
HAL Id: hal-01736252
https://hal.science/hal-01736252

Submitted on 16 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cooperative Multi-Agent Approach for Computational
Systems of Systems Architecting

Teddy Bouziat, Stéphanie Combettes, Valérie Camps, Jérémy Boes

To cite this version:
Teddy Bouziat, Stéphanie Combettes, Valérie Camps, Jérémy Boes. Cooperative Multi-Agent Ap-
proach for Computational Systems of Systems Architecting. 9th International Conference on Agents
and Artificial Intelligence (ICAART 2017), Feb 2017, Porto, Portugal. pp. 174-181. �hal-01736252�

https://hal.science/hal-01736252
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18891

The contribution was presented at ICAART 2017 : http://www.icaart.org/?y=2017

To link to this article URL :
 http://dx.doi.org/10.5220/0006190101740181

To cite this version : Bouziat, Teddy and Combettes, Stéphanie and
Camps, Valérie and Boes, Jérémy Cooperative Multi-Agent Approach
for Computational Systems of Systems Architecting. (2017) In: 9th
International Conference on Agents and Artificial Intelligence
(ICAART 2017), 24 February 2017 - 26 February 2017 (Porto,
Portugal).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Cooperative Multi-agent Approach for Computational Systems of
Systems Architecting

Teddy Bouziat, Stephanie Combettes, Valerie Camps and Jeremy Boes

Institut de Recherche en Informatiques de Toulouse, University of Toulouse, 118 route de Narbonne, Toulouse, France

Keywords: Multi-agent Systems, Systems of Systems, Cooperation, Self-organizing Systems.

Abstract: This paper addresses the modeling and design of Systems of Systems (SoS). It presents and illustrates a

new generic model to describe formally such systems. This model is used to propose a SoS architecting

approach based on adaptive multi-agent systems. In this approach, each component system composing the

SoS uses a local cooperative decision process in order to interact with other systems and to collectively give

rise to a relevant overall function at the SoS level. The proposed model as well as the proposed approach are

instantiated with a simulated unmanned aerial vehicle scenario and compared with another approach dealing

with collaboration between systems in a SoS.

1 INTRODUCTION

Complex systems are generally composed of many in-

terdependent subsystems that usually have been de-

signed independently from each other but that are

linked together to fulfill an overall goal (Jamshidi,

2008). For example, in car manufacturing, a subsys-

tem can be used to construct wheels, another to con-

struct the engine and another one to gather the previ-

ous elements to produce a car. Generally, all of these

systems are plunged into a dynamic and opened en-

vironment. For example, a subsystem to construct

frames could join the existing system of systems. In

a general way, subsystems and the “global” system

have to dynamically adapt the entire architecture to

propose the best solution.

To face this complexity, current research on SoS

focuses on a large variety of problems to develop new

methods of engineering or architecting. SoS archi-

tecting research focuses on how, in an efficient man-

ner, a SoS can have a dynamic, network-centric and

collaborative architecture (Jamshidi, 2008). This pa-

per presents first a new model formalizing SoS, and

secondly an adaptive multi-agent approach for imple-

menting SoS, which is based on cooperation between

component systems.

Section 1 contains a general introduction to SoS

and SoS architecting. Section 2 offers an overview of

architecting methodologies based on ABM and col-

laboration. Section 3 describes SApHESIA model

(Sos Architecting HEuristic SImulAtor), the model

we propose to implement. The cooperative decision

algorithm of each component system that enables dy-

namic and cooperative architecting is described in

Section 4. Section 5 contains an instantiation of

SApHESIA model and cooperative architecting on a

simulated case study as well as a comparison with

another approach called “satisficing game”. We con-

clude and plan some future works in section 6.

1.1 SoS Characteristics and

Architecting

Maier in (Maier, 1998) gives two main characteristics

that distinguish a SoS from a traditional complex sys-

tem: “A system-of-systems is an assemblage of com-

ponents which individually may be regarded as sys-

tems, and which possesses two additional properties:

(1) managerial independence of the components and

(2) operational independence of the components.”.

According to (Henshaw et al., 2013), a SoS is “an

integration of a finite number of constituent systems

which are independent and operable, and which are

networked together for a period of time to achieve a

certain higher goal”.

More recently, these widely accepted characteris-

tics have been extended by Firesmith in (Firesmith,

2010) : “a SoS is a particular kind of system where

each constituent tends to be: (1) managerial inde-

pendent, (2) operationally independent, (3) physically

distributed, (4) heterogeneous and (5) reusable”.

Bouziat T., Combettes S., Camps V. and Boes J.

Cooperative Multi-agent Approach for Computational Systems of Systems Architecting.

DOI: 10.5220/0006190101740181

Concerning architecting, SoSs tend to have dis-

tributed control and component systems tend to

choose by themselves to participate or not in a SoS

(i.e. they decide to consume resources to achieve

the goal of the SoS). In other words, SoS architect-

ing tends to be dynamic and focuses on interactions

between component systems. According to Trans-

Atlantic Research and Education Agenda in Systems

Of Systems (T-AREA-SOS) (Henshaw et al., 2013),

SoS architecture is one of the main problems for de-

veloping SoS. This assertion comes from the classical

system architecting that is really far from SoS archi-

tecting.

In SoS, the emphasis on SoS concerns interface ar-

chitecting to foster collaborative functions among in-

dependent systems and the concentration is on choos-

ing the right collection of systems satisfying the re-

quirements. So it can be noticed that contrary to clas-

sical systems, SoS architecting focuses on collabora-

tion between component systems to get the right or-

ganization.

2 RELATED WORK

ABM&S (Agent-Based Modeling & Simulation) are

powerful techniques to model and simulate SoS. In-

deed, Bonabeau in (Bonabeau, 2002) wrote that it is

best to use ABM when

“the interactions between the agents are complex,

nonlinear, discontinuous, or discrete (for example,

when the behavior of an agent can be altered dramat-

ically, even discontinuously, by other agents), [...] the

population is heterogeneous, when each individual is

(potentially) different, [...]; when the topology of the

interactions is heterogeneous and complex,[...] and

when the agents exhibit complex behavior, including

learning and adaptation.”

Thanks to these characteristics, ABM&S have

been used to study SoS and proposed new ways to

architecture them. Literature presents works on how

collaboration between components may lead to SoS

architecting solutions.

Collaborative Architecting. A collaborative for-

mation methodology for SoS is defined in (Caffall

and Michael, 2009). To model collaboration between

component systems, this methodology uses a global

social utility function for the SoS. Based on satisfic-

ing game theory (Stirling and Frost, 2005), this func-

tion enables to calculate the best options for the SoS

from component system preferences and interdepen-

dencies between them. To calculate its preferences,

each component system has two ‘personas’ or ‘roles’:

one based on selectability (i.e. the effectiveness of an

action) and the other one based on rejectability (inef-

ficiency of an action). An interdependence function

is computed from a praxeic network describing inter-

dependencies between systems. In this network, each

node represents how the systems personas will influ-

ence others systems personas. User of this method-

ology defines this praxeic network. This approach is

limited by the complexity of the praxeic network con-

struction. Indeed, designers have to define all inter-

dependencies between component systems which are

statics, problem dependents and difficult to define in

case of numerous systems (Stirling and Frost, 2005).

Agent-based Wave Model. The methodology

based on an agent-based wave model developed in

(Agarwal et al., 2014) couples a genetic algorithm,

fuzzy logic and negotiation between SoS and com-

ponent systems to propose new architecture of SoS

during time. In this model, a variable represents

the propensity for an agent to collaborate with the

SoS and other component systems. Then, the SoS

agent (representing the SoS) is used to negotiate the

collaboration between SoS and component systems.

For the genetic algorithm part, a chromosome is used

as a representation of the current SoS architecture.

Then, a fitness function defined by a fuzzy assessor

is able to propose and to rate new chromosomes

(so new SoS architectures). Several limitations

come from the methodologies used. First, the use of

genetic algorithm leads to the construction of a fitness

function that is problem-dependent and needs to be

designed. Moreover, if the use of fuzzy assessor leads

to the definition of the fitness function, and if this

latter is not relevant, then the proposed architecture

is also irrelevant. Finally, the use of a SoS agent

to centralize the collaboration is a limitation too.

Indeed, the use of a SoS agent is incompatible with

the simulation of virtual and collaborative SoS.

3 SApHESIA MODEL

To compensate these limitations (the construction of a

fitness function, the design of a praxeic network or the

need of a SoS agent to negotiate collaboration), our

aim is to propose a new architecting approach based

on cooperation (section 4). Before that, we first pro-

pose a new SoS model enabling to model more ex-

pressive problems than existing SoS models ((Ache-

son et al., 2012) and (Baldwin and Sauser, 2009)). In-

deed, these models do not enable to take into account

the concept of environment of a SoS. Furthermore,

they do not consider time and do not enable model-

ing of interdependence between actions of component

systems. Thus, this new model will enable to com-

pute existing architecture approaches as well as the

one we propose: (1) compare them in the same man-

ner and (2) study interdependence of actions and time

problematics (it will be treated in future work). For

instance, we introduce the concept of resource which

enables to model the UAV application presented in

section 5 or any kind of SoS example where resources

are needed. More generally, resource is a concept

that enables to model interdependence between com-

ponent systems. In a few words, if a component sys-

tem may produce a resource that is needed by another

component system, an interesting problematic of in-

terdependence between these two component systems

can be studied. In this section, we describe the SApH-

ESIA model used to represent a SoS, its components

and its environment. The SApHESIA is made of three

models: the component system model, the SoS model

and the environment model, which is the frame in

which the SoS evolves. Let us hereafter clarify these

three models.

3.1 Component System Model

A component system is the smallest part of a SoS (it

represents the second S of SoS). Formally, a compo-

nent system Si is defined as Si = {F,R,G,L} where:

• F = {F1, ...,Fm} is a set of functionalities;

• R = {R1, ...,Rn} is a set of resources;

• G = {G1, ...,Gp} is a set of goals;

• L = {L1, ...,Lq} is a set of links with others com-

ponent systems.

A resource Ri is a structure Ri = {type :

String,quantity : Float} which represents passive el-

ements in the SoS (i.e. which has no effector on the

environment or on the SoS itself). For example, if a

component system is a car manufacturer, a resource

can be R = {car engine,76}, meaning that this man-

ufacturer owns 76 car engines.

A functionality is an effector on the environment

or on the SoS itself. It enables to give operational

independence to the component system. The func-

tionality can affect: the resources, the state and/or the

links of a component system. A functionality F is de-

fined as a triplet : F : { f , t, p} where f is the function

of F defined as: f : Conditions→ E f f ects; t is the

execution time of F and p ∈ [0,1] is the performance

of F (it represents the probability of F to succeed).

For f to be executed, Conditions must be fulfilled

and after its execution, E f f ects are applied on the

SoS and/or the environment. Conditions and E f f ects

can concern (i) a certain quantity of resources; (ii) the

existence of a link between two component systems

and (iii) the existence of a component system.

For example, if a component system is a car

manufacturer, a functionality F may be defined

as F : {{wheel,4},{car engine,1},{ f rame,1}} →
{{car,1},50,0.99}. Thus, F models an effector of

a car manufacturer on itself. It represents its ability to

produce one car if it owns four wheels, one car engine

and one frame. The duration of the process is 50 days

and the probability to succeed is 99 %.

A goal is a special state that a component sys-

tem tries to reach. It enables to give the manage-

rial independence to this component system and may

represent the fact ‘to own a certain quantity of a re-

source’ or ‘to be linked to another component sys-

tem’. Thus, a goal can be defined in two distinct ways.

The first one GR = {type : String,value : Float,kind :

{=, 6=}, p : Integer} expresses that a component sys-

tem tries to equal or unequal (with kind enumerable

variable) a certain resource type to the value value

with a priority p. The second one GL = {S j} ex-

presses that a component system tries to add a link

with another component system S j. A goal can also

express the deletion of a link: GL = {¬S j}.
In the car manufacturer example, the production

of 90 cars with a priority equals to 5 is defined with

the following goal: GR = {car,90,=,5}.
A link is an oriented association between two

component systems enabling to represent the acquain-

tance of a component system with another one. In

the following example, it enables the component sys-

tem S1 to share and to exchange resources with S2:

L = {S1 → S2}. The links of a component system

can evolve during time as a functionality can cre-

ate/destruct links between component systems as in-

dicated in the functionality paragraph.

3.2 SoS Model

A SoS is defined as SoS = {S ,G} where S is a set

of component systems and G is a set of goals of the

component systems of S . G represents the high-level

goals of the SoS : SoS = {{S1,S2,S3},{GR}}. G can

be a (sub-)set of the goals of the component systems

of the SoS.

3.3 Environment Model

The environment of a SoS is the frame in which the

SoS evolves. It represents rules (physical, economic,

social...) and the other entities that do not belong to

the SoS; in others words, it is all but the SoS and also

the main entity the SoS interacts with. The environ-

ment contains mainly rules and entities.

Formally, an environment is defined as E =
{E,Rules} where E is a set of entities and Rules is

a set of rules.

3.3.1 Entity Model

An entity is an active independent object that is a part

of the environment. It is able to affect the environment

or the SoS itself. It owns functionalities, resources

and goals. Ei = {F,R,G,L} where:

• F = {F1, ...,Fm} is a set of functionalities;

• R = {R1, ...,Rn} is a set of resources;

• G = {G1, ...,Gp} is a set of goals;

• L = {L1, ...,Lq} is a set of links with other entities

or component systems of the SoS.

It is important to notice that an entity can be linked

to a component system or to another entity. In the

example of a car manufacturer and its suppliers as a

SoS, an entity could be a car manufacturer concurrent.

This concurrent can be linked to the same engine or

car supplier (link between entity and other component

system) or to others entities representing other suppli-

ers outside the SoS (link between entities).

3.3.2 Rule Model

A rule represents the frame in which the SoS evolves.

It is composed of conditions and effects. It permits

to model how the environment reacts when it inter-

acts with the SoS: rule = {Conditions→ E f f ects}
As for functionality, a rule needs conditions to be ful-

filled to apply effects. The main difference between a

functionality and a rule is that a rule can affect all the

entities in the environment or all component systems

in the SoS. A rule acts as a functionality that is able

to apply on the entire world. For example, if the de-

signer wants to model gravity, a rule is a good way to

do it. Considering a car manufacturer and its suppliers

as a SoS, the following rule could be defined:

income tax = {S1.R(
′Rev′)< 1000

→
S1.R(

′Rev′) = S1.R(
′Rev′)×0.9}

It models a simple tax on its car selling. income tax

is applied on S1 (which is the car manufacturer) on its

resource ‘Rev’ (revenue). When its resource ‘Rev’ is

higher than 1000 then 10 % of the resource ‘Rev’ is

subtracted.

With all these elements, SApHESIA model is

generic and expressive enough to model a large va-

riety of problems (economical, transport,...). Each

component system has a synchronized view of the

world in the SoS and it may join or leave the SoS

as desired. Moreover, it is easily computable and

its genericity enables to focus on generic architecting

problems such as dynamic evolution of interactions

between component systems and emergence. Let us

note that the presence of the model of the environ-

ment enables to take into account the possible dynam-

icity of the environment. For example, the creation of

concurrent as entities in the car manufacturer exam-

ple enable to study the impact of an hostile dynamic

environment.

4 COOPERATIVE SOS

ARCHITECTURE APPROACH

To provide a new decentralized and generic SoS ar-

chitecting methodology, we propose a decentralized

decision algorithm that uses cooperation as a social

behavior between agents (Capera et al., 2003). It is

based on the AMAS (Adaptive Multi-Agent System)

approach. This approach enables to develop complex

systems where the global function is not implemented

in the parts of the system. More precisely, the AMAS

approach focuses on the design of multi-agent system

that uses self-organization to make the global func-

tion emerge, and to make the agents adapt themselves

to the environment changes. In other words, the be-

haviors of each agent will lead to change the organi-

zation (or architecture) of the multi-agent system and

to the emergence of the overall function of the system.

To this emergence drive in an efficient way, agents use

the concept of cooperation between them and their en-

vironment. The cooperation of an agent is the social

attitude that make agent do help other agents (itself in-

cluded) to fulfill its goals. Thus an agent must choose

the action that is the most helpful for the other and for

it. The best cooperative action is chosen according to

the current difficulty of agents through a metric called

the criticality explained in the next section.

4.1 The Criticality: Metric of

Cooperation

We present a generic multi-agent evaluation metric

in order to know the criticality an agent is faced to.

This metric represents the distance between the cur-

rent state of an agent and the final state it tries to

reach. Basically, each agent tries to minimize its crit-

icality and the criticality of its neighbors. We use this

metric in SApHESIA to propose a cooperative deci-

sion algorithm for architecting SoS, each component

system being agentified. We propose to adapt this

metric using resources and goals as the current state

of a component system can be represented by its re-

sources and the state it tries to reach by its goals. To

be able to compare its own criticality with the criti-

cality of other component systems, each of them cal-

culates its criticality with the same following function

CSi
:

CSi
(t) =

∑G j∈Gi
(CG j

(t)⋆G j.priority)

∑G j∈Gi
(G j.priority)

with Si = {Fi,Ri,Gi,Li} and where CG j
(t) is the criti-

cality of the goal G j at time t. Criticality is calculated

with a sigmoid function and is always between 0 and

1. Then, even if agents have different priority scales

on goals, each agent has the same importance in term

of criticality. There is no risk that an agent becomes

always more critical than other because of bad priori-

ties on goals.

4.2 Cooperative Component System

Algorithm

The algorithm presented hereafter is based on critical-

ity comparison between agents. Here, an agent should

be seen as an autonomous entity able to perceive, to

decide and to act on the environment it evolves in and

consequently on others agents. Basically, each agent

compares its criticality with its neighborhood for each

of its available actions. Then, it chooses the action

that leads to the minimum of the maximum of the crit-

icality of its neighborhood. To do that, an agent A1

computes its own expected criticality as well as the

expected criticality of its neighborhood until a final

time t f (corresponding to the time it cannot use its

action anymore, by a lack of resource for example).

Then, A1 computes a set of actions called comparable

actions (noted F10% in algorithm 1) in order to find

an action (if this one exists) that leads to similar re-

sult in a quicker time and that minimize the criticality

maximum. This behavior leads to minimize the max-

imum of neighborhood criticality. Indeed, each agent

tends to “help” its neighborhood by choosing the ac-

tion that, in the worst case, causes the minimum raise

of criticality. More details are given in algorithms 1

and 2. In this version, agent has been replaced by

component system and action by functionality. In this

way, the reader can see the application of this algo-

rithm to SoS.

Let’s take S = {S1, ...,Sn} | n ∈N} where ∀i ∈ n,

Si = {Fi,Ri,Gi,Li} and ∀i∈ n,CSi
(t) is the criticality

of Si at time t

For more simplicity, the function E f f ect is not

described here. But basically, this function returns a

delta representing how the application of f will influ-

ence S j. It results that each component system tends

Algorithm 1: Cooperative component system Si deci-
sion.

forall the f ∈ Fi do

∆ f ←− /0 ;

t f ←− calculateFinalTime(f) ;

forall the S j ∈ Li do
C′S j

(t)←−

calculateExpectedCrit(S j, f) ;

∆ f S j←−C′Si
(t f)−C′S j

(t f) *Calculate

diff of criticality for neighbors* ;

∆ f ←− ∆ f ∪∆ f S j ;

end

end

Let’s define best f ∈ F such as

min
g∈Fi

(max
S j∈S

(∆gS j)) ∈ ∆best f
;

min∆←−min
g∈Fi

(max
S j∈S

(∆gS j)) *Choose f that

minimize the max of criticality*;

F10%←− {g ∈ F |max
S j∈S

(∆gS j)±10%×min∆} ;

forall the g ∈ F10% do

if tg << t f then
best f ←− g

t f ←− tg
end

end

to decrease the maximum of criticality of its neigh-

borhood. It is important to notice that the informa-

tion quantity exchanged between component systems

is low because they only need the criticalities and ex-

pected criticalities of their neighborhood to take their

decision.

5 APPLICATION: UAVs

(Stirling and Frost, 2005) present an application

where the UAVs attempt to avoid hazard, reach tar-

get and avoid losing communication from each other.

5.1 Problem Description

The six following points summarize the problem: (i)

The field of action consists of a grid divided into cells

such that each target and each hazard is contained in

one and only one cell. No cell may contain both a

target and a hazard; (ii) The vehicles move at con-

stant forward velocity but variable lateral velocity in

a three-abreast formation. The forward velocity is

cell per time unit. The lateral velocity is drawn from

the set cells per time unit, where negative signifies

a move ahead and to the left, zero a move straight

ahead, and positive a move ahead and to the right.

Each cell may be occupied by, at most, one vehicle;

(iii) Each vehicle is able to detect all targets and haz-

ards within a static distance of cells in the forward di-

rection from their current cells, with unlimited lateral

detection; (iv) If a vehicle enters a cell that contains

a target, the group scores one point; (v) If a vehicle

enters a cell that contains a hazard, the group loses

one point; (vi) The goal of this problem is to cross

the action field by avoiding hazards and crossing tar-

gets. This example is chosen for two main reasons.

First, UAV fleet can be considered as a SoS because

component systems (here the UAVs) have the charac-

teristics given in section 1.1: each UAV is manage-

rially and operationally independent, and physically

distributed. Even if UAVs are homogeneous, we de-

cided to model this example to compare our results

with the ones presented in (Stirling and Frost, 2005).

This paper presents satisficing game that is the basis

of the SoS collaboration formation heuristic presented

in (Caffall and Michael, 2009). Finally, our model

is more adequate than existing SoS models presented

in (Acheson et al., 2012) and (Baldwin and Sauser,

2009) because we have added the concept of resource

(section 3.1) which is essential to model UAV posi-

tion. Furthermore, the concept of environment has

been added to model more interesting models.

5.2 UAVs SApHESIA Model

We propose to model and simulate this problem with

SApHESIA as well as to solve it with the AMAS ap-

proach.

5.2.1 SoS and component system models

Each UAV is a component system containing the fol-

lowing resources:

• X , Y representing its position;

• CTX , CTY , CHX , CHY , CEX , CEY , representing the

positions of the closest target (CT), closest hazard

(CH) and closest empty (CE) cells;

• FieldO fView (named FOV) representing the

maximum distance an UAV can detect targets and

hazards.

Each UAV contains the following functionality:

• FX+{UAV.X 6= X +1}→ {{X ,1},{Y,1}};

• FX−{UAV.X 6= X +1}→ {{X ,−1},{Y,1}};

• FX0
{ /0}→ {{X ,0},{Y,1}}.

These functionalities represent respectively a move-

ment to the right, to the left and straight forward. As

we can see in the conditions of FX+ and FX− , the UAVs

cannot collide with each other.

Each UAV contains the following goals, rep-

resenting respectively the fact that an UAV tries

to avoid hazard, to reach targets and empty

cells. GHX
= {CHX ,X , 6=,1}, GHY

= {CHY ,Y, 6=
,1} GTX

= {CTX ,X ,=,2}, GTY
= {CTY ,Y,=,2}

GEX
= {CEX ,X ,=,1}, GEY

= {CEY ,Y,=,1} GX =
{UAV.X ,X , 6=,1}.

Each UAV has two links with the others and is able

to communicate with them.

The SoS is composed of the three UAVs: SoS =
{UAV1,UAV2,UAV3}.

5.2.2 Environment Model

In this simulation, there are three kinds of entities:

Hazard, Target and Empty cells. These entities are

passive (i.e. they do not have functionalities) and

static. They only contain their positions represented

by resources. Environment rules enable to update

UAVs resources such as ClosestTarget (named CT)

and ClosestHazard (named CH). We define the three

following rules in the environment:

Rule1: Detect the Closest Target,

Rule2: Detect the Closest Hazard,

Rule3: Detect the Closest Empty Cell.

Hereafter, we detail the Rule 1. First part of Rule 1

represents the Conditions (before the→) and the sec-

ond part the E f f ects (after the →). Rules 2 and 3

have similar structures.

Rule 1: Detect the Closest Target
√

(U.X−T.X)2 +(U.Y −T.Y)2 <U.CT
√

(U.X−T.X)2 +(U.Y −T.Y)2 <U.FOV

→
U.CTX = T.X

U.CTY = T.Y

U.CT =
√

(U.X−T.X)2 +(U.Y −T.Y)2

5.3 Results and Discussion

To compare effectiveness of our cooperative approach

with (Stirling and Frost, 2005), 100 simulations for 3

UAVs in different environments have been done. To

show the scalability of it, 3 other simulations are pre-

sented with respectively 3, 10 and 20 UAVs. Other

simulations with 5, 8 and 15 UAVs have been made

but are not presented in Table 2 because of a lack of

space.

For all simulations, each environment is created

with a probability of 0.1 for a target and 0.7 for a haz-

ard to appear. Table 1 shows the mean score of 100

Table 1: Results for 3-UAVs simulations (C: Cooperative,
S: Satisficing, O: Optimal).

C S O

Mean -1.54 1.44 2.95

Std deviation 3.17 4.62 2.58

Table 2: Simulation time for 3, 10 and 20 UAVs.

3-UAVs 10-UAVs 20-UAVs

Time (s) 4.44 9.91 18.08

simulations for each approach (cooperative and sat-

isficing) compared to the optimal. The optimal has

been calculated by searching the maximal score that

the 3 UAVs can reach for each simulation. The fol-

lowing parameters have been set for 3-UAVs simula-

tions: FieldO fView = 3, UAV1.X =−1, UAV2.X = 0

and UAV3.X = 2. Figure 1 shows initial position of

UAVs for 8-UAVs simulation. To show the scalability

of our approach, we present in table 2 the time dura-

tion of 3, 10 and 20 UAVs simulations.

Obtained results show that even if cooperative ap-

proach is competitive, satisficing algorithm seems to

be slightly closest to the optimal for 3 UAVs (Table 1).

This difference seems to come from that our approach

is less effective to prevent long-term difficulties. Nev-

ertheless, additional simulations with 3, 10 and 20

UAVs show the main advantages of our approach (Ta-

ble 2). Indeed, cooperation is a local heuristic ap-

proach more simple to implement than satisficing for

the four following reasons: (i) to construct praxeic

network, designers need to know all the interdepen-

dencies between all component systems before sim-

ulating this kind of application and it may be very

difficult to represent them; (ii) Computation of sat-

isficing global function is resolved with pearl belief

propagation that does not allowed cycles in praxeic

graph (Stirling and Frost, 2005) (i.e. retro action

loop); (iii) the cooperative approach is generic and

does not need global function to calculate satisfic-

ing solutions, so does not need to define a praxeic

network; (iv) the cooperation does not require global

knowledge on the problem, so the failure of a compo-

nent system does not imply recalculation of the solu-

tion. Figure 1 shows that the construction of praxeic

network for 8 (and also for 10, 15 and 20) is com-

plex because UAV interdependencies is hard to no-

Figure 1: Initial positions of 8-UAVs simulation.

Figure 2: Examples of optimal cooperative UAVs trajecto-
ries.

tice. Furthermore if praxeic network is successfully

constructed, this one will have cycles. For example,

UAV in (-1,1) has influences on (0,0) that has influ-

ences on (1,1) that has influences on (-1,1). These

cycles forbid to use pearl belief propagation in order

to solve the Bayesian network associated with praxeic

network. Moreover, times duration of 8, 10, 15 and 20

UAVs simulations (table 2) show that our methodol-

ogy is scalable. Indeed, time duration seems to evolve

in O(log(n)) with n the number of UAVs. Finally, in

satisficing approach, adding a new UAV will lead to

reconstruct the praxeic network so the global func-

tion. At the opposite, our approach enables to eas-

ily add or remove component systems during running

time because there is no need of praxeic graph update.

6 CONCLUSION

This paper proposes a new model to design SoS as

well as a new approach for SoS architecting based

on component system cooperation. We instantiated,

evaluated our approach to a UAV flight scenario and

compared it to satisficing games used in another col-

laborative approach for SoS architecting. Results of

the simulations show that our approach has compet-

itive results comparing to the satisficing one. More-

over, our approach goes through several limitations

such as the definition and the computation of a global

function during the design phase. Finally, last sim-

ulations with more UAVs show that our approach is

easily scalable and enables interdependencies cycles

that are really strong advantages for SoS architecting

evolution. Nevertheless, it seems that our cooperative

algorithm may be improved concerning prediction of

long-term difficulty through criticality. That is why

future work will investigate on this improvement.

REFERENCES

Acheson, P., Pape, L., Dagli, C., Kilicay-Ergin, N.,
Columbi, J., and Haris, K. (2012). Understanding
system of systems development using an agent- based
wave model. Procedia Computer Science, 12:21 – 30.
Complex Adaptive Systems 2012.

Agarwal, S., Pape, L., Kilicay-Ergin, N., and Dagli, C.
(2014). Multi-agent Based Architecture for Acknowl-
edged System of Systems. Procedia Computer Sci-
ence, 28:1–10.

Baldwin, W. and Sauser, B. (2009). Modeling the character-
istics of system of systems. 2009 IEEE International
Conference on System of Systems Engineering (SoSE).

Bonabeau, E. (2002). Agent-based modeling: methods and
techniques for simulating human systems. Proceed-
ings of the National Academy of Sciences, 99(suppl.
3):7280–7287.

Caffall, D. and Michael, J. (2009). System of Systems Col-
laborative Formation. Systems Journal, 3(3):385–401.

Capera, D., George, J., Gleizes, M., and Glize, P. (2003).
The AMAS theory for complex problem solving based
on self-organizing cooperative agents. Proceedings of
the Workshop on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises, WETICE, 2003-
January:383–388.

Firesmith, D. (2010). Profiling systems using the defining
characteristics of systems of systems (sos). Technical
Report CMU/SEI-2010-TN-001, Software Engineer-
ing Institute, Carnegie Mellon University, Pittsburgh,
PA.

Henshaw, M., Siemieniuch, C., Sinclair, M., Barot, V., Hen-
son, S., Ncube, C., Lim, S., Dogan, H., Jamshidi, M.,
and Delaurentis, D. (2013). The Systems of Systems
Engineering Strategic Research Agenda Systems of
Systems Engineering. (2).

Jamshidi, M. (2008). System of systems engineering - new
challenges for the 21st century. IEEE Aerospace and
Electronic Systems Magazine, 23(5):4–19.

Maier, M. (1998). Architecting principles for systems-of-
systems. Systems Engineering, 1(4):267–284.

Stirling, W. and Frost, R. (2005). Social utility functions-
part ii: applications. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Re-
views), 35(4):533–543.

