.
for all the countries under study. Also, we often show a significant risk spillover effects across UK and EU CDS markets over the period of increased Brexit fears. Although UK, Italy and Spain are viewed as stress transmitters, France and Germany appear as net risk receivers.

6. Conclusions

This study presents the first empirical evidence on the impact of uncertainty surrounding the Brexit event on UK and European (France, Germany, Italy and Spain) CDS volatility spillovers. It explores the dynamic conditional volatility interdependence of the underlined CDS spreads during the period from January 01, 2014 to July 28, 2016 – marked by an increased attention to Brexit via social media. For empirical aim, the initial step consists of applying a recursive GSADF test suggested by Phillips et al. (2013). This test enables to date-stamp the temporarily collapsing bubble periods that may characterize the behavior of UK and European CDS indexes. Then and to comprehend the dynamics and strength of volatility spillovers across CDS markets, we construct a volatility spillover index using an ARFIMA-FIGARCH and a generalized VAR variance decomposition. Ultimately, we evaluate the net directional volatility spillovers to distinguish between the volatility recipients and the volatility senders. Interesting results were found:

(i) The prices of CDS across UK and Europe exhibit a significant explosivity regarding their past behaviors;

(ii) The uncertainty surrounding the UK’s EU membership referendum undermines the credit-worthiness in both UK and Europe (with less extent, France and Germany). While UK seems the most powerful “net transmitter of volatility”, followed by Italy and Spain, France and Germany are likely to be “stress receivers”.

It seems not easier to explain these heterogeneous outcomes since CDS contracts are relatively complex instruments due to the multiplicity of parameters that constituted part of the contractual arrangement (Brunnermeier et al. 2013). These parameters include, for instance, the types of market participants (hedge funds, Banks, asset managers, Fontana and Scheicher 2010), the size of the protection premium (Arora et al. 2012), the aggregate distribution of CDS market (i.e., whether the traded industries are cyclical or defensive, Benos et al. 2013) and the date from which any credit event is covered by the contract (Benos et al. 2013), among others.

But what appears intuitive is that the fears over Brexit feeds back into the financial sector by significantly influencing balance sheets of financial institutions and damaging banks’ ratings. With a financial sector in distress, the governments guarantees lose credibility if creditworthiness fell, exacerbating the volatility spillovers (Huang et al. 2009; Hammoudeh et al. 2011; De Bruyckere et al. 2012; Bouoiyour et al. 2016). In this way, the ability to trade credit risk in financial markets should help UK and EU regulators undertake preventive strategies to mitigate the volatility transmission from the UK and the peripheral Eurozone (Italy and Spain) to the rest of European countries. This requires an effective management of financial risks by ensuring adequate regulation, supervision, and surveillance, without ignoring the usefulness of cooperation and coordination across many regulatory levels (Caffagi and Miller 2013).

Last but not least, the market participants could evaluate hedging against the impact of future credit rating announcements in one country to the event bordering
countries. This information may be very useful and relevant for the construction of portfolios sensitive to sovereign credit risk. Also and given the growing importance of the CDS market, which is perceived as a good indicator of credit risk, these results may also be helpful for policymakers when formulating new capital adequacy frameworks for individual countries and portfolios in sovereign credit risk markets.
References

Appendix

Figure A. The attention to “Brexit” via Google Trends and Twitter from January 2014 to July 2016

Sources: The search queries index for keyword “Brexit” has been retrieved from Google Trends (http://www.google.com/trends/). Note that in twitter, #Brexit was associated with the British exit; only Hashtags (#) were available in twitter.