]. B. Mahmoud, M. Khairy, F. A. Rashwan, and C. E. Banks, Simultaneous Voltammetric Determination of Acetaminophen and Isoniazid (Hepatotoxicity-Related Drugs) Utilizing Bismuth Oxide Nanorod Modified Screen-Printed Electrochemical Sensing Platforms, Analytical Chemistry, vol.89, issue.3, pp.2170-2178, 2017.
DOI : 10.1021/acs.analchem.6b05130

]. B. Hanssen, S. Siraj, and D. K. Wong, Abstract, Reviews in Analytical Chemistry, vol.24, issue.1, pp.1-28, 2016.
DOI : 10.1002/elan.201100511

J. Moiroux and P. J. Elving, Adsorption phenomena in the NAD+/NADH system at glassy carbon electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.102, issue.1, pp.93-108, 1979.
DOI : 10.1016/S0022-0728(79)80033-9

A. Barberis, Y. Spissu, G. Bazzu, A. Fadda, E. Azara et al., Development and Characterization of an Ascorbate Oxidase-based Sensor???Biosensor System for Telemetric Detection of AA and Antioxidant Capacity in Fresh Orange Juice, Analytical Chemistry, vol.86, issue.17, pp.8727-8734, 2014.
DOI : 10.1021/ac502066a

A. J. Downard, Electrochemically Assisted Covalent Modification of Carbon Electrodes, Electroanalysis, vol.142, issue.14, pp.1085-1096, 2000.
DOI : 10.1149/1.2048476

D. Belanger and J. Pinson, Electrografting: a powerful method for surface modification, Chemical Society Reviews, vol.31, issue.551, pp.3995-4048, 2011.
DOI : 10.1016/j.irbm.2010.02.010

J. Wang, R. P. Deo, and M. Musameh, Stable and Sensitive Electrochemical Detection of Phenolic Compounds at Carbon Nanotube Modified Glassy Carbon Electrodes, Electroanalysis, vol.15, issue.2324, pp.1830-1834, 2003.
DOI : 10.1002/elan.200302772

E. J. Stuart and M. Pumera, Nanographite Impurities within Carbon Nanotubes are responsible for their Stable and Sensitive Response Toward Electrochemical Oxidation of Phenols, The Journal of Physical Chemistry C, vol.115, issue.13, pp.5530-5534, 2011.
DOI : 10.1021/jp111941s

D. Vega, L. Aguei, A. Gonzalez-cortes, P. Yanez-sedeno, and J. M. Pingarron, Electrochemical detection of phenolic estrogenic compounds at carbon nanotube-modified electrodes, Talanta, vol.71, issue.3, pp.1031-1038, 2007.
DOI : 10.1016/j.talanta.2006.05.071

B. E. Swamy and B. J. Venton, Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo, The Analyst, vol.674, issue.9, pp.876-884, 2007.
DOI : 10.1111/j.2042-7158.1971.tb08673.x

C. Yang, C. B. Jacobs, M. D. Nguyen, M. Ganesana, A. G. Zestos et al., Carbon Nanotubes Grown on Metal Microelectrodes for the Detection of Dopamine, Analytical Chemistry, vol.88, issue.1, pp.645-652, 2016.
DOI : 10.1021/acs.analchem.5b01257

T. N. Rao, B. H. Loo, B. V. Sarada, C. Terashima, and A. Fujishima, Electrochemical Detection of Carbamate Pesticides at Conductive Diamond Electrodes, Analytical Chemistry, vol.74, issue.7, pp.1578-1583, 2002.
DOI : 10.1021/ac010935d

G. W. Muna, V. Quaiserova-mocko, and G. M. Swain, Chlorinated Phenol Analysis Using Off-Line Solid-Phase Extraction and Capillary Electrophoresis Coupled with Amperometric Detection and a Boron-Doped Diamond Microelectrode, Analytical Chemistry, vol.77, issue.20, pp.6542-6548, 2005.
DOI : 10.1021/ac050473u

G. W. Muna, N. Tasheva, and G. M. Swain, Electro-oxidation and Amperometric Detection of Chlorinated Phenols at Boron-Doped Diamond Electrodes:?? A Comparison of Microcrystalline and Nanocrystalline Thin Films, Environmental Science & Technology, vol.38, issue.13, pp.3674-3682, 2004.
DOI : 10.1021/es034656e

C. Prado, G. G. Murcott, F. Marken, J. S. Foord, and R. G. Compton, Detection of Chlorophenols in Aqueous Solution via Hydrodynamic Channel Flow Cell Voltammetry Using a Boron-Doped Diamond Electrode, Electroanalysis, vol.14, issue.14, pp.975-979, 2002.
DOI : 10.1002/1521-4109(200208)14:14<975::AID-ELAN975>3.0.CO;2-Q

Y. Lei, G. Zhao, M. Liu, X. Xiao, Y. Tang et al., Simple and Feasible Simultaneous Determination of Three Phenolic Pollutants on Boron-Doped Diamond Film Electrode, Electroanalysis, vol.11, issue.18, pp.1933-1938, 2007.
DOI : 10.1002/elan.200703960

H. Dejmkova, M. Scampicchio, J. Zima, J. Barek, and S. Mannino, Determination of Total Phenols in Foods by Boron Doped Diamond Electrode, Electroanalysis, vol.8, issue.9, pp.1014-1018, 2009.
DOI : 10.1016/j.chroma.2004.08.059

M. A. Ajeel, M. K. Aroua, and W. M. Daud, Preparation and characterization of carbon black diamond composite electrodes for anodic degradation of phenol, Electrochimica Acta, vol.153, pp.379-384, 2015.
DOI : 10.1016/j.electacta.2014.11.163

C. E. Banks and R. G. Compton, Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study, The Analyst, vol.19, issue.9, pp.1232-1239, 2005.
DOI : 10.1039/b508702c

E. Mazzotta, C. Malitesta, and E. Margapoti, Direct electrochemical detection of bisphenol A at PEDOT-modified glassy carbon electrodes, Analytical and Bioanalytical Chemistry, vol.50, issue.172, pp.3587-3592, 2013.
DOI : 10.1016/j.electacta.2004.10.026

J. Wang and R. Li, Highly stable voltammetric measurements of phenolic compounds at poly(3-methylthiophene)-coated glassy carbon electrodes, Analytical Chemistry, vol.61, issue.24, pp.2809-2811, 1989.
DOI : 10.1021/ac00199a025

W. Lu, G. G. Wallace, and M. D. Imisides, Development of Conducting Polymer Modified Electrodes for the Detection of Phenol, Electroanalysis, vol.6, issue.5, pp.325-332, 2002.
DOI : 10.1002/elan.1140061009

M. A. Heras, S. Lupu, L. Pigani, C. Pirvu, R. Seeber et al., A poly(3,4-ethylenedioxythiophene)-poly(styrene sulphonate) composite electrode coating in the electrooxidation of phenol, Electrochimica Acta, vol.50, issue.7-8, pp.1685-1691, 2005.
DOI : 10.1016/j.electacta.2004.10.029

X. Yang, J. Kirsch, E. V. Olsen, J. W. Fergus, and A. L. Simonian, Anti-fouling PEDOT:PSS modification on glassy carbon electrodes for continuous monitoring of tricresyl phosphate, Sensors and Actuators B: Chemical, vol.177, pp.659-667, 2013.
DOI : 10.1016/j.snb.2012.11.057

J. Hao, T. Xiao, F. Wu, P. Yu, and L. Mao, High Antifouling Property of Ion-Selective Membrane: toward In Vivo Monitoring of pH Change in Live Brain of Rats with Membrane-Coated Carbon Fiber Electrodes, Analytical Chemistry, vol.88, issue.22, pp.11238-11243, 2016.
DOI : 10.1021/acs.analchem.6b03854

Q. Sun, F. Yan, L. Yao, and B. Su, Anti-Biofouling Isoporous Silica-Micelle Membrane Enabling Drug Detection in Human Whole Blood, Analytical Chemistry, vol.88, issue.17, pp.8364-8368, 2016.
DOI : 10.1021/acs.analchem.6b02091

S. Alwarappan, K. S. Butcher, and D. K. Wong, Evaluation of hydrogenated physically small carbon electrodes in resisting fouling during voltammetric detection of dopamine, Sensors and Actuators B: Chemical, vol.128, issue.1, pp.299-305, 2007.
DOI : 10.1016/j.snb.2007.06.016

T. Goto, T. Yasukawa, K. Kanda, S. Matsui, and F. Mizutani, Inhibition of Electrochemical Fouling against Biomolecules on a Diamond-Like Carbon Electrode, Analytical Sciences, vol.27, issue.1, pp.91-94, 2011.
DOI : 10.2116/analsci.27.91

L. M. Fischer, M. Tenje, A. R. Heiskanen, N. Masuda, J. Castillo et al., Gold cleaning methods for electrochemical detection applications, Microelectronic Engineering, vol.86, issue.4-6, pp.1282-1285, 2009.
DOI : 10.1016/j.mee.2008.11.045

URL : http://orbit.dtu.dk/en/publications/gold-cleaning-methods-for-electrochemical-detection-applications(5821acb1-2633-4cac-967d-110003c2e98f).html

B. Sljukic, C. E. Banks, A. Crossley, and R. G. Compton, Lead(IV) oxide???graphite composite electrodes: Application to sensing of ammonia, nitrite and phenols, Analytica Chimica Acta, vol.587, issue.2, pp.240-246, 2007.
DOI : 10.1016/j.aca.2007.01.041

]. B. Feier, D. Floner, C. Cristea, R. Sandulescu, and F. Geneste, Development of a novel flow sensor for copper trace analysis by electrochemical reduction of 4-methoxybenzene diazonium salt, Electrochemistry Communications, vol.31, pp.13-15, 2013.
DOI : 10.1016/j.elecom.2013.02.025

URL : https://hal.archives-ouvertes.fr/hal-00844366

R. Nasraoui, D. Floner, and F. Geneste, Analytical performances of a flow electrochemical sensor for preconcentration and stripping voltammetry of metal ions, Journal of Electroanalytical Chemistry, vol.629, issue.1-2, pp.30-34, 2009.
DOI : 10.1016/j.jelechem.2009.01.024

URL : https://hal.archives-ouvertes.fr/hal-00411111

R. Nasraoui, D. Floner, and F. Geneste, Improvement in performance of a flow electrochemical sensor by using carbamoyl-arms polyazamacrocycle for the preconcentration of lead ions onto the electrode, Electrochemistry Communications, vol.12, issue.1, pp.98-100, 2010.
DOI : 10.1016/j.elecom.2009.10.045

URL : https://hal.archives-ouvertes.fr/hal-00448811

M. Pontie, H. Lecture, and F. Bedioui, Improvement in the performance of a nickel complex-based electrochemical sensor for the detection of nitric oxide in solution, Sensors and Actuators B: Chemical, vol.56, issue.1-2, pp.1-5, 1999.
DOI : 10.1016/S0925-4005(99)00027-1

A. Wong, E. M. Materon, and M. D. Sotomayor, DEVELOPMENT OF A BIOMIMETIC SENSOR MODIFIED WITH HEMIN AND GRAPHENE OXIDE FOR MONITORING OF CARBOFURAN IN FOOD, Electrochimica Acta, vol.146, pp.830-837, 2014.
DOI : 10.1016/j.electacta.2014.09.091

L. Mignard, M. Denoual, O. Lavastre, D. Floner, and F. Geneste, Sampled voltammetry on an electrode array for the renewal of the electrode surface and the analytical solution during the analysis, Journal of Electroanalytical Chemistry, vol.689, pp.83-87, 2013.
DOI : 10.1016/j.jelechem.2012.10.015

URL : https://hal.archives-ouvertes.fr/hal-00844360

J. Saveant, Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry, 2006.
DOI : 10.1002/0471758078

I. Bhugun and J. Saveant, Derivatization of surfaces and self-inhibition in irreversible electrochemical reactions: Cyclic voltammetry and preparative-scale electrolysis, Journal of Electroanalytical Chemistry, vol.395, issue.1-2, pp.127-131, 1995.
DOI : 10.1016/0022-0728(95)04145-E

E. M. Vieira, J. F. Ribeiro, R. Sousa, M. M. Silva, L. Dupont et al., Titanium Oxide Adhesion Layer for High Temperature Annealed Si/Si3N4/TiO x /Pt/LiCoO2 Battery Structures, Journal of Electronic Materials, vol.8, issue.2, pp.910-916, 2016.
DOI : 10.1557/JMR.1993.0012

V. V. Tsukruk and V. N. Bliznyuk, Adhesive and Friction Forces between Chemically Modified Silicon and Silicon Nitride Surfaces, Langmuir, vol.14, issue.2, pp.446-455, 1998.
DOI : 10.1021/la970367q