Rational solutions to the KPI equation of order 7 depending on 12 parameters

Abstract : We construct in this paper, rational solutions as a quotient of two determinants of order 2N = 14 and we obtain what we call solutions of order N = 7 to the Kadomtsev-Petviashvili equation (KPI) as a quotient of 2 polynomials of degree 112 in x, y and t depending on 12 parameters. The maximum of modulus of these solutions at order 7 is equal to 2(2N + 1) 2 = 450. We make the study of the patterns of their modulus in the plane (x, y) and their evolution according to time and parameters a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6. When all these parameters grow, triangle and ring structures are obtained.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [42 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01736228
Contributeur : Pierre Gaillard <>
Soumis le : vendredi 16 mars 2018 - 16:48:39
Dernière modification le : vendredi 8 juin 2018 - 14:50:07

Fichier

hal KPN=7V2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01736228, version 1

Collections

Citation

Pierre Gaillard. Rational solutions to the KPI equation of order 7 depending on 12 parameters. 2018. 〈hal-01736228〉

Partager

Métriques

Consultations de la notice

151

Téléchargements de fichiers

66